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For decades, innate immune cells were considered unsophisticated first

responders, lacking the adaptive memory of their T and B cell counterparts.

However, mounting evidence demonstrates the surprising complexity of innate

immunity. Beyond quickly deploying specialized cells and initiating inflammation,

two fascinating phenomena– endotoxin tolerance (ET) and trained immunity (TI)–

have emerged. ET, characterized by reduced inflammatory response upon

repeated exposure, protects against excessive inflammation. Conversely, TI leads

to an enhanced response after initial priming, allowing the innate system tomount

stronger defences against subsequent challenges. Although seemingly distinct,

these phenomena may share underlying mechanisms and functional implications,

blurring the lines between them. This review will delve into ET and TI, dissecting

their similarities, differences, and the remaining questions that warrant

further investigation.
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1 Concepts and history

Long considered rudimentary remnants of evolutionary history, innate immune cells

were once thought incapable of memory and solely reliant on a swift, non-specific response

to infection. However, the remarkable complexity of innate immunity is patent, beginning

from its ability to rapidly dispatch specialized cells to the challenged site, to initiate and

amplify the inflammatory response through the release of diverse molecules, both

mediators and effectors. These responses were even considered “non-specific” or

“unspecific”. However, they are triggered after sensing defined pathogen-associated

molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by

pattern recognition receptors (PRRs) expressed by innate immune cells, conferring

specificity (1). That way, recognition of viral PAMPs by endosomal receptors initiates

interferon-dependent responses, while the recognition of fungi by members of the c-type

lectin receptors (CLRs) triggers the phagocytic machinery and the production of reactive
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oxygen species (ROS) (2). Therefore, specific innate immune

responses are generated depending on the recognized insult.

Along these lines, while memory generation has traditionally

been credited to the adaptive immune system, findings in plant

biology have challenged this notion. Plants, lacking an adaptive

immune system, exhibit remarkable resistance to reinfection,

proving that memory can exist independently of adaptive

immune mechanisms (3). Moving on the evolutionary scale to

invertebrates devoid of adaptive immunity, macrophages from

Drosophila melanogaster fruit fly protect the animal from lethal

Streptococcus pneumoniae infection after an initial sublethal

exposition to this bacterium (4). Similar long-lasting memory

processes have been also described for other invertebrates such as

beetles, showing even transgenerational inheritance (5, 6). Turning

to mammals, a growing body of experimental and clinical evidence

since the early 20th century has pointed to the existence of a form of

memory that engages innate immune cells. This memory manifests

as both enhanced and suppressed immune responses elicited by

prior exposure to diverse stimuli, including whole pathogens,

tumour cells and molecules derived from both.

In this context, two distinct phenomena, endotoxin tolerance

(ET) and trained immunity (TI), have been described. ET, mainly

characterized by a reduced inflammatory response following

repeated exposure to a stimulus, primarily serves as a protective

mechanism against excessive inflammatory reactions (7). In

contrast, TI is associated with an enhanced immune response

following prior priming, playing a critical role in mounting a

robust proinflammatory mechanisms against subsequent

challenges of the innate immune system (8).

On the one hand, probably one of the first solid observations of

ET was reported by Paul Benson in 1947 when he induced

lipopolysaccharide (the Gram-negative endotoxin, LPS) tolerance

in rabbits by repeatedly injecting them with this endotoxin (9). In

his words: “Animals which received daily injections of pyrogens

[LPS] for periods of several weeks showed no sign of deterioration in

general health. They tended to gain weight, their coats remained

sleek, and there was no special tendency to develop intercurrent

infections”. The phenomenon was also observed in humans

recovering from malaria, who exhibited dampened fever

responses upon re-challenge with endotoxin (10). The concept of

ET was quoted in 1965 when describing a cross-tolerance effect in

volunteers inoculated with Plasmodium cynomolgi via mosquito

bites (11). These findings highlighted the existence of cross-

reactivity among various stimuli in ET. In this line, a ground-

breaking study published in 1969 demonstrated that prior exposure

to live Salmonella typhosa exhibited the remarkable ability to

dampen the inflammatory response triggered by endotoxin or

killed bacteria (12). However, prior to this study, some clinical

examples of ET were documented in patients with pyelonephritis

(13) and those recovering from typhoid or paratyphoid fever (14).

These reports further emphasized the widespread presence of ET in

human health. Subsequent studies in mice revealed that sublethal

doses of LPS conferred protection against subsequent lethal LPS

challenges (15). It is worth noting that a large number of studies

indicate a critical role for the monocytes/macrophages (MFs) in ET

(7, 16–18). In fact, both murine and human MFs exhibit reduced
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inflammatory responses upon endotoxin challenge if they have been

previously exposed to endotoxin (19).

On the other hand, initial observations of TI effects emerged in

1934, spearheaded by the Swedish scientist Carl Näslund, when he

realized that the protection achieved following vaccination of

neonates against tuberculosis with bacillus Calmette-Guérin

(BCG) was beyond the decrease of deaths due to Mycobacterium

tuberculosis infection. At that time, Näslund talked about

“nonspecific immunity” (20). Similar processes were later

observed in 1978 when BCG was shown to confer protection

against parasitic Schistosoma mansoni (21) and Candida albicans

fungal infections in 1992 (22). Remarkably, this observation was

done in athymic nude mice lacking adaptive immunity, pointing to

innate effectors as lead mediators of the protection. A 1978 study

demonstrated similar protection against Staphylococcus aureus

using prophylactic administration of fungal b-glucan (23).

Interestingly, a 1986 study observed protection against a virulent

form of Candida albicans following infection with a non-pathogenic

strain (PCA-2), suggesting cross-protection within fungal

pathogens (24).

It was in 2011, almost a century after the Näslund’s seminal

report, when Mihai Netea began to name this type of memory

process as innate TI (25). Nowadays, we know that TI at least

contribute –if not lead– heterologous protective effects observed

after vaccination campaigns such as protection against malaria (26),

unrelated respiratory tract infections and sepsis (27) following the

administration of the BCG vaccine. Another example comes from

children receiving the oral polio vaccine (OPV), who, as expected,

get protection not only against poliomyelitis, but also against

respiratory viral infections (28).

Based on these extensive experimental and epidemiological

data, we propose a shift from the term “nonspecific immunity” to

“heterologous immunity”. As we will discuss later, the term

“heterologous immunity” better reflects the specific receptors,

signalling pathways, and molecular mechanisms that are involved

in the development of these memory responses.
2 Endotoxin tolerance: beyond
inflammation’s realm, yet not an
immune paralysis

Sepsis, in which endotoxin tolerance is patently observed, serves

as a clinically relevant example of ET. This complex condition arises

from an uncontrolled inflammatory response by the innate immune

system following a systemic infection. The evolution of ET in sepsis

involves two phases. Initially, patients experience an exaggerated

inflammatory response that progresses to a modulated state (7, 29,

30). According to several authors, during the second stage of sepsis

the innate immune cells of these patients exhibit a patent ET (7, 18).

This condition is clinically associated with an increased risk of

secondary infections and mortality (31).

While the main hallmark of ET is undoubtedly a reduced

inflammatory response, this phenomenon is not merely a

suppression of pro-inflammatory cytokines production. In fact,
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sepsis monocytes treated ex vivo with LPS exhibit a diminished

expression of costimulatory molecules like CD80, CD40, and HLA-

DR, compromising their antigen-presenting capabilities (32–34).

This reduced antigen presentation is evident in mixed lymphocyte

reactions, where LPS-treated sepsis monocytes induce significantly

low T cell proliferation (32, 35, 36).

Furthermore, sepsis monocytes show enhanced phagocytic

activity, demonstrating a heightened ability to engulf and

eliminate pathogens. This enhanced anti-microbial activity is also

reflected in the ability of supernatants from sepsis monocyte

cultures to restrict bacterial growth (32). Consistent with these

findings, LPS-treated sepsis monocytes express elevated levels of the

antimicrobial gene HAMP (32). In addition to the phagocytosis

activity, these cells promote tissue repair and remodelling (32).

Together, all these characteristics define the complex interplay of

immune modulation and pathogen clearance during an ET reported

not only in the context of sepsis, but also in cystic fibrosis, stroke,

cancer, heart infarction, and COVID-19 (37–42). The main

reported inducers of endotoxin tolerance in these contexts, to our

current knowledge, are LPS, mitochondrial DNA (mtDNA),

Pellino-3, lipoteichoic acid, and erythropoietin (EPO) (9, 40,

43–45).
2.1 Molecular mechanisms implicated in
endotoxin tolerance

Intriguing studies of ET development in gene-deficient mice

have shed light on the participation of intracellular molecules,

including SHIP-1, A20, SOCS-1, TREM-1 and IRAK-M (7, 46–

48). Among all of them, the pseudo kinase IRAK-M –also known as

IRAK-3 from the interleukin-1 receptor-associated kinase (IRAK)

family–, stood out as a potential master regulator of ET (16, 42, 48–

50). In fact, its expression is consistently induced during ET and has

been linked to a range of human pathologies, including sepsis,

cancer, acute coronary syndrome, and asthma (51). Additionally,

published data indicate that IRAK-M is not expressed in myeloid

cells under steady-state conditions but is rapidly induced by the

initial LPS challenge (16). Structural analysis and indirect evidences

suggest that IRAK-M regulates the LPS response by inhibiting the

downstream signalling pathway of toll-like receptor 4 (TLR4) (52).

However, because not all ET characteristics are controlled by IRAK-

M expression, other master regulators should be considered.

Despite evidences from conditional genetically ablated mice

demonstrating HIF1a role in promoting myeloid cell-mediated

inflammation and pro-inflammatory gene expression (53, 54), a

meta-analysis of sepsis leukocyte datasets uncovered a strong

correlation between elevated HIF1a and IRAK-M levels in

independent cohorts of sepsis patients exhibiting the hallmarks of

ET (32). This correlation suggests a more nuanced role for HIF1a in

ET, where it not only upregulates IRAK-M expression in monocytes

but also concurrently downregulates pro-inflammatory cytokine

production and monocyte reprogramming (44), leading to the

immunosuppressive phenotype and enhanced protective functions

characteristic of ET such as phagocytosis, anti-microbial activity, and
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tissue remodelling (32, 37). This seemingly paradoxical effect stems

from the complex temporal dynamics of HIF1a activation in human

monocytes. Initially, its activation triggers a pro-inflammatory

program, orchestrating a potent immune response. However,

chronic activation paradoxically flips the switch, inducing negative

regulators like IRAK-M, which ultimately dampen inflammatory

responses and lead to an immunosuppressive phenotype. This shift

towards immune suppression phenotype is crucial for ET.

In addition, the expression of the programmed cell death-1

ligand (PD-L1) has been described during ET in sepsis (36, 55) and

COVID-19 patients (37, 56). Of note, both PD-L1 blocking and

knockdown assays on tolerant monocytes from both patients with

sepsis and the in vitro model reverted the impaired adaptive

response observed during ET. Mechanistically, HIF1a translocates

into the nucleus and drives PD-L1 expression during ET in human

monocytes (36, 37, 55–57).

Interestingly, repeated endotoxin exposure reprogrammed

monocytes at the chromatin level, with 80% of accessible regions

becoming more open (17). This resulted in altered gene expression,

primarily towards genes involved in detoxification and responding

to environmental stress-induced cell damage. Notably, increased

expression of metallothionein genes, key players in both natural and

xenobiotic heavy metal detoxification, emerged as a potential

biomarker of an immunosuppressive state (17). Additionally, it

has been reported that the NFkappaB/IkappaB pathway plays a role

in regulating gene expression during endotoxin tolerance (58).

Finally, microRNAs, short non-coding RNA molecules (~22

nucleotides), have also emerged as critical regulators of

inflammatory responses during ET. Numerous studies have

implicated several microRNAs in ET development, including miR-

98, miR-125b, miR-132, miR-146a, miR-155, miR-221, miR-222,

miR-579, and the let-7 family (59–63). However, the potential

impact of miRNA dysregulation on the development and

progression of inflammatory diseases warrants further investigation.
2.2 Long-lasting effect of
endotoxin tolerance

One of the most important issues in a phenomenon involving a

memory is its duration. Although there are not a significant number

of studies that address the issue, in the case of ET, in vitro

experiments have indicated that the ET hallmarks are fully kept

for up to 5 days (42). It is only after this period of time that human

monocytes “forget” their previous encounter with the endotoxin,

but considering their relatively short lifespan they cannot be

functionally available for much longer.

Interestingly, even a short-term (around one hour) exposition

to an endotoxin such as LPS is sufficient to induce some level of ET

in human monocytes. The refractory state is more evident when the

first endotoxin challenge lasts for 6 – 8 h (42). Importantly, it has

been observed that the ET does not influence cell viability,

suggesting that monocyte counts could be normal during an

infection induced ET state, but a significant proportion of these

cells would not be functional.
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In line, an ET state in circulating monocytes isolated from septic

patients correlates with longer stays in intensive care units,

prolonged mechanical ventilation, and a higher incidence of re-

infections (64). Moreover, monocytes isolated from patients who

went on to survive their septic episode were found to regain

endotoxin responsiveness, whereas normal reactivity was never

restored in non-survivors (65). Thus, the phenomenon of ET is

thought to play an important role in the susceptibility to reinfection

in patients with severe sepsis.

Moving to an in vivo model, always in humans, the duration of

ET differs from what has been reported in vitro. In 12 healthy male

non-smoking volunteers who received LPS twice, the in vivo

cytokine response following LPS administration is still impaired

after two weeks (57).

These discrepancies in ET duration between in vitro and in vivo

models may have their origin in the involvement of tissue-resident

cells whose effect is lost in an in vitro approach. In any case, this is a

question to which no robust answer has yet been given.
3 Trained immunity: priming to
boost inflammation

TI involves the long-term reprogramming of innate immune

cells, resulting in an altered pro-inflammatory response to

subsequent challenges, whether related or unrelated to the initial

trigger. This concept aligns with the phenomenon of ET, where a

first encounter with specific signals primes the immune system for a

tailored response in later stages (66). b-glucans from the cell walls of

fungi such as Saccharomyces cerevisiae and Candida albicans, and

also the tuberculosis vaccine BCG, are the best characterized agents

inducing TI (67–70). The priming of peripheral blood mononuclear

cells (PBMCs), purified monocytes, neutrophils, or natural killer

cells (NKs) with any of these TI inducers leads to a boosted

inflammatory response upon a secondary stimulation with either

the same or heterologous agents. Examples of such heterologous

stimuli, considering the fungal or mycobacterial origin of the TI

inducers, are the TLR2 ligand Pam3Cys, the TLR4 ligand LPS and

whole microorganisms such as Gram-negative bacteria Escherichia

coli or Bacteroides fragilis, Gram-positive Staphylococcus aureus or

alternative mycobacteria such as Mycobacterium tuberculosis

(67–70).

Of note, the portfolio of compounds inducing TI has

notoriously increased since its initial formal definition, extending

to alternative TLR ligands including polyI:C (TLR3 ligand) (71) and

flagellin (TLR5 ligand) (72), fungal chitin (73), to more complex

agents such as heat-killed mycobacteria (74, 75) and western diet

(76). The capacity of this last TI inducer seems to rely on

endogenous oxidized low-density lipoprotein (oxLDL) (76, 77)

generated because of the hypercaloric diet intake, leading to the

notion that also “self” assets such as certain DAMPs can induce TI

(78). This is the case for uric acid (79), vimentin (80) and even

hyperglycaemia (81).

As indicated previously, some vaccines show heterologous

protective effects beyond the specific pathogen against which they

were developed. Due to that, these vaccines can also be considered
Frontiers in Immunology 04
TI inducers. BCG is the prototype under this statement, but

induction of TI by alternative vaccinations using attenuated

agents such as Influenza (82) or Vaccinia (83) has also been

experimentally demonstrated. Interestingly, not only the active

vaccine agent can induce TI, but also some adjuvants included in

vaccine formulations can generate this boosted inflammatory

response (84). For instance, the oil-in-water emulsion adjuvant

AS03 included in GlaxoSmithKline’s H1/N1 and H5N1 Influenza

vaccines (85), and the lipid nanoparticle carrier employed for

mRNA vaccines against COVID-19 (86). Under the light of the

dual impact of these formulations in both innate and adaptive

immunity, the concept of TI-based vaccines (TI-bV) (87) is gaining

attention as vaccines designed to cover a wider spectrum of

pathogens beyond antigen-specificity. An example of TI-bV is the

inactivated polybacterial mucosal vaccine MV130, a mixture of

whole heat-inactivated bacteria that, by inducing TI, confers

heterologous protection against fungal and viral infections (88, 89).

While ET dampens the immune response, TI presents a

contrasting picture. Though marked by an initial surge in

cytokine production, the hallmark of TI lies in a broader

reprogramming of the pro-inflammatory response. This

reprogramming yields diverse outcomes depending on the specific

immune cell type under study, including elevated levels of

activation markers such as CD11b in monocytes (90) and

neutrophils (70), Iba-1 in microglia (71) or scavenger receptors

(CD36, SR-A) in macrophages accompanied of overproduction of

ROS (70), as well as increased uptake of particles and phagocytosis

(77, 91). This last feature is intriguing because as indicated before,

ET- monocytes show enhanced phagocytic capacity.

All these events at the cellular level are reflected experimentally

in heterologous protection against a plethora of challenges, both

infectious and tumour related. Thus, prophylactic TI induction by

systemic administration of b-glucan or BCG confers protection

against bacteria including Staphylococcus aureus (92), Listeria

monocytogenes (93) or Mycobacterium tuberculosis (94).

Heterologous protection is also induced against fungal Candida

albicans (68, 69), parasites such as Leishmania braziliensis (95) and

viral infections including SARS-CoV-2 (96). Of note, this

heterologous protection is also noticed against cancer

development, both in grafted primary tumours (97, 98), and

spontaneous (99) tumour models. Importantly, some of these

experiments have been performed in SCID, NSG and mice

lacking adaptive immunity Rag1-deficient (68, 69, 98), indicating

that the observed heterologous memory process relies exclusively

on innate immune cells.

Despite the diversity of the TI-related processes described

above, there are some shared common mechanisms leading to the

hallmark overproduction of cytokines characteristic of TI: the

epigenetic and metabolic rewiring.
3.1 Epigenetics and metabolism take the
lead of trained immunity

Priming stimuli leading to TI generate changes in the targeted

cells allowing to perform a boosted inflammatory response upon
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secondary challenges. A good corpse of experimental evidence

indicates that a deep epigenetic and metabolic reprogramming

takes place in these settings.

Early mechanistic observations showed that b-glucan altered

substantially the epigenetic landscape of trained monocytes,

increasing notoriously the trimethylation of lysine 4 (H3K4me3)

and acetylation of lysine 27 at histone 3 (H3K27Ac) (92).

Importantly, these changes were found six days after b-glucan
stimulation and prior to any secondary stimulation. The

functional impact of these changes was revealed by killing the

trained response using chemical inhibitors of enzymes generating

those epigenetic changes, such as histone methyltransferases, while

inhibition of histone demethylases showed no effect (69). These

modifications poise specific promoters and enhancers in a more

accessible conformation for transcription factors activated upon

secondary stimulation.

Cellular metabolism is also profoundly affected upon TI

induction. Glycolysis and the Krebs cycle are activated following

both b-glucan and BCG stimulation, generating among others,

lactate, acetyl-CoA and fumarate as key factors for the trained

process (100, 101). Lactate acidificates culture media and can be

quantified as a readout of TI, and the Extracellular Acidification

Rate (ECAR) as a subrogate of the glycolytic metabolism (92, 100).

Acetyl-CoA serves as a cofactor for chromatin-modifying enzymes

involved in the above-mentioned epigenetic rewiring (102), as well

as initiating platform for the cholesterol synthesis, also required for

TI induction (101). Finally, fumarate induces TI by itself, mostly

contributing to the enrichment of H3K27Ac residues at the

epigenetic level (101). Nonetheless, mitochondrial oxidative

phosphorylation is also activated following b-glucan-induced
training, with implication in epigenetic remodelling through

specific methyltransferases (103). Altogether, the interaction

between epigenetics and metabolism establishes a crosstalk

between each process, as genes encoding enzymes involved in the

glycolytic pathway are among the transcriptionally open clusters

primed upon training, and reinforcing the feed-back loop,

metabolites generated during this metabolic rewiring modulates

chromatin modifications (92, 102). Of note, these metabolic

mechanisms have certain specificities that should be considered

depending on the TI inducer (e.g., b-glucan or BCG) (100, 101).

The expression of specific long-noncoding RNAs (lncRNAs)

adds another layer of complexity in this intersection as they

facilitate epigenetic modifications by providing scaffolding for

methyltransferases (104, 105), while the microARN mirR-9-5p is

also implicated in the regulation of the immunometabolism and

epigenetic rewiring triggered upon TI (106).
3.2 Molecular mechanisms implicated in
trained immunity

Specific signalling pathways are triggered following the

recognition of the different agents inducing TI. To date, the C-
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type lectin receptor Dectin-1 (69) and the intracellular NOD-2

receptor (90) are the best-described sensors triggering trained

responses by most of the indicated inducers. Among the different

signalling pathways triggered downstream Dectin-1 (107), the

induction of TI relied on the Raf-1 kinase (67), while NOD-2 was

coupled to Rip2 kinase (90). Of note, HIF1a following PI3K

activation performs as a master regulator of trained processes

triggered by different inducers (92, 101). Nonetheless, the

implication of alternative signalling modules have been described

for certain TI inducers such as polybacterial immunotherapies

requiring Syk and MyD88 (108) or oxLDL (77) through liver X

receptor (LXR), as well as specific LXR agonists (109, 110).

Therefore, comprehensive mechanistic studies are required to

identify core mediators of TI applying to the widest panel of

inducers. At the same time, the characterization of stimuli-

specific pathways leading to trained responses would allow their

handling under clinicopathological situations of interest.

Of note, from a biological and structural point of view, it is hard

to find common features between the already indicated TI inducers.

Nevertheless, looking for common denominators, shared signalling

pathways initiated by the main receptors involved in the recognition

of these inducers could shed some light on the driving forces leading

to TI induction. In this sense, Dectin-1 and NOD are pleiotropic

receptors with the capability of sensing a plethora of ligands (107,

111). Signalling pathways triggered downstream these receptors are

known to converge on RIPK2 upon diverse conditions (112, 113), as

well as following TLR activation (114). However, the specific role of

RIPK2 on TI induction has not been addressed. Therefore, it

deserves future studies considering the central role that this

kinase is achieving as a target for the treatment of inflammatory

diseases (115).

Following this line, negative regulators of TI have been also

identified. Trained responses were dampened upon SHIP-1 specific

depletion in myeloid cells or its chemical inhibition (116). The activity

of the isocitrate dehydrogenase 3a (IDH3a) was shown to inhibit

HIF1a, leading to reduced trained responses by impacting both the

metabolic and epigenetic reprogramming of b-glucan-trained
monocytes (106). Another example is the expression of the Immune-

responsive gene 1 (IRG1) leading to the production of itaconate and a

consequent limitation of TI (117). Notably, all these pathways could

serve to regulate the balance of the TI - ET equilibrium.

Looking at TI inducers, most of them are particles. This raises

the question of the extent to which phagocytosis is involved in the

trained process, not only as a readout (91), but also as a part of the

mechanism implicated in its triggering. Interestingly, corpse

engulfment primes pro-inflammatory responses in macrophages

from Drosophila melanogaster fruit-flies through specific signalling

pathways (118). Not only phagocytosis, but also autophagy has been

related to TI, although the actual role of this process is unclear.

While inhibition of autophagy dampened BCG-induced TI (119),

innate immune priming due to uric acid reduced the extent of

autophagy in human monocytes (79). Therefore, the role of this

phagocytic process in TI deserves further investigation.
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3.3 Long-lasting effect of trained immunity
beyond in vitro

Most of the studies addressing molecular mechanisms related to

TI have been performed using in vitro cultured cells. Nonetheless, in

vivo, trained responses are observed for months following the

administration of the TI inducer (88, 120). Therefore, those

mature already differentiated cells that face this priming are no

longer alive upon secondary stimulation. For that reason, in

addition to cell-autonomous mechanisms, it is known that the

numbers of hematopoietic bone marrow-derived progenitors

(BMPs) are increased after exposition to TI inducers.

Furthermore, those progenitors experience transcriptomic and

metabolic changes that contribute to maintain durable memory of

newly generated innate immune cells upon a second stimulus (94,

121). This process of central memory imprinting is revealed when

mice adoptively transferred with BMPs from trained animals are

protected against heterologous infections (122). A step further

related to the spread of TI is its transmission across generations,

implicating that the progeny of trained mice shows traits of innate

immune memory as well as heterologous protection against

infections (123). How this memory is imprinted at the bone

marrow niche is not fully understood.

One possibility is that the TI inducers reach the bone marrow,

acting directly on the BMPs. This could be the case of BCG when

administered systemically through the tail vein in mice (94).

However, this is unlikely in the case of particle b-glucan due to

its large size (124), or TI inducers administered through mucosae

(74, 88). Nevertheless, experimental approaches to formally address

this concern are insufficient. For instance, mesenchymal stem cells

uptake the polybacterial MV130 following sublingual

administration, modifying their inflammation pattern (125).

However, whether this immunotherapy directly targets BMPs has

not been addressed. Interestingly, direct stimulation of BMPs with

Dectin-1 ligands and cultured in the presence of M-CSF leads to the

generation of macrophages with a boosted proinflammatory profile

(126), suggesting that the targeting of the hematopoietic cells

imprints a trained phenotype. Indeed, Dectin-1 expression was

required in adoptively transferred BMPs to generate b-glucan-
trained macrophages in Dectin-1-deficient receptors (127),

indicating a direct role for the b-glucan receptor in the training

process. Still, the TI inducer has not been found in the bone marrow

after its systemic administration.

Another option is the generation of molecular intermediates

between the recognition of the TI inducer and the reprogramming

of BMPs. IL-1b has been proposed as one of these intermediates, as

IL-1Repector (IL-1R) knockout mice lost both the heterologous

protection againstMycobacterium tuberculosis and the myelopoiesis

triggered by the prophylactic administration of b-glucan (128). This

was also the case when providing a soluble IL-1R antagonist (128).

IL-1b has also been proposed as the intermediate mechanism

responsible of bacteria-derived nanovesicles inducing TI (129).

Nonetheless, alternative mediators such as GM-CSF and IL-3

have also been postulated as potential intermediates supporting a
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proinflammatory trained phenotype (130). However, an

experimental limitation to obtain these conclusions is that most

of the mediator-deficient models are already sensitive to the assayed

secondary stimulations and infections, making difficult to draw

clear cause-effect relationships. Therefore, whether IL-1b can be

considered a master mediator of TI still needs a deeper

understanding of the underlying mechanisms supporting different

forms of inducing the trained phenotype.
4 Tolerance versus training,
similarities, and differences

4.1 Molecular signalling pathways

Because both ET and TI share a large number of molecular

pathways, and monocytes/macrophages are established as the

crucial cells in both contexts, it is important to establish a close

comparison between these phenomena, broken down by associated

molecular pathways.
4.1.1 HIF1a
Perhaps one of the most important unanswered questions is

why, in both ET and TI, HIF1a activation is crucial. Apparently, ET

is the opposite of TI, yet this transcription factor emerges as one of

the master regulators for both (32, 92).

Disrupting this pathway, either directly, through its upstream

mammalian target of rapamycin (mTOR) signalling, or by

specifically depleting HIF1a in myeloid cells, significantly

weakens the trained responses triggered by various TI inducers

(74, 92, 131). In the case of ET, experiments blocking HIFa –either

by siRNA or using inhibitors of its expression– have shown that key

features of ET, including IRAK-M expression, increased

phagocytosis and tissue remodelling in the context of sepsis (32,

36) and COVID-19 (37), are reduced or even disappear. In addition,

EPO-induced ET was also mediated by HIF1a (45).

Therefore, despite its master role in both innate memory

processes, there must be alternative pathways implicated, making

HIF1a necessary but not sufficient, at least for TI, as the chemical

activation of HIF1a leads to dampened cytokines production in

response to LPS, resembling ET (32). Considering the metabolic,

epigenetic, and signalling pathways triggered downstream of key

receptors involved in TI induction such as Dectin-1, a plausible

model emerges. This model suggests a “division of labour” where

various processes are compartmentalized, followed by a positive

feedback loop between them (105). This coordinated effort

ultimately leads to a fully developed TI program. In this sense,

the calcium-dependent pathway have been proposed to contribute

to the trained process (104) through the induction of long non-

coding RNAs required for the epigenetic modifications accounting

for the long-lasting effect of TI (104). According to this working

model, the calcium-dependent pathway would not participate in the

metabolism-related modifications, supporting a “division of
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labour”. Nonetheless, a consequence of that epigenetic priming is

the enhanced expression of enzymes implicated in the glycolysis

(92), thus generating a positive feedback loop. Of note, this

particular example needs further characterization as the trained

process has been postulated to be Syk-independent downstream

Dectin-1 (67, 69), while the calcium-dependent pathway relies on

the Syk proximal kinase to get activated (107).

Still, another variable to consider analysing the role of HIF1a is

the “steady-state” of the myeloid cell when facing the initial priming

stimulus. This becomes flawless in the differential impact of garlic-

derived extracts on the memory phenotype observed between

monocytes from healthy volunteers and septic patients. This

extract induced ET in healthy volunteers while boosted

inflammatory responses were observed in septic patients, in a

HIF1a-dependent manner (132).

4.1.2 TLRs
Endotoxin-induced ET via TLR4 established the ground for

innate immune memory. Nonetheless, alternative Toll-like

receptors have been implicated in these processes. For instance,

Poly I:C (TLR3 ligand) and CpG (TLR9 ligand) induce TI in

neutropenic mice depleted of neutrophils based on an anti-Ly6G

antibody (35, 71). Flagellin (TLR5 ligand) conferred heterologous

protection against the Gram-positive bacteria Streptococcus

pneumoniae when administered through the airway mucosae

(72). In addition, the role of TLR4 in innate immune memory

might be dual. Consecutive intraperitoneal injections of low-dose

LPS for 4 days gave rise to systemic ET after the second LPS

administration, while TI was induced at the same time point in the

brain, indicating a tissue-specific pattern or dynamics (133).

Therefore, different TLRs, despite sharing upstream signalling

components such as MyD88 and TRIF (134–136), can generate

either ET or TI, but the context must be considered to establish this

balance as the generation of one or the other might depend on the

cellular environment (lack of neutrophils), route of administration

(mucosal) or tissue location (brain).

Focusing on TLR4 as master LPS receptor, the signalling

pathways triggered following this recognition involve both

MyD88 and TRIF, with the latter leading to type I interferon

production (134). This rises to possibility that a differential or

preferential activation of one or the other could conduct towards a

trained or tolerant phenotype. Lack of TRIF or IFNb blockade

impairs ET triggered by lipid-A from E. coli (135). However, type I

interferon signalling was required to induce TI in alveolar

macrophages following intranasal exposure to LPS (137), and

indeed, both IFNa and b prime proinflammatory responses to

secondary heterologous challenges (138, 139), resembling TI.

Therefore, conflicting data raise questions about the specific role

of these pathways in triggering each program. Nevertheless, it’s

likely there are additional regulatory mechanisms downstream of

MyD88 that determines the shift towards ET or TI, such as the

presence and activation of the pseudokinase IRAK-M, which might

be essential for key features of ET to occur (32, 50). This could be
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distinct immune responses.

Along these lines, the stimulation of mast cells with LPS leads to

a reduced cytokines production upon secondary endotoxin

challenge, reproducing ET. Nevertheless, when C. albicans was

used as heterologous challenge, TNFa release was enhanced,

reminiscent of TI (140). How this TLR4 stimulation gives rise to

both training and tolerance depending on the second insult is not

understood, but the ET phenotype was sensitive to histone

deacetylases inhibition (140). These findings suggest a potential

“double-edged sword” role for TLR4, with its effect varying

depending on the secondary stimulation. While its influence

might differ across cell types, this possibility adds another layer of

complexity to understanding TLR4’s involvement in this context.

4.1.3 PI3K, Akt and SHIP1
PI3K and inositol phospholipid species generated by this

enzyme are critical mediators of intracellular signalling pathways,

including those triggered by myeloid receptors (141). Thus,

different stimuli inducing ET such as low dose of LPS and

chemical activation of the key glycolytic enzyme Pyruvate kinase

M2 (PKM2) are accompanied by a repression of the PI3K/Akt

pathway (140, 142, 143). Additionally, the expression of IRAK-M,

critical mediator of cytokine downregulation during ET, was

boosted upon PI3K inhibition (16). On the other hand, PI3K is

strongly activated following b-glucan stimulation through Dectin-1,

and its chemical inhibition dampens TI (92). Therefore, it is

tempting to venture that this pathway establishes a balance

between ET and TI, favouring the training process. In this regard,

we speculate that the activation or non-activation of IRAK-M

controlled by both HIF1a and PI3K may be crucial for the

establishment of ET or TI.

As a fundamental signalling for cell biology, PI3K activity is

tightly regulated (141). In line with a dampened PI3K activity

required for the generation of ET, the expression of SHIP-1, a

PI3K antagonistic phosphatase, was induced in peritoneal and

splenic macrophages upon ET (46), being critical for the

development of the tolerant process (144). Consistently, SHIP-1

depletion in myeloid cells or its chemical inhibition boosted b-
glucan-induced trained responses (116).

However, as in many other examples all along this review, there

are exceptions to this apparent rule. EPO induces ET in

macrophages through PI3K/Akt activation as well as IRAK-M

induction. That way, EPO administration confers protection

against Escherichia coli-induced endotoxin shock by dampening

proinflammatory cytokine production, accompanied of a reduced

bacterial burden (45). Interestingly, this work proposes an

independent induction of the PI3K/IRAK-M and HIF1a axes that

could explain the appearance of concurrent ET and TI features due

to the uncoupling of these two key pathways. Importantly,

secondary stimulation is required to reveal the tolerant and/or

trained phenotype, showing a dominant outcome. This raises the

concern that most of current studies, while focusing on specific
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secondary stimuli, might overlook crucial mechanistic clues

underlying the interplay between ET and TI. Conducting parallel

experiments in both ET and TI contexts, evaluating responses to

common heterologous challenges, could illuminate the molecular-

level interactions between both processes and provide a more

comprehensive understanding.
4.2 Chromatin modification, gene and
metabolic reprogramming

Considering the divergent phenotypes, one could conclude that

ET and TI are essentially two alternative phenotypes of the same

process, namely, an innate reprogramming characterized by either

reduced or enhanced inflammatory responses, two sides of the same

coin. If that’s true, the two processes should share common driving

mechanisms. However, this is not always the case, raising the

question of till which extent there are certain specificities.

For instance, an interesting study addressed the heterologous

memory effects of two viruses used as vaccines (Vaccinia) or vaccine

vector (modified Vaccinia Ankara, MVA). In human primary

monocytes, the former induced TI while MVA generated ET,

analysed in terms of TNFa and IL-6 production upon secondary

heterologous stimulation with LPS or Pam3Cys. Interestingly, the

tolerant state was abolished in the presence of the histone

methyltransferase inhibitor MTA, despite MVA did not alter the

enrichment of the H3K4me3 residue on the promoters of TNFa
and IL-6 (83). Hence, these results suggest that although induction

of ET in these settings relies on epigenetic reprogramming, different

epigenetic modifications than the conventionally observed upon TI

take place.

Therefore, wide-ranging comparative studies at the epigenetic

level are required to identify an essential chromatin accessibility

program considering different genetic locations (promoters,

enhancers) (17) to determine the core transcriptional response

activated by diverse innate immune stimuli triggering either ET

or TI. In this line, the pioneer study performed by Ruslan

Medzhitov and collaborators in 2007 identified “tolerizeable”

versus “non-tolerizeable” genes following LPS-induced ET in

bone marrow-derived macrophages (145). A comparable study

was conducted by Mihai Netea and colleagues in 2012 using

purified human monocytes instead (92), where “trainable” versus

“non-trainable” genes could be identified, although these terms

were not used in this work. Studies using the same cell type and

diverse inducers of innate immune memory as well as secondary

stimulations are required to clarify the “black or white” paradigm

between ET and TI, experiments that should be accompany of

metabolic and phenotypic analyses. Good examples of these kind of

projects are the epigenetic studies performed by Hendrik

Stunnenberg and colleagues where describing differential

epigenetic traits imprinted in ET and TI monocytes (146),

demonstrating that ET can be reverted by b-glucan, yet whether
the process works in the opposite direction was not addressed (147).

As metabolic reprogramming is also critical for the induction of

innate immune memory, these processes need to be tightly
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expression and epigenetics. The relevance of metabolism in this

balance was apparent in leukocytes rendered tolerant following LPS

exposition or after isolation from patients with sepsis. These cells

showed a generalized metabolic defect at the level of both glycolysis

and oxidative metabolism, which was restored after recovery of the

patients (148). Similar results were obtained in monocytes isolated

from healthy individuals after receiving a controlled intravenous

dose of LPS (149). On the other hand, the activation of glycolytic

metabolism is essential for the induction of TI (100, 101). A

potential master regulation of this metabolic balance is the

itaconate pathway linked to the expression of immune-responsive

gene 1 (IRG1) (117). Both factors are induced upon LPS-induced

tolerance and repressed by b-glucan, illustrating the equilibrium

between both memory processes. To fully understand this

interconnection, the role of alternative common regulators, and

the effect of the primary stimulus on the recovery of cellular

metabolism deserves further investigation as key determinants for

the response to secondary stimuli.
4.3 Role of IL10 versus IL-1b

Several studies have indicated a promising role of soluble

mediators for the development of ET. Among them, the

immunomodulatory cytokine interleukin-10 (IL-10) plays a

paradigmatic role. Neutralizing IL-10 using blocking antibodies

during the first LPS stimulation avoids the expected reduction of

TNFa production in response to a subsequent endotoxin challenge

(150). However, since last century we know that IL-10-deficient

mice still develop ET (150).

In line with, and despite of its profound anti-inflammatory role,

IL-10 does not play a major role in regulating TI as its production is

not modulated upon trained responses (67, 74). This could be

relevant for the lack of deleterious inflammatory responses during

TI or TI-bV (87).

Alternatively, IL-1b is profoundly modulated in both trained

and tolerant processes. Of note, IL-1b is considered a key systemic

mediator for TI induction following training with different inducers

(128, 129). As IL-1b is also produced in response to LPS, this raises

the question about the specific role of this cytokine for both ET and

TI. Also and as described above for HIF1a, till which extent IL-1b is

necessary but not sufficient for TI induction, as the mechanistic

studies published in this sense use IL-1R-deficient mice or IL-1R

antagonists (128, 129), instead of IL-1b supplementation.

Among the members of the IL-1 family, IL-37 deserves

attention when talking about ET and TI. This cytokine has been

described as an inhibitor of TI, consistent with its anti-

inflammatory role (151). Interestingly, IL-37 is expressed at high

levels in septic patients, acting as a mortality risk biomarker (152).

Therefore, this cytokine appears to play dual roles during innate

training and tolerant processes, regulating the expression of IL-1b
(153). Furthermore, IL-37 controls cytokine production by

mechanisms beyond its recognition by the canonical receptor IL-

1R8, working at epigenetic levels (154). As epigenetics is essential
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for innate immune memory, it would be interesting to address the

differential role of this cytokine upon well-defined ET conditions.
4.4 Potential role of immune checkpoints

The discovery and characterization of immune checkpoints

(ICs) has offered a new avenue for studying the potential role of

cell-to-cell communication in a number of pathologies beyond

cancer. These surface molecules might function as ligands for

lymphocyte receptors, fine-tuning the duration and intensity of

the adaptive immune response. Notably, ICs can act as both

stimulators and inhibitors of immune responses. Among the

inhibitory ICs, the B7 superfamily and programmed cell death–

ligand 1 (PD-L1) proteins hold promise for therapeutic

interventions in various clinical settings. Interestingly, a report

has indicated that human blood sepsis monocytes under ET

expressed high levels of PD-L1 on their cell surface via the

induction of HIF1a, and governed the impaired induction of T-

cell proliferation during ET (36). Additionally, another study

identified ICs and Ig-like V-type receptors in several cell

populations in peripheral blood from another ET-related disease,

COVID-19 (37, 56). In fact, levels of ICs were associated with the

risk of secondary infections, one of the known consequences of ET.

In contrast to what has been described in ET and to our knowledge,

a possible role of ICs during TI has not been reported.
4.5 Innate immune memory duration

When talking about memory processes, time matters. How long

these phenomena stand for is relevant for reaching clinical

applications. In vitro, ET lasted for 5 days following the first LPS

encounter (42), and classical TI models are performed up to 7 days

after priming (67, 116). In vivo, while ET lasts for two weeks (57),

trained responses are observed months after the administration of

the TI inducer (88, 94, 155), therefore, this long-lasting memory

cannot be explained by molecular reprogramming of mature cells,

in particular, innate immune cells, whose lifespan is limited

following their activation.

Of note, metabolic and epigenetic imprinting of hematopoietic

progenitors at the bone marrow, giving rise to trained cells upon

secondary stimulation, sustain these durable memory phenomena

(94, 121). Following experimental training in vivo, ex vivo

differentiation of these progenitors into trained mature

macrophages, or adoptive transfer experiments transmitting TI

capabilities to recipient mice (88, 122), unequivocally demonstrate

the functional reprogramming of these multipotent ancestors. In

humans, both hematopoietic stem and progenitor cells and

monocytes showed boosted inflammatory responses associated to

TI-related epigenetic traits three months after BCG vaccination (155).

As early as 1985, cytologic alterations in the bone marrow of

LPS tolerant mice were observed (156), suggesting that the

hematopoietic niche could play a role. Induction of ET in rat

bone marrow cells following TNFa infusion of the animals
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in the tolerant process (157), something further confirmed in mice

after LPS administration (158). Along these lines, stimulation of

hematopoietic and progenitor cells (HPSCs) purified from the bone

marrow with TLR2 and TLR4 ligands generate macrophages with a

dampened capacity to produce inflammatory cytokines. In contrast,

HSPCs activation in response to Dectin-1 ligands such as depleted

zymosan or C. albicans leads to the generation of macrophages that

produce higher amounts of inflammatory cytokines following a

secondary stimulation (126). Therefore, the training of both the

tissue-resident myeloid compartment and the hematopoietic niche-

located cells allows to differentiate central innate memory, as the

one imprinted at the level of bone marrow, from peripheral innate

memory, ascribed to already differentiated myeloid cells (8). An

intriguing observation from in vivo experiments performed in mice

is that normal responsiveness returns back only few days after the

initial exposure to LPS (156, 158), while enhanced responses

following exposure to TI inducers last for months (88, 94, 155).

This opens the question whether the imprinting at the bone marrow

progenitors’ level is comparable between ET and TI.
5 Clinical implications

The clinical implications of ET are highly dependent on the

specific disease context and its intricate immune dynamics. It can be

a double-edged sword, offering protection against excessive

inflammation, but also potentially leading to immunosuppression

and increased vulnerability to infections.

As we referenced before, there are several clinical contexts

where ET have been reported. In the case of sepsis, the ET can

lead to a weakened immune response, increasing susceptibility to

secondary infections and potentially increasing mortality. In

contrast, it can prevent excessive inflammation and tissue

damage, which can also contribute to death in sepsis. The key lies

in achieving a balanced immune response. Another example of ET-

related disease is the stroke (38), where ET might also lead to an

inadequate immune response against post-stroke infections,

increasing the risk of complications. On the other hand, this

status could protect patients against excessive neuroinflammation,

a major contributor to stroke damage. In COVID-19, its complex

immunopathology involves both hyperinflammation and

immunosuppression (159). Endotoxin tolerance might contribute

to the latter in some cases, leading to higher viral loads and poorer

outcomes. Finally, in the ET-related disease cystic fibrosis, chronic

lung infections in patients involve complex immune responses, with

potential implications for endotoxin tolerance (42). In this sense,

more research is needed to understand how endotoxin tolerance

affects the course of cystic fibrosis and whether modulating it could

be beneficial.

On the other side, under any pathophysiological condition

where pro-inflammatory responses can be considered as

protective, the induction of trained immunity could be desirable.

This mostly applies to infectious and tumour processes. However,

despite a type-1 inflammatory reaction seems mostly convenient
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against infections, for instance, helminths are better fighted

mounting Th2 responses (160). Whether trained processes boost

this kind of reactions is not fully understood in the state-of-the art.

Nevertheless, the great advantage of interventions based on TI is

that by generating wide pro-inflammatory responses, protection

against a broad spectrum of foreign pathogens is expected. This is

actually the notion supporting the concept of TI-bV (87). However,

as indicated before, boosted inflammation is not always desired.

Autoimmune conditions, atherosclerosis or organ transplantation

(161, 162) demand the dampening of such pro-inflammatory

environments to minimize tissue damage.

In this sense, it is important to highlight the prophylactic

concept of TI-based treatments that grounds its potential

application for new designs in vaccinology (66). In order to

achieve an advantage over an infection, TI has to be already

generated, meaning that the priming has to take place before the

secondary challenge (163). The need for a first priming to generate

the pro-inflammatory condition also represents a window of

opportunity to brake undesired trained responses by targeting TI-

related mechanisms in advance. This strategy has been proved

successful in the context of organ transplantations (80).

Therefore, both ET and TI have a long track ahead in the

clinical harnessing of inflammatory conditions. Understanding

molecular and cellular mechanisms, both unique and shared

between both processes is key for reaching medical applications.
6 Outstanding questions

Despite all the research summarised here on ET and TI (see

Table 1), several questions remain open.
Fron
1. Perhaps the most interesting will be to reveal the

mechanisms that favour one sort of innate response over

another when they use molecular pathways that are, if not

identical, then very similar. In particular, bifurcation from

HIF1a activation should be studied in depth using parallel

models of ET and TI.

2. Another question to be answered would be the possibility of

reversal from one state to the other with the use of cross-

inductors of ET and TI. This would be of enormous interest

in the clinic to reverse/induce an ET or an TI depending on

the context.

3. Following on from the mechanisms underlying both

phenomena, it would be interesting to explore

polarization at the level of the bone marrow. Memory has

to be durable in time, nonetheless, till which extent

mechanisms implicated in ET and TI are shared at the

level of myeloid progenitors is ill-defined.

4. Uncovering the molecular pathways that govern both innate

immunity memory processes will allow to understand how

exclusive they are, and till which extent, ET and TI can be,

at least partially, triggered simultaneously.
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5. Finally, there is a great need to establish unequivocally with

in vitro, in vivo models, and using patient samples, a robust

comparison of the functional hallmarks of both types of

innate response memory. Progress has been made in the

case of ET but less so in the context of TI.
TABLE 1 Summary of key features of endotoxin tolerance and
trained immunity.

Endotoxin
Tolerance

Trained
Immunity

Inducers Lipopolysaccharide (LPS)
(9, 15)
Mitocondrial DNA
(mtDNA) (40)
Pellino-3 (43)
Lipoteichoic acid (44)
Erythropoietin (EPO) (45)

b-glucan (69)
BCG vaccine (70)
oxLDL (77)
LPS (133)
polyI:C (71)
Flagellin (72)
Fungal chitin (73)
DAMPs: Uric acid (79),
Vimentin (80)
Heat-killed
mycobacteria (74, 75)
Candida albicans (67)
Polybacterial
MV130 (88)

Mechanisms
Implicated

HIF1a (32, 37)
IRAK-M (7, 46)
PD-L1 (36, 55)
A20 (46)
SOCS-1 (47)
TREM-1 (48)
TLR4/MyD88/TRIF (135,
136)
PI3K/Akt (16, 45, 142,
143)
PI3K/SHIP-1 (46, 144)
miRNAs: miR-98, miR-
125b, miR-132, miR-146a,
miR-155, miR-221, miR-
222, miR-579, and the let-
7 family (59–63)
Epigenetic control (17)
NFkappaB/IkappaB (58)

Epigenetic control (69,
101, 103)
mTOR (92)
PI3K/HIF1a (92, 101)
Dectin-1/Raf-1 (67, 69,
107)
NOD-2/Rip2 (90)
Glycolysis (100)
mirR-9-5p (106)
LXR (109, 110)

Phenotype o Low pro-inflammatory
response (7)
o Increased cellular
cleanup (32, 42)
o Tissue repair focus
(32, 42)
o Ineffective antigen
presentation (36, 42)
o Impaired adaptive
immunity (36, 42)

o High pro-
inflammatory response
(67–70)
o Increased activation
markers (71, 90)
o Boosted ROS
production (70)
o Increased particle
uptake (77, 91)

Clinical Impact Sepsis (7, 16, 32, 64)
Cystic Fibrosis (41, 42)
Myocardial Infarction
(40)
Stroke (38)

Vaccination (87)
Atherosclerosis (162)
Organ
transplantation (161)

Long-lasting effect In vitro (human
monocytes): 5 days (42)
In vivo (humans): up to
14 days (57)

In vitro (human
monocytes): 7 days (67)
In vivo (humans): 3
months (155)
In vivo (mouse): 6 - 7
months (94)
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Ruıź I, Jurado T, et al. Potent phagocytic activity with impaired antigen presentation
identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated
monocytes from cystic fibrosis patients. J Immunol. (2009) 182:6494–507. doi: 10.4049/
jimmunol.0803350

43. Murphy MB, Xiong Y, Pattabiraman G, Manavalan TT, Qiu F, Medvedev AE.
Pellino-3 promotes endotoxin tolerance and acts as a negative regulator of TLR2 and
TLR4 signaling. J Leukoc Biol. (2015) 98:963–74. doi: 10.1189/jlb.2VMA0515-229RR

44. Kim HG, Kim N-R, Gim MG, Lee JM, Lee SY, Ko MY, et al. Lipoteichoic acid
isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha
Frontiers in Immunology 12
production in THP-1 cells and endotoxin shock in mice. J Immunol Baltim Md 1950.
(2008) 180:2553–61. doi: 10.4049/jimmunol.180.4.2553

45. Zhang X, He D, Jia J, Liang F, Mei J, Li W, et al. Erythropoietin mediates re-
programming of endotoxin-tolerant macrophages through PI3K/AKT signaling and
protects mice against secondary infection. Front Immunol. (2022) 13:938944.
doi: 10.3389/fimmu.2022.938944

46. Xiong Y, Medvedev AE. Induction of endotoxin tolerance in vivo inhibits
activation of IRAK4 and increases negative regulators IRAK-M, SHIP-1, and A20. J
Leukoc Biol. (2011) 90:1141–8. doi: 10.1189/jlb.0611273

47. Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T, et al. SOCS-1
participates in negative regulation of LPS responses. Immunity. (2002) 17:677–87.
doi: 10.1016/s1074-7613(02)00449-1
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123. Katzmarski N, Domıńguez-Andrés J, Cirovic B, Renieris G, Ciarlo E, Le Roy D, et al.
Transmission of trained immunity and heterologous resistance to infections across
generations. Nat Immunol. (2021) 22:1382–90. doi: 10.1038/s41590-021-01052-7

124. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al.
Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic
synapse.” Nature. (2011) 472:471–5. doi: 10.1038/nature10071

125. Vázquez A, Fernández-Sevilla LM, Jiménez E, Pérez-Cabrera D, Yañez R,
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