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The global role of G6PD in
infection and immunity
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Pathology and Cell Biology, Columbia University, New York, NY, United States, 3Department of
Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common

enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate

pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive

oxygen species (ROS) homeostasis, the latter especially key in red blood cells

(RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an

immunologic role by virtue of its functions in leukocyte oxidative metabolism

and anabolic synthesis necessary for immune effector function. We review these

here, and consider the global immunometabolic role of G6PD activity and G6PD

deficiency in modulating inflammation and immunopathology.
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1 Introduction

Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-limiting first step in the

pentose phosphate pathway (PPP), converting nicotinamide adenine dinucleotide

phosphate (NADP) to its reduced form: NADPH (Figure 1A). Levels of active G6PD are

regulated at both the transcriptional level via various canonical signaling pathways (e.g.,

JAK-STAT, Wnt, mTOR), and at the post-translational level (e.g., via phosphorylation, de-

acetylation), allowing tight coordination of G6PD activity to meet acute cellular demand in

response to oxidative stress, metabolic demand, or systemic inflammation (Figure 1A-1).

NADPH generation is critical to host antioxidant defense via glutathione reduction

(Figure 1A-2), and is also essential for anabolic cellular metabolism, including synthesis

of nucleotides, fatty acids, and amino acids (Figure 1A-3). Downstream production of

ribulose-5-phosphate (R5P) is essential for formation of key nucleotides and cofactors

(Figure 1A-3), in addition to acting as a glycolytic shunt intermediary (Figure 1A-4).

Indeed, G6PD, by virtue of its importance in fundamental redox homeostasis and anabolic

metabolism, plays a multifaceted, ubiquitous role in human physiology, including within

immune responses.

Across human populations, basal G6PD enzyme activity is highly variable, with

hundreds of missense genetic mutations described worldwide in the X-linked G6PD
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gene. G6PD mutations lead to a range of enzyme deficiency

phenotypes as classified by the World Health Organization,

characterized by decreased enzyme stability and/or reduced G6PD

enzyme activity. Indeed, G6PD deficiency is the most common

human enzymopathy, affecting >500 million people worldwide. It

has been hypothesized that G6PD deficiency confers a selective

advantage against malaria, as there is substantial overlap of G6PD

deficiency prevalence in regions of historical malaria-endemicity

(1), although experimental evidence supporting this malaria

protection hypothesis remains mixed (2–6). In the red blood cell

(RBC), where G6PD deficiency has best been studied, and where the

trait is most prominently manifested, oxidant stressors—e.g.,

infection, diet, and medications—can trigger life-threatening

hemolytic crises and anemia. Beyond RBC biology and malaria,

investigators have also examined the function of G6PD in

immunity. Here, we review the role(s) of G6PD activity and the

effects of G6PD deficiency on immune system function, in health

and disease.
2 Importance of G6PD for
innate immunity

G6PD and the PPP are crucial for innate immune system

function. Key phagocytes, such as neutrophils and macrophages,

use reactive oxygen species (ROS) and reactive nitrogen species

(RNS) to kill pathogens in phagolysosomes. To generate sufficient

quantities of ROS and RNS quickly, these cells require rapid flux

through the PPP to produce sufficient amounts of NADPH to

enable superoxide formation from oxygen by the action of NADPH

oxidase (NOX), and nitric oxide (NO) formation from arginine by

inducible nitric oxide synthase (iNOS) (Figure 1A-2). The required

rapid flux through the PPP necessitates sufficient G6PD enzyme

activity capacity to allow this respiratory burst to occur. Given that

NOX and NOS activity in neutrophils and macrophages depend

upon G6PD-derived NADPH and reduced glutathione (GSH) (7),

the role of G6PD and the PPP has been studied in these cell types,

and roles for G6PD activity have been identified even beyond the

oxidative burst.
2.1 G6PD and PPP function in neutrophils

As the most common circulating blood leukocyte, neutrophils

are crucial for monitoring pathogens and tissue damage. Soon after

stimulation by an appropriate trigger—e.g., chemokines/cytokines,

pathogen components like lipopolysaccharide (LPS), and/or

wounded tissue—neutrophils migrate to areas of injury and/or

infection and mount an initial innate immune response which

requires a rapid metabolic switch dependent on G6PD. Minutes

after initial stimulation, neutrophils switch from primarily using

glycolysis for basal metabolism, to the PPP, in order to allow for

rapid generation of NADPH (8).

Brisk production of NADPH through the PPP is itself linked to

sufficient basal and reserve capacity of G6PD enzyme activity

(Figure 1A). The NADPH generated allows for biosynthesis of
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effector molecules (Figure 1A-3), as well as rapid generation of ROS

within phagolysosomes (Figure 1A-2). This was first demonstrated

by finding that chemical inhibition of the neutrophil oxidative burst

exhibited PPP and G6PD dependence (9). Indeed, several distinct

stimuli, each with different receptors and mechanisms of action,

have been found to induce the neutrophil respiratory burst and

pentose cycling ex vivo (8). This G6PD-dependent rapid metabolic

switch allows several crucial neutrophil activities to occur

(Figure 1B-1): phagocytosis, release of neutrophil extracellular

traps (NETs), and degranulation accompanied by rapid

production of large amounts of extracellular ROS. Indeed,

neutrophil activation and degranulation, including extrusion of

NETs via NETosis, are all PPP- and ROS-dependent processes,

generated by NOX activity (8, 10, 11).

In particular, neutrophil NETosis is a critical neutrophil effector

function, which releases chromatin and granule proteins into the

extracellular space to entangle and kill bacteria (12). In activated

neutrophils, NET formation occurs in response to pathogen stimuli

and pro-inflammatory signaling and depends on superoxide

generation by NADPH oxidase (Figure 1A-2). The rapid

production of ROS in activated neutrophils, which requires

increased pentose cycling, and thus increased G6PD activity, acts

to promote NETosis via oxidative inhibition of glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (13); this process can even be

pathogenic when excessive, as in hyperinflammatory states such as

severe acute respiratory syndrome coronavirus 2 (SARS−CoV−2)

infection (14).

Overall, the uniquely rapid need for neutrophil effector

functions, such as NETosis, phagocytosis and degranulation, to be

mobilized quickly in the innate immune response necessitates brisk

production of NADPH, which is chiefly controlled by the PPP rate-

limiting activity of G6PD.
2.2 G6PD function in macrophages

G6PD activity is also critical in macrophage function. Similar to

neutrophils, rapid production of NADPH is needed for

phagocytosis, and the oxidative burst in activated macrophages.

Sufficient reserve capacity for G6PD activity allows for rapid

production of excess NADPH needed with macrophage

activation. This G6PD-dependent production of NADPH is then

used for biosynthesis of effector molecules (Figure 1A-3), as well as

ROS/RNS production (via NOX, iNOS) needed for phagocytosis

and the oxidative burst (Figure 1A-2).

Beyond the phagocytic respiratory burst, G6PD acts more

generally as a key regulator of cellular redox homeostasis and

provides substrate for NADPH oxidase by generating NADPH,

thus exerting an innate immune modulatory role in these capacities.

While some ROS generation, produced via NADPH-dependent

NOX and iNOS, is advantageous and necessary for pathogen

clearance, it must be carefully titrated by antioxidant GSH –

which is itself regulated by NADPH-dependent glutathione

reductase; as both processes are NADPH-dependent, both

processes depend on G6PD activity (Figure 1A-2). With respect

to redox homeostasis, ROS induction has numerous downstream
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effects. For instance, excess ROS leads to activation of nuclear factor

erythroid 2-related factor 2 (NRF2) and upregulation of heme

oxygenase (HMOX), which can dampen inflammation and

protect against immunopathology more generally. As an example,

immunopathologic vasculopathy in a hypoxic model of pulmonary

hypertension was found to be driven by G6PD-induced pro-

inflammatory epigenetic signaling — including upregulated

expression of pro-inflammatory factors (e.g., tumor necrosis

factor-alpha [TNF-a]), increased numbers of activated

macrophages, and activated platelets — and conversely, was able

to be mitigated with G6PD deficiency (15, 16).

G6PD-dependent ROS generation is also important in innate

immune sensing by macrophages (Figure 1B-1). Nucleotide-

binding oligomerization domain (Nod)-like receptor (NLR)

signaling via pattern recognition receptors also depends on PPP

flux, which can affect intracellular sensing by macrophages of

pathogens, such as Aspergillus (17). Priming the canonical NLR

family pyrin domain containing 3 (NLRP3) inflammasome also

depends on ROS. Indeed, G6PD-deficient monocytes exhibit

decreased inflammasome responsiveness to LPS, including poor

induction of pro-interleukin-1b (IL-1b), which has been linked to

insufficient NADPH oxidase production of ROS and impaired

intracellular bacterial killing (18). This impaired inflammasome

responsiveness in G6PD deficiency may also in part explain the

decreased body temperatures seen in G6PD-deficient patients with

malaria (19).

Furthermore, systemic inflammatory response signals and their

downstream propagation is dependent on G6PD expression and

activity in macrophages (Figure 1B-1). As an example, in response

to gram-negative LPS, TNF-a induces upregulation of macrophage

G6PD expression and activity (20), and increased G6PD expression

has been visualized by ultrastructural techniques in activated

macrophages (21). By contrast, G6PD-deficient mice have a

diminished innate response to LPS, with impaired IL-6

production (22). Macrophage-derived G6PD activity also links the

innate and acquired immune system, with ROS upregulating

immunoresponsive gene 1 (IRG1) and major histocompatibility

complex I (MHC I) expression in activated macrophages in a PPP-

and NOX-dependent manner (23).
2.3 Effect of G6PD deficiency on innate
immune system function and disease

Given the role of G6PD in phagocyte effector function, in the

1960s, it was theorized that G6PD deficiency might impact

susceptibility to sepsis and meningitis (24). In the most severe

variants of G6PD deficiency, e.g., those leading to chronic non-

spherocytic hemolytic anemia and chronic granulomatous disease

(CGD), it was observed that leukocyte G6PD activity and PPP flux

were markedly reduced (25, 26), leading to diminished oxidative

burst and impaired bacterial killing in phagolysosomes (27).

Moreover, in these sporadic cases of severe G6PD deficiency with

CGD, PPP flux is markedly diminished to the point of impaired

NADPH oxidase activity and absent NETosis (28), and the

impaired phagocytic respiratory burst was clinically linked to
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cases of mycobacterial infection (29). Beyond the severe

deficiency variants, it was also noted that there was reduced

G6PD activity in leukocytes isolated from individuals with

moderate G6PD deficiency such as those with the common

Mediterranean variant (30–34).

Clinically, there is much interest in understanding the role that

G6PD deficiency and an associated aberrant innate immune effector

response might play in childhood sepsis. For example, G6PD

activity is markedly diminished in neutrophils isolated from

neonates, with variable reports of deficient phagocytosis and

chemotaxis and impaired bactericidal killing (35, 36). Indeed, a

case-control study of 76 neonates with sepsis and 1214 healthy

neonates identified a significantly increased prevalence of G6PD

deficiency in those neonates specifically admitted for sepsis (37). In

G6PD-deficient infants in Saudi Arabia, where the Mediterranean

variant predominates, an increased risk of severe infection and

sepsis was seen in childhood, especially with catalase-positive

organisms (38, 39). In Kenya, where the milder G6PD A-

deficiency variant predominates, large case-control studies in

children reported an increased risk for bacteremia, especially with

gram positive organisms such as Staphylococcus aureus and

Streptococcus pneumoniae (40, 41). Increased risk has also been

reported for other intracellular pathogens, including Salmonella

typhi [typhoid fever (42, 43)], Rickettsia rickettsia [Rocky Mountain

spotted fever (44, 45)], and Toxoplasma gondii [toxoplasmosis

(46)]. The added impact of G6PD deficiency may be even more

pronounced in settings of more severe immune compromise; for

example, patients with acute myelogenous leukemia and

concomitant G6PD deficiency exhibit increased risk for invasive

fungal infections (47).

Apart from serious bacterial infection, other stressors can

activate a brisk systemic innate immune response, including

trauma and severe coronavirus disease 2019 (COVID-19). In one

study of African-American trauma patients, those with G6PD A-

deficiency were at increased risk for prolonged systemic

inflammatory response syndrome, septicemia, and respiratory and

wound infections (48). The hyperinflammation associated with

severe COVID-19 infection has been linked to an overly

exuberant innate immune phenotype with excessive macrophage

activation (49) that could plausibly be impacted by G6PD

deficiency. While genome-wide association studies of COVID-19

have not specifically linked G6PD polymorphic variants to severe

illness (50), several retrospective studies have suggested that

patients with G6PD deficiency were at increased risk of

hospitalization and severe disease (51, 52), including acute

respiratory distress syndrome with associated ventilator

dependence (53).
3 G6PD in adaptive immunity

Adaptive immunity, specifically the effector arms of T and B cell

activation, are also dependent on G6PD and PPP activity. Over 50

years ago, it was first noted that G6PD activity increases in

lymphocytes activated by phytohemagglutinin [PHA] (54).

More recently, several groups interested in cancer biology have
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detailed a variety of cell-type specific lymphocyte functions that are

impacted by G6PD. In particular, these recent efforts have shown

that activated T cells depend on G6PD and PPP activity for

fundamental processes related to effector function, ranging from

metabolic reprogramming and ROS homeostasis, to biosynthesis of

effector molecules and signal transduction (Figure 1B-2).

In activated T cells, metabolic fitness and synthetic function has

been directly linked to G6PD activity and ROS homeostasis by

Ghergurovich and colleagues, who used a novel metabolite reporter

and deuterium tracer assays to monitor cellular G6PD activity in the

presence of a specific potent inhibitor of G6PD (55). In activated T

cells, flux through the oxidative PPP increases nearly 10-fold, but

chemical inhibition of G6PD can markedly decrease this and, as a

result, impair T cell activation and decrease production of pro-

inflammatory interferon-gamma (IFN-g) (55). This dependence on

G6PD activity in activated T cells occurs despite the partially redundant

contribution of other enzymes like isocitrate dehydrogenase andmalate

dehydrogenase to the overall production of cellular NADPH, which is

needed for biosynthesis of immune effector molecules (Figure 1A-3). In

addition, G6PD has a critical role, along with NFKB-inducing kinase

(NIK), in supporting metabolism in activated T cells (56). In particular,

activated T cells maintain aerobic glycolytic flux by stabilizing

hexokinase 2, which requires control of ROS via G6PD and the PPP

(Figure 1A-2). G6PD-deficient activated T cells exhibit diminished

glycolytic metabolism and reduced cytokine production (55), and

cytokine-induced killer cells likewise depend on the PPP for effector

function and proliferation (57).

Beyond metabolism, G6PD activity plays a role in T cell signal

transduction and cytolytic function (Figure 1B-2). In early T cell

receptor activation, intracellular calcium signaling is dependent on

G6PD and dual oxidase 1 (DUOX1) enzyme activity, which work in

concert to facilitate NADP/NADPH cycling (58). In cytotoxic T

lymphocytes, G6PD activity has also been linked epigenetically to

granzyme B production and cellular lytic function via acetyl

coenzyme A synthesis and histone acetylation (59).

ROS homeostasis, which is highly dependent on G6PD activity

(Figure 1A-2), is also critical for T cell function, including

maturation and activation (60). In particular, ROS affects T cell

receptor signaling through several downstream signaling pathways

(57, 61, 62), including mitogen-activated protein kinase (MAPK),

phosphoinositide 3-kinases (PI3K), and Janus kinase-signal

transducer and activator of transcription 3 (JAK-STAT3). Some

amount of ROS is critical for normal T cell survival and maturation,

and appropriate physiologic upregulation of ROS levels is needed

for T cell receptor activation and downstream signaling that leads to

T helper cell type 1 (Th1) differentiation and production of pro-

inflammatory cytokines, such as IFN-g and TNF-a (63). However,

too much ROS can lead to excess Th1 activation and promote a pro-

inflammatory state. Indeed, in high metabolic states, T cells depend

on higher levels of G6PD activity to maintain homeostasis by

mitigating ROS. For example, in T-lymphoblastic leukemia cells,

inhibition of mammalian target of rapamycin (mTOR) signaling

downregulates G6PD, resulting in excess ROS and cell death (64).

In B cells, basal G6PD expression and activity are low,

suppressed by transcription factors paired box protein 5 (PAX5)

and Ikaros family zinc finger protein 1 (IKZF1). However, in
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states of activation, including oncogenesis, B cell activation

depends on G6PD and PPP activity to mitigate oxidative stress

(65), and the hypermetabolic leukocytes of acute B-cell leukemia

are likewise more sensitive to oxidant stressors, such as

dihydroartemisinin (66).
4 The effect of G6PD in other cell
types important for immunity

Beyond leukocytes, it is relevant to consider other cell types that

contribute to innate immune activation and systemic inflammatory

responses, including red blood cells, platelets, hepatocytes, and

endothelial cells. These cell types are also impacted by G6PD and

PPP activity with respect to ROS homeostasis and biosynthesis of

effector molecules, and this can impact their downstream

contribution to systemic inflammation.
4.1 Red blood cells

G6PD is a key regulator of oxidant stress in erythrocytes, critical

to protection against membrane stress and hemolysis, which is a

potent systemic inflammatory stimulus (Figure 1B-3). For example,

free heme triggers macrophage Toll like receptor 4 (TLR4)

activation and TNF-a production, as well as ROS-mediated

NLRP3 inflammasome induction (67–70). Additionally, increased

serum iron levels caused by frequent hemolysis may play a role in

immune modulation, as several studies have linked hyperferremia

with serious infection in humans, a concept termed “nutritional

immunity” (71–74). Beyond hemolysis, recent evidence suggests a

role for microvesicle formation and mitochondrial retention in

oxidatively-stressed RBCs in potentiating immune activation (75,

76). Such oxidatively stressed RBCs then serve to facilitate

macrophage activation by binding macrophage Fc receptors;

indeed, with respect to malaria protection, it has been theorized

that protection conferred by G6PD deficiency may be related to

increased phagocytosis of parasitized oxidatively-damaged G6PD-

deficient RBCs (77–79) via binding by macrophage Fcg and lectin-

like receptors (80), and that such parasites may be more susceptible

to ROS (81).
4.2 Platelets

Platelets are another key participant in the innate immune

response. They act as sensors, mediators, and direct effectors, and

platelets promote endothelial activation, leukocyte recruitment,

systemic inflammation, and pathogen neutralization. Platelets recruit

and activate cells in both innate and adaptive immune responses and

also secrete antimicrobial peptides (82, 83). Platelets directly sense

pathogen- and damage-associated signals via TLRs and other receptors

(84). Platelets also possess complement and cytokine/chemokine

receptors, in addition to producing and releasing pro-inflammatory

cytokines upon activation (85). Once activated, platelets secrete various

immunomodulatory and microbicidal factors stored in their alpha-
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granules, including defensins, thrombocidins, kinocidins, and other

antimicrobial peptides (85). Platelets can bind and be activated by

damage and pathogen signals, including viral particles and bacterial

surface proteins (86); in addition, platelet degranulation can promote

direct bactericidal activity and enhance macrophage clearance (87). As

a testament to their key roles in infection and systemic inflammation, it

is noteworthy that pro-inflammatory cytokines, such as IL-6, regulate

platelet production (88).

Thus, although platelets are less well studied in G6PD

deficiency, they are also relevant for immune function (Figure 1B-

4). As an example, platelets from G6PD-deficient individuals

exhibit reduced G6PD enzymatic activity (30), affecting the

availability of reduced glutathione required for platelet

aggregation (89) and of NADPH needed for biosynthesis of fatty

acids and phospholipids (90) (Figure 1A-3). Additionally, activated

platelets require a switch to aerobic glycolysis, which increases PPP

flux; a process that can be abrogated via chemical inhibition of

G6PD (91).
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4.3 Liver

G6PD function in the liver is relevant to systemic immunity,

given the liver’s key role in producing relevant plasma proteins,

including acute phase reactants, cytokines, and complement factors

(Figure 1B-5). The liver also amplifies innate immune activation by

producing mediators, such as IL-6 and C-reactive protein (CRP),

and liver dysfunction results in a relative immunodeficient state

(92). Hepatic G6PD enzymatic activity is diminished in G6PD-

deficient individuals (93), can be altered in non-deficient

individuals by exogenous factors, such as insulin and high fat

diets (94, 95), and can be upregulated to meet increased demand

in states of physiologic stress. For example, in G6PD-deficient

individuals, residual hepatic enzyme activity can prove insufficient

in stress states where increased G6PD activity is required, as in

neonates with comorbid G6PD deficiency and Gilbert’s syndrome,

who are at increased risk for hyperbilirubinemia (96, 97). As a

corollary, in response to oxidant stress, G6PD-deficient hepatocytes
B

A

FIGURE 1

The roles of G6PD and the pentose phosphate pathway (PPP) in cellular and immune function. (A) The top panel highlights the multifaceted role of
G6PD in cellular metabolism, including biosynthesis and the response to oxidative stress. In response to key triggers such as cellular/oxidative stress,
metabolic demand and systemic inflammation, active G6PD production is upregulated by various factors/pathways at the transcriptional and post-
transcriptional levels. The resultant NADPH produced is key in redox homeostasis and several biosynthetic functions, including lipid and nucleotide
synthesis. (B) The bottom panel highlights the pleiotropic impact that G6PD and PPP activity have on immune function, through diverse impacts on
biosynthesis and activation/effector phenotypes, redox and endothelial homeostasis, cell signaling and inflammasome priming, and mitigating RBC
hemolytic stress. PTEN, phosphatase and tensin homolog; mRNA, messenger ribonucleic acid; NRF2, nuclear factor erythroid 2-related factor 2;
SREBP, sterol regulatory element binding protein; JAK-STAT3, Janus kinase-signal transducer and activator of transcription 3; mTOR, mammalian
target of rapamycin; TP73, tumor protein p73; PLK1, polo-like kinase 1; O-GlcNAc, O-linked b-N-acetylglucosamine; SIRT2, sirtuin 2; HSPB1, heat
shock protein family B member 1; G6P, glucose 6-phosphate; G6PD, glucose 6-phosphate dehydrogenase; 6PG, 6-phosphogluconate; NADP,
nicotinamide adenine dinucleotide phosphate; NADPH, reduced form of NADP; R5P, ribulose 5-phosphate; F6P, fructose 6-phosphate; GA3P,
glyceraldehyde 3-phosphate; GSH, glutathione; TRX, thioredoxin reductase; FAS, fatty acid synthase; iNOS, inducible nitric oxide synthase; NOX,
NADPH oxidase; HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; RNR, ribonucleotide reductase; DHFR, dihydrofolate reductase; TRX,
thioredoxin; PPP, pentose phosphate pathway; TLR4, Toll-like receptor 4; RNS, reactive nitrogen species; ROS, reactive oxygen species; NET,
neutrophil extracellular trap.
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exhibit transcriptomic network perturbations in redox pathways

and immune response pathways (98). Clinically, G6PD deficiency

has been linked to increased risk of Hepatitis A and B infections (99,

100), which may be related to deficient interferon responses in

hepatocytes due to insufficient ROS generation by NADPH oxidase,

as has been described for Dengue virus infection in G6PD-deficient

monocytes (101).
4.4 Endothelium and epithelium

Tissue barrier cells, including epithelial and endothelial cells, also

play key roles in host-pathogen interactions and immunopathology

(Figure 1B-6). In G6PD-deficient individuals, epithelial and

mesenchymal cells such as fibroblasts and lenses, exhibit decreased

enzyme activity (102, 103). In the endothelium, G6PD activity plays a

key role in mediating endothelial cell homeostasis and VEGF-

mediated angiogenesis (104), as depletion of enzyme activity is

associated with decreased endothelial NOS activity and decreased

NO bioavailability. In response to systemic inflammatory factors (e.g.,

ROS, LPS-mediated TLR4 signaling, TNF-a), G6PD undergoes

compensatory upregulation in the endothelium (20, 105). This is

likely to be an issue in G6PD-deficient individuals because an

inability to maintain endothelial homeostasis has been linked to

both acute and chronic inflammatory endothelial activation and has

relevance to pathologies as diverse as cardiovascular disease and

sepsis. Less well studied, but equally intriguing, is the effect of G6PD

deficiency on airway epithelial barrier function. For example, G6PD

activity and PPP flux were found to be essential for innate immune

sensing of Aspergillus infection by Nod-like receptors in airway

epithelial cells (17).
5 Discussion

The G6PD story is one of variance: just as inherited levels of

enzymatic activity vary across the geographic spectrum, so too do

they vary across the spectrum of health and disease. G6PD is an

acutely responsive sensor of cellular and metabolic stress, which is

modulated by a myriad of factors, including diet and environment.

In leukocytes, G6PD activity exhibits diurnal variation (106), is

reduced in states of malnutrition (107), and is upregulated during

bacterial infection (108). Beyond infection, G6PD may also play a

role in the immunopathology of autoimmune disease. As examples,

emerging evidence links increased G6PD activity and PPP flux to

hyper-functional dendritic cells in aplastic anemia (109), as well as

pro-inflammatory activated T cells in rheumatoid arthritis (110);

still other reports link G6PD deficiency to a range of immune

phenotypes (111), including celiac disease (112) and asthma (113).

Finally, G6PD may play a role in immunosenescence, given that

G6PD activity in lymphocytes declines with age (114, 115).

Indeed, given the ubiquity of G6PD in immunologically-

relevant pathways and processes, it is clear that more research is

needed to improve our understanding of the immunologic role of

G6PD and G6PD deficiency in health and disease. At a macroscopic

level, by considering the population genetics of the world’s most
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common enzymopathy, it is worth asking anew what the beneficial

and harmful roles of G6PD deficiency are in immune function that

might affect evolutionary fitness in the face of infectious and

environmental stressors. Common functional variants at G6PD

have independently arisen on diverse genetic backgrounds across

a wide geographic range and exhibit variable penetrance with

respect to enzyme activity; thus, the resulting immunologic

phenotypes also likely vary considerably across populations. How

might such variation differentially affect cellular and immune

homeostasis and the body’s response to immunopathologic

stressors, including innate and adaptive immune responses to

severe infection? Could G6PD play a role in response to

vaccination or in predispositions to autoimmunity? Ideally,

answers to such questions will help paint a clearer picture of the

role of this interesting enzyme in immune function and

immunopathology, and might someday allow physicians to

harness immunometabolic diagnostic and therapeutic tools to

improve outcomes in severe sepsis and various immune disorders.
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