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drug sensitivity
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Background: Human tumors pose significant challenges, with targeted therapy

against specific molecular targets or signaling pathways being a mainstay

alongside surgical resection. Previous studies have implicated KHDRBS1 in the

oncogenesis of certain human tumors such as colorectal and prostate cancers,

underscoring its potential as a therapeutic target. However, the comprehensive

expression pattern of KHDRBS1 in hepatocellular carcinoma (HCC) warrants

further exploration.

Methods: Integrating and analyzing multi-omics, multi-cohort data from public

databases, coupled with clinical samples and molecular biology validation, we

elucidate the oncogenic role of KHDRBS1 in HCC progression. Additionally,

leveraging HCC single-cell sequencing data, we segregate malignant cells into

KHDRBS1-positive and negative subsets, uncovering significant differences in

their expression profiles and functional roles.

Results:Our study identifies KHDRBS1 as a tumor-promoting factor in HCC, with

its positivity correlating with tumor progression. Furthermore, we highlight the

clinical significance of KHDRBS1-positive malignant cells, aiming to further

propel its clinical utility.

Conclusion: KHDRBS1 plays a key role in HCC development. This study provides

crucial insights for further investigation into KHDRBS1 as a therapeutic target

in HCC.
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1 Introduction

Hepatocellular carcinoma (HCC), a highly lethal malignancy

worldwide, has long been a focal point in the medical community

(1). Treatment modalities for HCC have evolved from traditional

surgical resection, radiotherapy, and chemotherapy to more refined

approaches such as molecular targeted therapy and immunotherapy.

Molecular targeted agents like sorafenib have become standard

therapy for advanced HCC patients, while immunotherapy,

particularly immune checkpoint inhibitors like nivolumab, has

shown promising therapeutic effects in select patients (2, 3).

Nonetheless, in the realm of non-surgical treatment, the quest for

effective molecular biomarkers as therapeutic targets remains crucial,

necessitating further research for validation.

The application of multi-omics technologies, including

genomics (4), transcriptomics (5), proteomics, metabolomics, and

epigenetics, has brought new dimensions to HCC research (6).

Genomic deep sequencing has revealed crucial gene mutations and

alterations in signaling pathways associated with HCC, such as

TP53, CTNNB1, and LRP1B, which play pivotal roles in patient

prognosis evaluation and therapeutic strategies (7–9).

Transcriptomic analyses have unveiled bulk and single-cell RNA

expression profiles in HCC, aiding in understanding tumor

behavior and molecular mechanisms (10–12). Proteomic

approaches allow the analysis of protein levels in HCC, including

expression, modification, and interactions (13, 14). Metabolomics

plays a significant role in studying tumor metabolic

reprogramming, aiding in exploring metabolic pathways

associated with HCC occurrence, progression, and drug resistance

(15–17). Epigenetic studies have elucidated the role of epigenetic

changes such as DNA methylation and histone modifications in

HCC development (18).

KHDRBS1, a protein with a KH homology domain and

signaling functions (19). Aberrant expression of KHDRBS1 has

been observed in various cancers, garnering widespread attention in

cancer research (20–23). KHDRBS1 has gained large attention by its

abnormal expression in cancer, includes breast cancer and lung

adenocarcinoma (24–26). Additionally, in neurobiology, the role of

KHDRBS1 has been of interest, especially in neurodevelopment and

neurodegenerative diseases (27, 28). Collectively, KHDRBS1 is

considered a promising therapeutic target in various diseases, but

its role may vary among different diseases, especially in complex

solid tumors.

In this study, we conducted a multi-omics analysis of the

molecular characteristics of KHDRBS1 in human cancers.

Utilizing multiple HCC cohorts from various public databases

along with clinical samples and experimental validation, we

demonstrated the significant role of KHDRBS1 as an oncogene in

HCC. Furthermore, we extended our understanding of the

functional role of KHDRBS1 in malignant cell populations within

HCC using single-cell data, which is crucial for targeting key cell

populations in therapeutic strategies. These findings advance our

understanding of the role of KHDRBS1 in human cancers and

provide a solid research foundation and direction for studying

KHDRBS1 in HCC.
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2 Materials and methods

2.1 Dataset acquisition

We obtained expression profile data of two HCC microarrays,

namely GSE14520 and GSE116174, from the GEO (https://

www.ncbi.nlm.nih.gov/geo/). Additionally, high-throughput

sequencing data of three other HCC cohorts were acquired from

the following sources: TCGA-LIHC cohort from The Cancer

Genome Atlas (TCGA) (29), LIHC-CN from a previous study, and

HCCDB18, where sequencing data were downloaded from the

HCCDB database. Furthermore, pan-cancer analysis data were

obtained from the UCSC Xena browser (https://xenabrowser.net/).

In addition, proteomic data for various cancer types were retrieved

from the CPTAC database (https://proteomics.cancer.gov/programs/

cptac). The mRNA expression data for cell lines were retrieved from

BioGPS (http://biogps.org) and Cancer Cell Line Encyclopedia

(CCLE, https://sites.broadinstitute.org/ccle/).
2.2 Prognosis analysis for KHDRBS1

Based on the median expression level of KHDRBS1, patients

from various cancer types were stratified into groups of high

KHDRBS1 express ion and low KHDRBS1 expression.

Subsequently, Cox proportional hazards analysis was conducted

using the ‘survival’ and ‘survminer’ packages in R (30, 31), followed

by the generation of Kaplan-Meier survival curves to investigate the

association between KHDRBS1 expression and patient

prognosis (32).
2.3 Single-cell analysis

We acquired eight sets of single-cell RNA sequencing data from

the GSE149614 dataset, derived from four individuals diagnosed

with HCC (HCC05T, HCC05N, HCC04T, HCC04N, HCC03T,

HCC03N, HCC06T, HCC06N), encompassing both tumor and

non-tumor tissues. The single-cell sequencing data were analyzed

using the “Seurat” package (33). Initially, quality control was

performed, retaining only genes with mitochondrial content

below 20%. Subsequently, highly variable genes were identified for

further analysis, and batch effects between eight samples were

mitigated using the “Harmony” package. Cell clustering was then

constructed utilizing the “FindClusters” and “FindNeighbors”

functions (34). Subsequent annotation of cell clusters was carried

out based on specific marker genes. Specifically, marker genes were

utilized as follows: CD3D, CD8A, CD8B, GZMA for T cells; CD163,

CD68, CD14 for macrophages; KLRF1, KLRD1 for NK cells; CD19,

MS4A1, CD79A for B cells; MZB1, JSRP1 for plasma cells; EPCAM,

KRT19 for epithelial cells; ACTA2, FAP, PDGFRB, NOTCH3 for

fibroblasts; PECAM1, CDH5 for endothelial cells; and ALB, TTR,

APOA2 for hepatocytes. Further discrimination of normal and

malignant tumor cells within cell populations was achieved using

the “copyKAT” package (35). Malignant cells were categorized
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https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
https://proteomics.cancer.gov/programs/cptac
https://proteomics.cancer.gov/programs/cptac
http://biogps.org
https://sites.broadinstitute.org/ccle/
https://doi.org/10.3389/fimmu.2024.1393801
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2024.1393801
based on the expression of KHDRBS1 into KHDRBS1 positive

malignant cells (KHDRBS1+ malignant cells, (counts [KHDRBS1])

> 0) and KHDRBS1 negative malignant cells (KHDRBS1-malignant

cells, (counts [KHDRBS1]) <= 0). KEGG and GO enrichment

analyses were performed on single-cell data using the “SCP”

package to explore functional disparities among different cell

types. An approach proposed in a previous study was adopted to

analyze metabolic differences between these two cell groups (36).

Finally, differential analysis and functional enrichment analysis

were conducted using the “SCP” software package, followed

by visualization.
2.4 Establishment of a malignancy marker
for KHDRBS1 positivity

Differential gene analysis was conducted between malignant

cells positive for KHDRBS1 and those negative for KHDRBS1. We

applied a threshold (logFC > 0.2 and p.adj < 0.05) to filter genes to

identify those significantly expressed in KHDRBS1-positive

malignant cells. Subsequently, models were selected based on the

following criteria: 1. Minimization of the required genes during

model establishment to simplify its complexity; 2. Exclusion of

algorithm models with a concordance index (C-index) below 0.6

during external validation to ensure model reliability (37). This

process aimed to establish a reliable malignancy marker for

KHDRBS1 positivity to aid in the diagnosis and treatment of

associated diseases.
2.5 Regents and anti-bodies

Antibody of anti-KHDRBS1 was purchased from SAB (54969,

College Park, US), anti-GAPDH purchased was from Proteintech

(60004, Wuhan, China), crystal violet solution was purchased from

Solarbio (G1063, Beijing, China), IHC kit was purchased from

Zhongshan Golden Bridge Biotechnology (PV-9001, Beijing,

China). Transwell and Matrigel plates were purchased from

Corning Costar (3422, 354480, 24-well format, 8mm pore size,

New York, USA). Lipofectamine 3000 purchased was from

Invitrogen (2369247, California, USA). DMEM, PBS, and

Penicillin & Streptomycin solution were purchased from

BasalMedia (L110KJ, B320KJ, S110JV, Shanghai, China), and

Fetal Bovine Serum was purchased from ExCell Bio (FSP500,

Shanghai, China). Cell Counting Kit-8 solution was purchased

from MCE (HY-K0301, New Jersey, US).
2.6 Cell culture

The SK-HEP-1 cell line was procured from Servicebio (Wuhan,

China). To induce overexpression of KHDRBS1 in SK-HEP-1 cells,

transfection was performed using KHDRBS1 overexpression

plasmids and corresponding control plasmids obtained from

Miaoling Biology (Wuhan, China). Furthermore, SK-HEP-1 cell

lines with KHDRBS1 knockdown were established employing the
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CRISPR-Cas system. Cell cultures were maintained in DMEM

medium supplemented with 10% FBS and 1% antibiotics, and

were housed in a humidified incubator set at 37°C with 5% CO2

(38, 39).
2.7 CRISPR

All oligos, sgRNA, and primers used in this study are listed in

Supplementary Table 1. The pLV3-CMV-KHDRBS1-EGFP-Puro

plasmid and its corresponding control, pLV3-CMV-EGFP-Puro,

were procured from Miaoling Biology (Wuhan, China). KHDRBS1

sgRNA was custom-designed, synthesized, and then ligated into the

lentiCRISPR-EGFP vector. This construct was employed to

generate the lentiCRISPR-EGFP sgRNA construct, which was

subsequently verified by DNA sequencing. Transfections were

carried out using.
2.8 Transwell

Migration and invasion assays were conducted post-logarithmic

growth phase of cells. For migration assays, 7×104 cells were seeded

into the upper chamber of Transwell plates, while for invasion

assays, 1×105 cells were added into the upper chamber of Matrigel-

coated plates (9). Cells were cultured in serum-free DMEMmedium

in the upper chamber, whereas the lower chamber was filled with

DMEM medium containing 10% serum, followed by 36 hours of

incubation. Subsequently, cells were stained with crystal violet

solution and images were captured using a Leica microscope.

Finally, data analysis was performed using Image J software. Each

experiment was repeated three times to ensure the reliability of

the results.
2.9 Cell proliferation assay

To assess cellular proliferation activity, cells were initially

seeded in a 96-well plate at a density of 3 × 103 cells per well and

observed at different time points (24, 48, 72, and 96 hours).

Subsequently, 10ml of Cell Counting Kit-8 (CCK-8) solution and

100ml of DMEM culture medium containing 10% serum were

added to each well, followed by an incubation at 37°C for 4

hours. Then, absorbance was measured at 450 nm using a

microplate reader to evaluate cellular metabolic activity and viable

cell count. Each experiment was performed in triplicate to ensure

the reliability of the results.
2.10 Wound healing assay

Cells are seeded at a density of 1×106 cells per well in a 6-well

plate to study their migration and wound healing capabilities. Upon

reaching confluency, a uniform gap is created in the cell monolayer

using a cell scraper. The cells are then incubated in DMEMmedium

enriched with 10% serum. Images of the scratch are taken at 0 and
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24 hours after the scratch is made, utilizing a microscope. The

widths of the scratch at these time points are measured and

analyzed using Image J software to evaluate the cells’ migration

and wound healing efficiency.
2.11 Western blot

In the protein immunoblotting experiment, cellular samples are

initially treated with RIPA lysis buffer and protease inhibitors to

extract proteins. Subsequently, the protein concentration is

determined, and samples are prepared accordingly. Proteins are

separated by SDS-PAGE gel electrophoresis, followed by transfer

onto a PVDF membrane. Following protein transfer, the PVDF

membrane is blocked with 5% non-fat milk powder and then

incubated overnight at 4°C with specific primary antibodies.

Specific binding of primary antibodies to target proteins allows

detection of protein-antibody complexes using specific secondary

antibodies and chemiluminescent detection. Finally, protein

imaging is performed using an imaging system, and protein

expression levels are quantitatively analyzed using Image J software.
2.12 Quantitative PCR

In quantitative PCR experiments, total RNA is first extracted

using TRIzol, followed by reverse transcription to generate cDNA.

The synthesized cDNA serves as a template for PCR amplification,

with SYBR Green nucleic acid probes used to monitor fluorescence

intensity in each PCR cycle (40). The relative expression levels of

target genes are calculated by comparing the threshold cycle (Ct)

values of fluorescence signals in different samples (41).
2.13 Immunohistochemistry

HCC specimens were initially fixed in a solution containing

10% buffered formalin for a duration of 24 hours. Following

fixation, tissue samples underwent dehydration and embedding in

low-melting-point paraffin to prepare paraffin sections.

Subsequently, paraffin sections were consecutively sliced into

fragments with a thickness of 4-5 micrometers, affixed onto glass

slides, and subjected to deparaffinization and rehydration to

eliminate paraffin. Citrate repair solution was then utilized to

repair tissue antigens under high temperature (100°C) and

pressure (800W) conditions for 2 minutes. Following cooling,

sections were treated with a peroxidase inhibitor for 10 minutes

at room temperature to block endogenous peroxidase activity.

Subsequently, sections were incubated overnight with specific

primary antibodies at 4°C. The following day, staining of sections

was performed using secondary antibodies and DAB substrate to

produce chromogenic products. Finally, stained sections were

dehydrated, cover slipped, and observed under a microscope for

image capture. ImageJ software was employed for the quantitative

analysis of optical density in the sections for IHC analysis.
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2.14 Statistical analysis

The statistical analysis was conducted using R software version

4.1.3, while experimental data were analyzed using Graphpad and

Image J (versions 9.4.0 and 1.8.0, respectively). In cellular

experiments, a t-test was employed to assess differences between

two groups, with statistical significance determined at p < 0.05.
3 Results

3.1 KHDRBS1 expression levels in cancer

To elucidate the fundamental expression patterns of KHDRBS1,

an extensive investigation into the gene expression of KHDRBS1

was initially conducted. The differential expression of KHDRBS1

mRNA between normal and tumor tissues was examined, revealing

that in the majority of cancer types, the expression levels of

KHDRBS1 mRNA were significantly elevated in tumor tissues

compared to normal tissues (Figure 1A). This observation

underscores the pivotal role of KHDRBS1 in the onset and

progression of tumors. Leveraging protein expression data from

the CPTAC database, we investigated the differential expression of

KHDRBS1 protein and identified a significant increase in

KHDRBS1 protein levels across specific cancer types, including

lung adenocarcinoma, ovarian cancer, and HCC, among a total of

10 cancer types examined. Conversely, in the remaining three

cancer types, KHDRBS1 expression did not exhibit significant

variation. This detail accentuates the heterogeneity of KHDRBS1

involvement in cancer, emphasizing its potential as a biomarker or

therapeutic target within distinct oncological contexts (Figure 1B).

Moreover, the expression of KHDRBS1 mRNA was relatively stable

across various cancer cell lines, albeit with some fluctuations

(Figure 1C). In contrast, among different cell types within normal

cell lines, such as in macrophages, the highest expression levels of

KHDRBS1 mRNA were recorded (Figure 1D). Lastly, the CCLE

database revealed that the expression levels of KHDRBS1 mRNA in

these cancer cell lines were also relatively stable, without significant

fluctuations (Figure 1E).
3.2 Prognostic role of KHDRBS1 in HCC

We further investigated the association between KHDRBS1

gene expression levels and survival rates in human cancer

patients. In the overall survival (OS) analysis, elevated expression

of KHDRBS1, as observed in liver cancer (LIHC), was identified as

an adverse prognostic factor for patients (Figure 2A). Consistent

with OS findings, results from disease-specific survival (DSS) and

disease-free interval (DFI) analyses indicated poorer disease-

specific survival outcomes in liver cancer patients with high

KHDRBS1 expression (Figures 2B, C). Subsequent progression-

free interval (PFI) analysis reinforced these observations,

underscoring the potential of KHDRBS1 as a viable biomarker for

liver cancer (Figure 2D). Furthermore, detailed survival curve
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analysis elucidated the correlation between KHDRBS1 mRNA

expression levels and various clinical outcomes in HCC patients

(Figures 2E–H). Finally, by delving into the specific impact of

KHDRBS1 protein levels on prognosis, our study revealed an

association between elevated protein expression of KHDRBS1 and

poorer prognosis in HCC patients (Figure 2I).
3.3 Epigenetic landscape of KHDRBS1

Our investigation unveils the association between aberrant

expression of KHDRBS1 gene and tumor prognosis, yet the precise

mechanisms remain elusive. To elucidate the underlying mechanisms

behind this dysregulated expression, we analyzed copy number

variations and DNA methylation changes. At the genomic level, the

distribution of KHDRBS1 gene copy number variations across different

cancer types were delineated (Figure 3A). Notably, KICH exhibits the

highest proportion of KHDRBS1 gene copy loss, whereas CESC shows

the highest proportion of KHDRBS1 gene amplification. These copy

number losses and amplifications occur across all tumors. Additionally,

in pan-cancer analysis, a significant positive correlation between

KHDRBS1 gene copy number and KHDRBS1 mRNA expression
Frontiers in Immunology 05
levels was observed (Figure 3B). Furthermore, we visually depicted

the most significant correlations between KHDRBS1 gene copy

number and KHDRBS1 mRNA expression levels in three tumors,

namely PCPG, LGG, and DLBC (Figures 3C–E).

At the epigenetic level, through pan-cancer analysis, we revealed

the correlation between KHDRBS1 mRNA expression levels and

DNA methylation sites across different cancer types (Figure 3F). It

was found that the methylation levels of sites ch.1.32283278R and

cg15210307 exhibit a significant negative correlation with

KHDRBS1 mRNA expression levels (Figures 3G, H). Particularly,

the methylation level of site ch.1.32283278R is associated with the

prognosis of HCC patients, with higher methylation levels

correlating with better prognostic outcomes (Figure 3I). However,

the methylation level of site cg15210307 shows no significant

correlation with the prognosis of HCC patients (Figure 3J).
3.4 KHDRBS1 infects HCC immune evasion

The association between KHDRBS1 gene expression and

clinical pathological characteristics, tumor immune features, and

tumor-related pathways in HCC patients was extensively
A

B

D E

C

FIGURE 1

Expression Patterns of KHDRBS1 in Pan-Cancers. (A) Analysis of KHDRBS1 mRNA expression across a variety of cancers, using data integrated from
TCGA and GTEx databases. (B) Examination of KHDRBS1 protein levels across 13 different cancer types, based on information from the CPTAC
database. (C) Assessment of KHDRBS1 expression in various cancer cell lines, as recorded in the BioGPS database. (D) Evaluation of KHDRBS1
expression in normal cell lines, with data sourced from BioGPS. (E) Investigation of KHDRBS1 expression in cancer cell lines, utilizing the CCLE
database. ns, p ≥ 0.05; *p < 0.05; ***p < 0.001.
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investigated utilizing TCGA-LIHC data. Regarding pathology,

tumors of higher grades exhibited significantly elevated

KHDRBS1 expression compared to lower-grade tumors

(Figures 4A, E). Furthermore, patients with serum alpha-

fetoprotein (AFP) levels exceeding 400 ng/ml showed higher

KHDRBS1 expression compared to those with AFP levels below

400 ng/ml (Figure 4B). Further analysis indicated significantly

elevated KHDRBS1 expression in HCC patients with vascular

invasion compared to those without vascular invasion

(Figure 4C). Similarly, higher histological grades were associated

with increased KHDRBS1 expression compared to lower grades

(Figure 4D). These findings suggest a positive correlation between

KHDRBS1 expression and HCC malignancy.

Subsequently, by exploring the relationship between KHDRBS1

expression and various stages of the tumor immune cycle, we

further elucidated the role of KHDRBS1. Results revealed varied

levels of immune activity across multiple stages in the high

KHDRBS1 expression group, particularly in anti-tumor immune

cycles, including recruitment and infiltration of T cells and NK cell

infiltration (Figure 4F). These findings suggest that KHDRBS1 may

influence HCC progression by modulating immune cell infiltration

in the tumor microenvironment. Moreover, our investigation

delineated the association between KHDRBS1 expression and

oncogenic pathways. Notably, heightened KHDRBS1 expression
Frontiers in Immunology 06
significantly correlates with the activation of essential pathways

implicated in cancer progression, encompassing the cell cycle, DNA

replication, cellular migration, and angiogenesis (Figure 4G).
3.5 Prognostic value of KHDRBS1 in HCC:
validation in independent cohorts

In order to enhance the credibility of KHDRBS1 as a potential

oncogenic gene in hepatocellular carcinoma (HCC), validation

analyses were performed on two separate supplementary cohorts

to confirm the correlation between KHDRBS1 expression levels and

tumor-associated characteristics. Initially, an analysis of KHDRBS1

data from the GSE14520 cohort was performed (Figures 5A–E).

Correlations were observed between KHDRBS1 gene expression

and patients’ OS and RFS (Figures 5B, E). Additionally, distribution

relationships between KHDRBS1 expression levels and clinical case

features were further demonstrated through stacked bar charts

(Figure 5C). Further studies comparing KHDRBS1 gene

expression levels across different clinical feature groups (including

staging, HBV status, BCLC staging, and OS) showed significant

differences in KHDRBS1 expression levels in certain clinical

features, such as BCLC staging and OS (Figure 5D). Subsequently,

an analysis of KHDRBS1 data from the HCCDB18 cohort was
A B D E

F

G

I

H

C

FIGURE 2

Comprehensive analysis of KHDRBS1 expression and its prognostic significance across various cancer types, with a specific focus on HCC. Forest
plots illustrate the univariable Cox regression analysis of KHDRBS1 expression across 33 TCGA cancer types, covering (A) Overall Survival (OS),
(B) Disease-Specific Survival (DSS), (C) Progression-Free Interval (PFI), and (D) Disease-Free Interval (DFI). Kaplan-Meier analysis evaluates the
relationship between KHDRBS1 mRNA expression and (E) Overall Survival (OS), (F) Disease-Specific Survival (DSS), (G) Progression-Free Interval (PFI),
and (H) Disease-Free Interval (DFI) in patients with HCC in the TCGA-LIHC cohort. Additionally, the Kaplan-Meier analysis of (I) Overall Survival (OS)
for KHDRBS1 protein levels in HCC patients from the CPTAC database is also included.
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conducted (Figures 5F–I). Significant associations were observed

between KHDRBS1 gene expression and patients’ tumor T stage

and viral infection status (Figure 5F). Further survival curve

analyses depicted higher prognostic levels among patients with

low KHDRBS1 expression compared to those with high

expression (Figures 5G, H). Finally, comparative box plots across

various clinical features revealed significant differences in

KHDRBS1 gene expression levels under certain clinical conditions

such as viral infection status and tumor T stage (Figure 5I). The

results of the multivariate regression analysis in both cohorts show

that KHDRBS1 indeed can serve as an independent prognostic

marker for HCC (Supplementary Table 1).
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3.6 KHDRBS1 enhances HCC cells’
proliferation and migratory capabilities

To investigate the role of KHDRBS1 in HCC, we analyzed the

differential expression of KHDRBS1 in clinical HCC tissues compared

to adjacent non-cancerous tissues. Immunohistochemical analysis

revealed significant nuclear expression of KHDRBS1, with notably

elevated levels in HCC tissues compared to adjacent tissues

(Figure 6A). These findings indicate a marked increase in KHDRBS1

expression in HCC tissues. Consistent results at the protein expression

level (Figure 6B) further support our previous analyses from The

Cancer Genome Atlas (TCGA) data. Additionally, in concordance with
frontiersin.o
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FIGURE 3

KHDRBS1 is regulated by copy number amplification and DNA methylation. (A) DNA copy number variation analysis of KHDRBS1 in 33 cancer types.
(B) The mRNA expression level of KHDRBS1 is positively correlated with the CNV level in most tumors. Correlation analysis of KHDRBS1 expression
and bvalue in the (C) PCPG, (D) LGG, and (E) DLBC datasets. (F) DNA methylation analysis of KHDRBS1 in 33 cancer types. The mRNA expression
level of KHDRBS1 is significantly negatively correlated with the bvalue of its methylation site (G) ch.1.32283278R, as well as (H) cg15210307.
(I) Patients with HCC exhibiting a high bvalue of the ch.1.32283278R site have better overall survival. (J) The bvalue level of cg15210307 is not
significantly associated with the prognosis of HCC patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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malignant features associated with KHDRBS1 overexpression, our

study found that KHDRBS1 overexpression enhanced proliferation,

clonogenicity, wound healing, migration, and invasion capabilities of

SK-HEP-1 cells, while KHDRBS1 knockdown suppressed the

malignant phenotype of SK-HEP-1 cells (Figures 6C–H). Thus, our

findings strongly suggest a role for KHDRBS1 in promoting malignant

characteristics of hepatocellular carcinoma.
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3.7 Single-cell resolution reveals
expression patterns of KHDRBS1 in HCC

Single-cell profiling techniques offer high-resolution insights

into gene expression disparities among distinct cell populations

within tissues. Analyzing single-cell sequencing data from HCC, we

initially identified 20 cellular subtypes within HCC tissues and
A B D E

F

G

C

FIGURE 4

Analysis of KHDRBS1 expression and its clinical implications in liver cancer from the TCGA-LIHC cohort. (A) KHDRBS1 expression across different
pathological stages in the TCGA-LIHC cohort. (B) KHDRBS1 expression levels in relation to AFP in the TCGA-LIHC cohort. (C) KHDRBS1 expression
in cases with vascular invasion in the TCGA-LIHC cohort. (D) Variation of KHDRBS1 expression across different histological grades in the TCGA-LIHC
cohort. (E) KHDRBS1 expression in various T stages of liver cancer in the TCGA-LIHC cohort. (F) Comparison of cancer immunity cycle steps
between high and low KHDRBS1 expression groups in the TCGA-LIHC cohort. (G) Differential enrichment scores of cancer-related pathways
between high and low KHDRBS1 expression groups in the TCGA-LIHC cohort. *p < 0.05; **p < 0.01; ***p < 0.001.
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presented the results of this analysis using UMAP (Figure 7A).

Subsequently, eight cell types were identified, including T cells,

macrophages, B cells, and plasma cells (Figure 7B). Moreover, we

compared the expression of KHDRBS1 between HCC tissues and

adjacent normal tissues. The results indicated a significantly higher

positivity rate of KHDRBS1 in HCC tissues compared to adjacent

normal tissues (Figures 7C, D). Utilizing the CopyKAT algorithm,

2751 malignant cells were identified in the HCC single-cell

transcriptome atlas (Figure 7E). Analyzing the proportions of

each cell type across different samples revealed notable variations

in cell proportions among patient groups (Figure 7F). Subsequently,

we visualized differentially expressed genes for each cell type and

enriched these genes through GO/KEGG analysis to identify
Frontiers in Immunology 09
significant pathways enriched in different cell types (Figure 7G).

Finally, we depicted the expression levels of KHDRBS1 across

different cell types (Figures 7H, I). Importantly, the biological

functions of these pathways matched their respective cell types,

further validating the accuracy of our cell annotations.
3.8 KHDRBS1 expression levels impact
metabolic pathways and sorafenib
resistance in HCC cells

Distinct gene expression disparities were observed

between KHDRBS1-positive and KHDRBS1-negative HCC cells.
A B

D E
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FIGURE 5

Analysis of KHDRBS1 expression and its clinical implications in liver cancer from the validation cohort. (A) Analysis of clinical characteristics in patients
with high vs. low KHDRBS1 expression in the GSE14520 cohort. (B) Patients with HCC exhibiting high KHDRBS1 expression have a worse OS in the
GSE14520 cohort. (C) clinical characteristics distribution across varying levels of KHDRBS1 expression in the GSE14520 cohort. (D) Higher levels of
KHDRBS1 expression observed in advanced pathological and BCLC stages. (E) Patients with HCC exhibiting high KHDRBS1 expression have a worse RFS
in the GSE14520 cohort. (F) Analysis of clinical characteristics in patients with high vs. low KHDRBS1 expression in the HCCDB18 cohort. (G) Patients
with HCC exhibiting high KHDRBS1 expression have a worse OS in the HCCDB18 cohort. (H) Clinical characteristics distribution across varying levels of
KHDRBS1 expression in the HCCDB18 cohort. (I) Higher levels of KHDRBS1 expression observed in advanced pathological and T stages.
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Figure 8A illustrates the top 15 genes with the most pronounced

expression changes across these two groups of HCC cells. Notably,

known oncogenes such as MYC1 exhibited significant upregulation

in KHDRBS1-positive HCC cells. Additionally, an in-depth analysis
Frontiers in Immunology 10
of metabolic pathway activities in these two sets of HCC cells was

conducted. The heatmap depicted a marked increase in metabolic

activity in KHDRBS1-positive HCC cells across multiple metabolic

pathways, including carbohydrate and amino acid metabolism
A

B D
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FIGURE 6

KHDRBS1 Localization and Functional Analysis in Liver Cancer. The localization (A) and protein expression (B) of KHDRBS1 were examined using
immunohistochemical (IHC) and Western blot in clinical samples of liver cancer patients (n=6, T=tumor, P=para-cancerous). The efficiency of
KHDRBS1 overexpression or knockdown in SK-HEP-1 cells was assessed using (C) Western blot and (D) quantitative PCR. The effects of changes in
cellular KHDRBS1 expression on (E) wound healing, (F) migration and invasion, (G) colony formation, (H) cell viability were evaluated at the specified
time point. Data are represented as mean ± SEM. Immunohistochemistry-stained samples visualized under light microscopy at 200× magnification.
Scale bars represent 200 µm. *p < 0.05; **p < 0.01; ***p < 0.001.
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(Figure 8B). Additionally, analysis results from Bulk data also

indicate that KHDRBS1 is associated with metabolic activity

(Supplementary Table 2). Furthermore, comparisons of biological

pathway variances between KHDRBS1-positive and KHDRBS1-

negative HCC cells were made. The analyses revealed heightened

metabolic activity and proliferative capacity in KHDRBS1-positive

HCC cells. Moreover, active biological processes, particularly in

protein phosphorylation and cell signaling pathways, were observed

in KHDRBS1-positive HCC cells, underscoring the significance of
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signaling mechanisms in these cells. Additionally, an upregulation

of immune system processes was noted in KHDRBS1-positive HCC

cells, suggesting unique mechanisms for immune response

modulation. Furthermore, pathways associated with cell longevity

were enriched in KHDRBS1-positive HCC cells (Figure 8C). Lastly,

drug sensitivity analysis was performed. It was observed that

KHDRBS1 expression was significantly elevated in sorafenib-

resistant malignant HCC cells compared to conventional

malignant HCC cells (Figure 8D).
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FIGURE 7

Single-cell landscape of hepatocellular carcinoma and the expression characteristics of KHDRBS1. (A) Distribution of 20 cell clusters was obtained
and shown on a U-MAP plot; (B) Distribution of 20 cell clusters after cell annotation shown on a U-MAP plot; Comparison of the positivity rate of
KHDRBS1 in (C) hepatocellular carcinoma and (D) adjacent normal tissues; (E) Distribution of malignant cells in the single-cell transcriptomic
landscape as calculated by CopyKAT; (F) Proportional expression of different cells in different patient groups; (G) Enrichment analysis of differentially
expressed genes from different cell types based on KEGG and GO. (H) Expression differences of KHDRBS1 in the same cell types between tumor and
normal samples; (I) Expression levels of KHDRBS1 across different cell types. ****p < 0.0001.
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3.9 Development and validation of a
KHDRBS1+ malignancy signature for
prognostic assessment in HCC

To investigate the impact of KHDRBS1+ HCC cells on patients

with HCC, an analysis based on machine learning integration was

conducted. We developed and validated a KHDRBS1+ malignancy
Frontiers in Immunology 12
signature aimed at assessing its role in the clinical outcomes of

HCC. Utilizing the CoxBoost+StepCox [backward] algorithm, we

constructed the KHDRBS1+ malignancy signature, which exhibited

robust prognostic predictive ability across all training and external

validation sets (Figure 9A). Subsequently, survival curves were

employed to elucidate the influence of KHDRBS1+ malignancy in

the prognosis of HCC patients in the TCGA-LIHC cohort. Analysis
A B

D

C

FIGURE 8

Impact of KHDRBS1 expression on malignant cells in HCC. (A) Differential gene expression in KHDRBS1+ vs. KHDRBS1- Malignant Cells.
(B) Metabolic pathway activity differences between KHDRBS1-positive and negative malignant cells. (C) Biological pathway differences in
KHDRBS1+ vs. KHDRBS1- malignant cells. (D) Comparative analysis of KHDRBS1 expression variations across cell types in treatment datasets.
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results demonstrated the effective prognostic prediction capability

of the KHDRBS1+ malignancy signature for HCC patients’ survival

(Figures 9B–E). Specifically, patients in the low-risk group exhibited

significantly better prognosis compared to those in the high-risk

group. Moreover, similar results were observed in the external

validation cohort, where patients in the low-risk group showed

markedly superior prognosis compared to those in the high-risk

group (Figures 9F–I).
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4 Discussion

In our study, multi-omics and single-cell analysis were used for

a comprehensive analysis of KHDRBS1 in HCC. Survival analysis of

HCC patients was performed, establishing the association between

differential KHDRBS1 expression and HCC patients’ prognosis.

Furthermore, an investigation into the significant association

between epigenetic modifications and KHDRBS1 expression was
A B
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FIGURE 9

KHDRBS1+ malignant signature was developed and validated via the machine learning-based integrative procedure. (A) A total of 101 kinds of
prediction models were used via a tenfold cross-validation framework, and the C index of each model across all datasets was further calculated.
Kaplan-Meier curves for (B) OS, (C) DSS, (D) PFI, and (E) DFI based on the KHDRBS1+ malignant signature in the TCGA-LIHC cohort. Kaplan–Meier
curves of OS according to the KHDRBS1+ malignant signature in the validation cohort of HCCDB18 (F), GSE14520 (G), LIHC-CN (H), and
GSE116174 (I).
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undertaken. These findings offer novel insights and valuable

revelations for a more comprehensive understanding of the

molecular pathogenesis of KHDRBS1 in HCC. Additionally, our

study highlights the close correlation between KHDRBS1

expression levels and immune evasion, as well as adverse

prognosis in hepatocellular carcinoma. This research elucidates

the pivotal role of KHDRBS1 in HCC cancer and provides

scientific groundwork for potential therapeutic strategies

targeting KHDRBS1.

KHDRBS1 exhibits diverse functional roles across different cell

types. In neural progenitor cells, KHDRBS1 regulates 3’ end

processing of Aldh1a, preventing premature transcript

recognition and premature termination, thereby promoting the

expression of the functional enzyme ALDH1A3, enhancing self-

renewal, and glycolytic metabolism in mouse neural progenitor cells

(22). Conversely, in cancer cells, KHDRBS1 acts as an oncogene,

promoting breast cancer metastasis by upregulating EPHA3 gene

(24), and regulating the expression of the androgen receptor splice

variant AR-V7 to promote prostate cancer growth (25). Despite

these findings, our pan-cancer analysis reveals an association

between high KHDRBS1 expression and favorable clinical

outcomes in renal clear cell carcinoma, suggesting that KHDRBS1

may not always function as an oncogene. Its functional role may

depend on specific cellular and tissue contexts, necessitating further

investigation to elucidate the impact of KHDRBS1 under different

physiological conditions. Additionally, our focus on KHDRBS1

expression in HCC reveals that its high expression correlates with

higher disease differentiation, tumor grade, and vascular invasion,

indicating its significant role in tumor invasiveness and progression.

Further in vitro experiments demonstrate that KHDRBS1

overexpression enhances proliferation, migration, and invasion

capabilities of HCC cells. This oncogenic potential is further

corroborated in single-cell analyses, revealing unique tumorigenic

and metabolic activities in KHDRBS1-positive malignant cells,

potentially associated with resistance to targeted therapies in

clinical settings. Current studies also suggest that KHDRBS1 may

promote cancer by influencing cell cycle regulation and enhancing

tumor cell migration and invasion (21), consistent with our

findings (42).

Additionally, the expression pattern and prognostic significance

of KHDRBS1 in HCC patients were validated across multiple

independent cohorts. Furthermore, employing single-cell

sequencing technology, we delved into the cellular heterogeneity

and metabolic pathway impacts of KHDRBS1 within the tumor

microenvironment. Notably, we observed a significant elevation of

SPP1 expression in KHDRBS1-positive HCC cells compared to

negative ones. Thus, we hypothesize that the secretion of SPP1 in

regulating the HCC tumor microenvironment may be a mechanism

underlying the malignant functions of KHDRBS1-positive cells, as

the role of SPP1 in remodeling the tumor microenvironment has

been widely reported in various cancers. For instance, in

hepatocellular carcinoma, colorectal cancer, and head and neck

tumors, SPP1-positive macrophages can promote the formation of
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an immunosuppressive tumor microenvironment, thereby limiting

immune cell infiltration into the tumor (43–45). Concurrently, our

analysis of the anti-tumor immune response steps also supports

these findings, where high expression levels of KHDRBS1 correlate

with restricted immune cell infiltration. This implies that

KHDRBS1-positive HCC cells may modulate the HCC tumor

microenvironment by affecting the functionality of SPP1.

Additionally, our analysis of anti-tumor immune steps revealed

an association between elevated KHDRBS1 expression and immune

cell infiltration suppression, suggesting a role for KHDRBS1 in

modulating the HCC tumor microenvironment. While previous

findings shed light on the influence of KHDRBS1 on glycolytic

metabolism in mouse neural precursor cells, its impact on tumor

cell metabolism remains unexplored (22). The results of our study

underscore the pivotal role of KHDRBS1 as a facilitator in tumor

cell metabolic function (46–48). Concurrently, abnormal lipid

metabolic pathways were observed across cell populations with

varying levels of KHDRBS1 expression, indicating a potential link

between KHDRBS1 and cellular ferroptosis and sorafenib resistance

(49–52). Future investigations should delve deeper into the impact

of KHDRBS1 on the HCC tumor microenvironment, holding

significant implications for HCC treatment.
5 Conclusion

Disruption in KHDRBS1 expression is influenced by genetic

mutations and epigenetic mechanisms, closely associated with

prognosis in HCC patients. We also highlight its potential role in

HCC progression, particularly in regulating tumor cell metabolism

and facilitating tumor advancement. This study furnishes scientific

rationale for considering KHDRBS1 as a novel therapeutic target.

Subsequent investigations can delve into tailored therapeutic

approaches targeting KHDRBS1 and validate its utility as a

prognostic indicator across various cancer subtypes.
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