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Immune checkpoints: new
insights into the pathogenesis
of thyroid eye disease
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Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
Thyroid eye disease (TED) is a disfiguring autoimmune disease characterized by

changes in the orbital tissues and is caused by abnormal thyroid function or

thyroid-related antibodies. It is the ocular manifestation of Graves’ disease. The

expression of thyroid-stimulating hormone receptor (TSHR) and the insulin-like

growth factor-1 receptor (IGF-1 R) on the cell membrane of orbital fibroblasts

(OFs) is responsible for TED pathology. Excessive inflammation is caused when

these receptors in the orbit are stimulated by autoantibodies. CD34+ fibrocytes,

found in the peripheral blood and orbital tissues of patients with TED, express

immune checkpoints (ICs) like MHC II, B7, and PD-L1, indicating their potential

role in presenting antigens and regulating the immune response in TED

pathogenesis. Immune checkpoint inhibitors (ICIs) have significantly

transformed cancer treatment. However, it can also lead to the occurrence of

TED in some instances, suggesting the abnormality of ICs in TED. This review will

examine the overall pathogenic mechanism linked to the immune cells of TED

and then discuss the latest research findings on the immunomodulatory role of

ICs in the development and pathogenesis of TED. This will offer fresh

perspectives on the study of pathogenesis and the identification of potential

therapeutic targets.
KEYWORDS
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1 Introduction

Immune checkpoint inhibitors (ICIs) represent groundbreaking progress in cancer

therapy. ICIs can stimulate the immune system by blocking the ligands or receptors that

impede the activation of T cells (1). This helps prevent tumor cells from evading the

immune response and improves the body’s capacity to eliminate tumor cells. At present,

the ICIs permitted by the FDA to treat cancer mainly target cytotoxic T-lymphocyte

antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-ligand 1 (L1) (2). In

addition, newly discovered immune checkpoints (ICs) such as lymphocyte-activation gene
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3 (LAG3), T cell immunoglobulin and mucin domain 3 (Tim-3), as

well as T cell immunoreceptor with immunoglobulin and ITIM

domain (TIGIT) are also attracting attention in the field of cancer

immunotherapy (3–6).

However, many patients receiving ICIs treatment in clinical

practices exhibit clinical manifestations similar to autoimmune

diseases, which are called immune-related adverse events (irAEs)

(7). The irAEs can impact multiple systems in the body. One of

the most prevalent typesof these irAEs is ICIs-induced

endocrinopathies, which affect up to 40% of ICIs treated patients,

with the thyroid being the most commonly affected endocrine organ

(8).ICIs can also lead to various eye disorders such as optic neuritis,

myasthenia gravis, Lambert-Eaton myasthenic syndrome, orbital

myositis, internuclear ophthalmoplegia, opsoclonus-myoclonus-

ataxia syndrome, oculomotor nerve palsy, uveitis, choroidal

neovascularization, and thyroid eye disease (TED) (9–11). TED,

also known as thyroid-associated ophthalmopathy (TAO) or

Graves’ ophthalmopathy (GO), is an autoimmune inflammatory

disease that occurs in the orbital tissues and is usually considered an

extrathyroidal manifestation of Graves’ disease (GD), which is the

most common cause of hyperthyroidism (12, 13). TED occurs in

25–50% of patients with GD (14). Some patients with chronic

thyroiditis also develop TED (13). In some cases, TED can be found

in patients with either hypothyroidism or normal thyroid function,

which may be attributed to the gender and age of the patients (15,

16). However, according to the currently available case reports,

most of the ICIs-treated patients who developed TED are euthyroid

(Table 1). Whether this phenomenon indicates that ICs are

involved in the orbital pathological changes in a way independent

of GD pathogenesis remains elusive.

The disruption of immune homeostasis significantly

contributes to the pathogenesis of thyroid eye disease. The

fundamental pathological process in the initial stages of TED

involves the loss of T cell tolerance to the thyroid-stimulating

hormone (TSH, or thyrotropin) receptor (TSHR), which occurs

due to multiple factors (24). Of note, Covid-19 vaccination appears

to increase the risk of TED development (25). After the loss of

immune tolerance, B cells are activated through their interaction

with helper T cells (Th), resulting in the production of

autoantibodies. Stimulatory autoantibodies bind to and activate

the TSHR and insulin-like growth factor-1 receptor (IGF-1R)

expressed on the cell membrane of orbital fibroblasts (OFs),

causing them to secrete various cytokines, which manifests orbital

inflammation and differentiation of OFs into myofibroblasts or

adipocytes (26). Patients with TED exhibit distinct phenotypic

changes in immune cells of peripheral blood compared to normal

individuals. These changes include abnormal proportions of CD4+

T cells and CD8+ T cells, an imbalance of Th1 and Th2 ratios (27),

an increased proportion of Th17 cells (28), and a decrease in

regulatory B cells (Breg) (29). Changes in the expression levels of

various ICs, such as PD-1 and Tim-3, can also be detected in the

immune cells of TED patients (30, 31). Additional investigation

regarding the infiltration of immune cells in orbital tissues has the

potential to enhance the understanding of the function of immune

cells in the orbital inflammation associated with TED. The orbital

tissues of individuals with TED contain a diverse array of
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infiltrating immune cells (32), and a positive correlation exists

between the degree of infiltrating T and B cells with the clinical

activity score (CAS) of TED patients (33). The infiltration of M1-

like macrophages is more significant during the active phase, while

M2-like macrophages dominate during the stable phase (34). While

immune cells are not the primary cells mediating the pathological

alterations in TED orbital tissues, research has shown a close

interaction between immune cells and OFs (35). Therefore,

exploring the difference between immune cells in the peripheral

blood and orbital tissues of TED patients is essential and may help

deepen our understanding of the interaction of immune cells

and OFs.

The ICs have a crucial function in modulating the activation

pathway of immune cells. They may either stimulate or inhibit

immunological responses. ICs are essential for maintaining self-

tolerance by controlling immune reaction type, magnitude, and

duration (5). Different single nucleotide polymorphisms (SNPs) of

ICs, including CTLA-4, HLA-DR3, and CD40, can be identified in

patients with TED, indicating mutations in various ICs serve as an

endogenous reason for TED development. Furthermore,

examination of immune cells in the peripheral blood or orbital

tissues of patients with TED can uncover atypical expression of PD-

1, CTLA-4, and Tim-3. Interestingly, it has been found in recent

years that CD34+ fibrocytes, which have a crucial role in the

progression of TED, also constitutively express MHC II, B7, PD-

L1 (36), and these molecules are significantly downregulated when

exposed to teprotumumab (an IGF-1 inhibitor). A thorough

investigation into ICs can greatly enhance the comprehension of

the involvement of immune cells in TED and aid in the discovery of

novel therapeutic targets.
2 Overview of thyroid eye disease

TED has been plaguing scientists and physicians around

the world for nearly two centuries since its discovery (37).

Histopathological features in the orbit of TED patients include

immune cell infiltration and edema in the early stage, and tissue

degeneration and fibrosis in the later stage (26). The most

significantly affected areas are the extraocular muscles and orbital

adipose tissue. Extraocular muscles and orbital adipose tissue are

the most significantly involved. Based on the severity, TED can be

divided into mild, moderate-to-severe, and sight-threatening, with

the clinical activity score (CAS) serving as the best-validated scoring

system to assess inflammation in the orbit, which is thus used to

classify TED patients into active and inactive phases accordingly

(13). Patients with TED commonly experience a wide range of

clinical symptoms and signs. At the active phase, excessive

inflammation in the orbit leads to periorbital tissue and

conjunctival redness, swelling and congestion. Meanwhile,

persistent enlargement of orbital adipose tissue and extraocular

muscles results in proptosis. The secretion and accumulation of

hyaluronic acid eventually cause fibrosis of the extraocular muscles

and lead to diplopia and ocular motility disorders. Lid retraction, a

characteristic manifestation of TED, stems from the involvement of

levator palpebrae superioris and Müller muscle. In severe cases,
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corneal ulcers derived from incomplete eyelid closure and

dysthyroid optic neuropathy (DON) may occur. DON is

characterized by optic nerve compression due to orbital tissue

proliferation, potentially causing blindness (26, 38).The primary

non-surgical treatment for active moderate-to-severe TED is high-
Frontiers in Immunology 03
dose glucocorticoids (13). In clinical practice, patients often express

significant concern about appearance changes caused by proptosis,

which impose a heavy psychological burden on them. While

glucocorticoids can alleviate ocular inflammation to some extent,

their effectiveness in reducing proptosis is always limited (39).
TABLE 1 Case reports of thyroid eye disease following immune checkpoint therapy.

ICIs Dose Symptoms Thyroid
functiona

TRAba Imaginga Reference

Ipilimumab 4 doses of ipilimumab at
10 mg/kg

severe eye pain
proptosis
periorbital
edema

euthyroid normalb bilateral thickening of
extraocular muscles

Min et al. (17)

Ipilimumab 12 doses of ipilimumab at
3 mg/kg

ophthalmoplegia
bilateral
proptosis

euthyroid <0.3 IU/L bilateral enlargement of all the extra-
ocular muscles

McElnea
et al. (18)

Ipilimumab 2 doses of ipilimumab severe proptosis
diplopia
exposure
keratitis

T3
slightly
depressedb

46.9IU/L enlargement of all extraocular
muscles
Crowding of the orbital apex

Borodic
et al. (19)

Ipilimumab 3 doses of ipilimumab at
10 mg/kg

bilateral
periorbital
swelling
upper eyelid
retraction
proptosis
ophthalmoplegia

T4 8.56 <0.90 (neg) symmetric enlargement and
enhancement of the
extraocular muscles

Sheldon
et al. (20)

Tremelimumab 6 doses of tremelimumab at
10 mg/kg

acute periocular
swelling
erythema
bilateral
exophthalmos

hyperthyroidism normalb bilateral enlargement of all 4
extraocular rectus muscles with
sparing of the tendons

Sagiv
et al. (21)

Ipilimumab
ceased;
then switched
to
Pembrolizumabc

1 doses of ipilimumab at
10 mg/kg and 1 doses of
pembrolizumab at 200mg

acute onset of
proptosis
chemosis
diplopia
decreased visual
acuity of
both eyes

euthyroid 33.64 IU/L
after
ipilimumab
>40 IU/L
after
pembrolizumab

enlargement of
bilateral inferior rectus muscles.

Rhea
et al. (22)

Pembrolizumab 3 doses of pembrolizumab progressive
asymmetric
proptosis
new-onset
diplopia
eyelid retraction
exposure
keratopathy

euthyroid –b a prominent increase in orbital fat
volume with secondary asymmetric
exophthalmos
mild tendon-sparing enlargement of
the extraocular muscles

Park et al. (23)

Nivolumab nivolumab at 3mg/kgd bilateral upper
eyelid retraction
double vision
limitation of
eye movements

hyperthyroidism elevatedb bilateral enlargement of the inferior
and medial rectus muscles, with
sparing of the tendons

Sagiv
et al. (21)

Ipilimumab&
Nivolumab

3 doses of ipilimumab at
1 mg/kg and nivolumab at
3 mg/kg

periocular pain
pain with eye
movement
ocular irritation
eyelid swelling
and erythema
double vision

euthyroid normalb bilateral symmetric enlargement of
all extraocular muscles with sparing
of the tendons

Sagiv
et al. (21)
a. All data are post-treatment with immune checkpoint inhibitors.
b. Data not shown.
c. Development of Graves’ ophthalmopathy after treatment with ipilimumab and recurrence with pembrolizumab in a patient with previously treated Graves’ disease.
d. The patient had a history of GD.
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Additionally, their use is commonly accompanied by adverse effects

such as drug-induced hepatotoxicity, glaucoma, hyperglycemia,

gastric ulcers, and osteoporosis (40, 41). The efficacy of

alternative immunomodulators like rituximab and tocilizumab in

managing TED is still under investigation, with conflicting

conclusions across different studies (8, 42–45). TED duration may

be an important factor in their efficacy (8, 42). Notably, rituximab

may increase the risk of DON (42, 46). Larger randomized

controlled clinical trials are necessary to elucidate their

effectiveness and safety in the treatment of TED. Teprotumumab

represents a revolutionary breakthrough in TED treatment,

demonstrating favorable effectiveness in phase II and III clinical

trials (47, 48). Moreover, teprotumumab presents promising results

in alleviating proptosis. However, its high price renders it

inaccessible to many patients. Hence, it is imperative to

investigate the development of TED and identify novel

therapeutic targets.

3 Implication of immune cells in
pathogenic mechanism of thyroid
eye disease

In the initial stages of TED, a combination of genetic and

environmental factors contribute to the development of intolerance

to TSHR (39). Then, antigen-presenting cells (APC) can recognize,

internalize, and degrade TSHR. They then present the self-antigen

to Th through MHC II, activating Th. The Th interacts with B cells

via the CD40L (CD154)-CD40 pathway. This interaction leads to

the activation of B cells, which then secretes interleukin (IL) -2 and

interferon (IFN) -g. These cytokines promote the generation and

release of self-antibodies against TSHR and IGF-IR, such as

thyroid-stimulating hormone receptor antibodies (TRAb) and

autoimmune IgGs (26).

OFs are the main culprit of pathological changes in TED orbital

tissue. The expression of TSHR can be detected in normal OFs,

which is significantly increased in TED-OF (49). The TSHR of OFs

can be recognized and activated by autoantibodies generated by B

cells. In addition, an increase was observed in the expression of IGF-

1R on OFs in TED, which can also bind to autoantibodies found in

TED patients. This binding process then triggers the activation of

OFs (50). There is an interaction between the downstream signaling

pathways of TSHR and IGF-1R. Both downstream signaling

pathways exert their effects on nuclear Forkhead transcriptional

factors (FOXOs), leading to the activation of FOXOs, which in turn

reduces adipogenesis and hyaluronic acid synthesis in OFs (51, 52).

Furthermore, IGF-1 can increase the expression of TSHR (53).

Thus, the synergistic effect of TSHR and IGF-1R leads to the

activation of OFs and the subsequent development of pathogenic

alterations in the orbit. Two types of OFs can be distinguished based

on the varying expressions of CD90 (Thy-1) and these two types

have distinct differentiation orientations. Under the action of

transforming growth factor (TGF) -b, CD90+ OFs differentiate

into myofibroblasts and secrete hyaluronic acid, ultimately

leading to fibrosis of the extraocular muscles in TED patients

(54). Unlike CD90+ OFs, CD90- OFs differentiate into adipocytes
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upon the activation of peroxisome-proliferator–activated receptor g
(PPAR-g) which is a key regulatory element in adipogenesis (55).

The variation in CD90 expression is one of the possible causes of

various clinical symptoms observed in TED patients.

Upon activation, OFs secrete various chemokines, such as IL-6,

monocyte chemoattractant protein-1 (MCP-1), Regulated upon

Activation, Normal T Cell Expressed and Secreted (RANTES), IL-

16, etc. (28, 56), which causes more immune cells in peripheral

blood to migrate to the orbital tissues and exacerbate the local

inflammatory response in the orbit. Alterations in immune cells can

likewise be observed in the orbital tissues in individuals with TED.

Single-cell sequencing results showed that the infiltration of

immune cells in the orbital tissues of TED patients differed from

that of healthy individuals (32). The proportion of natural killer

(NK) cells, T cells, and myeloid cells was significantly increased in

TED patients. A multicenter, single-blind case-control study using

immunohistochemistry revealed a substantial increase in the level

of lymphocyte infiltration in the orbital tissues of patients with

active TED compared to both patients at stable phase and healthy

controls (57). Another research revealed a notable rise in the

expression of forkhead box protein P3(Foxp3)and CD40 in the

orbital adipose tissue of individuals with TED, while the expression

of CTLA-4 was found to be reduced. Additionally, the study

revealed a positive correlation between disease severity and the

expression levels of Foxp3 and CD40. Conversely, there was a

negative correlation between disease severity and the expression of

CTLA-4, CD28, and CD40L (58). The elevated expression of Foxp3

indicated that regulatory T cells (Tregs) could inhibit the immune

response of individuals with TED, but the ability of Tregs to

suppress inflammation is hindered. The dysfunction of Tregs may

be associated with the reduction in the expression of CTLA-4,

resulting in a decline in the inhibitory signal for T cell activation.

The direct or indirect interaction between OFs and immune

cells infiltrating the orbital connective tissue, which is particularly

significant between OFs and T cells, has been disclosed by many

studies. The expression of CD40 is upregulated on OFs in TED and

binds to CD154 on the surface of T cells. Thus, CFZ533, a

monoclonal antibody targeting CD40, is considered a promising

therapeutic agent for the treatment of TED (59). An in vitro

experiment has shown that T cells activate OFs by secreting

various cytokines, such as IFN-g and tumor necrosis factor

(TNF)-a (26). Feldon et al. found that activated T cells can

secrete endogenous prostaglandins by upregulating the expression

of cyclooxygenase-2 (COX-2), which serves as a ligand for PPAR-g
and activates lipidogenic differentiation in OFs (60). Additionally,

there have been case reports indicating that the use of pioglitazone,

a PPAR-g agonist, might lead to cute exacerbation of symptoms in

individuals with stable TED (61). However, PPAR-g activation in

immune cells, like lymphocytes and macrophages, can also have

anti-inflammatory effects (62, 63). Given that the expression of

CD90 is associated with the differentiating features of OFs, it is

crucial to differentiate the involvement of PPAR-g in CD90+ and

CD90- OFs. This distinction may have great value in investigating

the therapeutic possibilities of PPAR-g in TED.

In recent years, a group of CD34+ CXCR4+ Collagen 1+ cells has

been identified in the OFs cultured from orbital adipose tissue of
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TED patients (64). These cells have comparable morphological

features to OFs, but their surface markers differ from the orbital

resident OFs, which often lack the CD34 marker. The CD34+

CXCR4+ Collagen 1+ cells are considered fibrocytes, which are

monocyte-derived progenitor cells trafficking from bone marrow to

the TED orbit (65). The proportion of CD34+ fibrocytes in the

peripheral blood mononuclear cells (PBMC) of TED patients is

significantly increased, and they highly express TSHR (66). These

CD34+ fibrocytes can migrate and infiltrate into the orbital tissue,

ultimately differentiating into CD34- OFs that secrete Slit2 protein,

contributing to the pathological changes in the orbits of TED

patients (67). CD34+ fibrocytes in PBMC of patients with TED

exhibit high MHCII and B7 expression. This enables CD34+

fibrocytes to deliver the two signals required for T cell activation.

Consequently, CD34+ fibrocytes are recognized for their potent

antigen-presenting capabilities (36). Further research is needed to

fully understand the function of CD34+ CXCR4+ Collagen 1+

fibrocytes in peripheral blood and orbital tissues. Interfering with

their direct interaction with the immune cells through ligand-

receptor bridges or indirect interaction through cytokines could

potentially provide new treatment strategies for TED.
4 Specific role of immune checkpoints
in the pathogenesis of TED

The activation of naïve T cells requires simultaneous

stimulation of two different extracellular signals. The first signal is

the binding of the MHC-antigen peptide complex on the APC to the

T-cell receptor (TCR), which then transmits activation signals to

the cells via CD3. The second signal refers to the interaction

between the co-stimulatory molecules and their corresponding

ligands on the surface of the T cells. CD80 (B7.1) and CD86

(B7.2) enhance T cell activation by attaching to CD28 on the T

cell. The APCs were found to play a role in the proliferation and

differentiation of naïve T cells. Aside from B7 and CD28, there exist

several co-stimulatory or co-inhibitory molecules on the APCs and

T cells, which play a role in regulating the activity of APCs and T

cells and maintaining the body’s immune homeostasis. The term

used to refer to these molecules is immune checkpoints. Subsequent

investigations have revealed that individuals with TED have

alterations in the expression of several immunological

checkpoints. Regulation of ICs and reinstating immune

homeostasis in the body might be a viable approach for managing

TED. In this section, we will summarize the research advance in the

role of ICs in the pathogenesis of TED to date (Figure 1).
4.1 CD40/CD40L pathway

CD40 is a member of the TNF-a receptor superfamily and is

found in several types of cells, including B cells and myeloid cells,

where it is expressed constitutively. CD40L is expressed on activated

T cells and is usually not detected in resting T cells. The CD40L

expression is detectable in activated Th1, Th2, Th17, follicular
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helper T cells (Tfh), and Tregs. However, the expression of

CD40L in Tregs is significantly reduced compared to Th.

Moreover, CD40L induces CD40 trimerization and mediates

downstream signaling pathways. The CD40/CD40L pathway plays

a vital role in adaptive immunity. CD40 on B cells binding to

CD40L facilitates B cells proliferation, activation, and antibody

production. In the presence of other T cell activation signals

(MHC-II and B7), CD40 can promote the proliferation and

differentiation of T cell into specific types with the assistance of

cytokines (68).

In patients with TED, the expression of CD40 on OFs is

reported to be higher compared to healthy individuals.

Additionally, under the stimulation of IFN-g secreted by T cells,

CD40 on OFs of TED patients gets significantly upregulated (69).

CD40 activation exacerbates orbital inflammation and extraocular

muscle fibrosis. It has been shown in vitro that CD40 activation

leads to an increased synthesis of IL-6, IL-8, prostaglandin E2

(PGE2), MCP-1, intercellular adhesion molecule (ICAM)-1,

vascular cell adhesion molecule (VCAM)-1, and E-selectin, and

also results in increased secretion of hyaluronic acid (56, 70–72).

Several variables are involved in the pathogenesis of TED via the

CD40 pathway. Adipsin, a serine protease homolog, has been

implicated in the CD40-mediated stimulation of OFs in

individuals with TED. Adipocytes mainly release Adipsin, but

macrophages and monocytes can also generate it. Adipsin is a

vital adipokine and one of the components of complement factor D,

participating in the pathogenesis of various autoimmune diseases.

Activation of TED-OFs by CD40L or IGF-1 causes fibroblasts to

differentiate into adipocytes, leading to increased synthesis and

secretion of Adipsin. This further increases the expression of

downstream cytokines, including IL-6, IL-8, PGE2, ICAM-1, and

CCL2 (73). In addition, there is a notable elevation in the expression

of sphingosine-1-phosphate (S1P) in the orbital tissues of patients

with TED. S1P has been demonstrated to stimulate fibrosis, lipid

synthesis, and the release of inflammatory cytokines in OFs of

individuals with TED. Research has demonstrated that CD40

enhances the production of S1P in TED-OFs and facilitates T cell

migration (74). This study proposed that lipid metabolism

may regulatethe migration of T cells to orbital tissues and

that controlling the activity of enzymes associated with S1P

metabolism might be an effective strategy for managing

inflammation in the orbit. Furthermore, the TSHR and CD40

expression levels on CD34+ fibrocytes in the peripheral blood of

individuals with TED are markedly elevated. TSH and CD40L can

upregulate IL-6, IL-8, and IL-12 expression of CD34+ fibrocytes

obtained from the peripheral blood of patients with TED (75–77).

The genetic polymorphism of CD40 also indicates its important role

in the pathogenesis of TED. A meta-analysis revealed that the

increased frequency of the T allele at the CD40 rs1883832 locus was

associated with a reduced risk of developing TED (78). The

mutation at the CD40 rs1883832 locus may reduce the

transcription of CD40 mRNA and thus inhibit the activation of

OFs (79).

The CD40/CD40L pathway mediates the interaction between

activated T cells and OFs in TED. Feldon et al. demonstrated that

the expression of CD40L on T cells is essential for the activation of
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OFs in individuals with TED (80). The binding of CD40 on OFs

and CD40L (CD154) on T cells in TED patients leads to OFs

proliferation, and blocking CD40 or CD40L significantly reduces

OFs proliferation. Th17 cells in the peripheral blood of patients with

TED can interact with OFs through the CD40-CD40L pathway.

Additionally, they can stimulate the secretion of IL-17 and bind to

the IL-17RA receptor on the cell membrane of OFs. This interaction

activates the MAPK pathway, promoting RANTES secretion by OFs

(28) and further promoting the migration of Th17 and Th1 cells to

the orbit. In an in vitromodel, The concurrent administration of IL-

17 and CD40L resulted in a significant augmentation in the

production and release of RANTES in OFs. However, the IL-17

alone did not demonstrate any noteworthy secretion of RANTES.

This suggests that the activation of CD40 upstream is accountable

for the response to IL-17. In addition to the activation of OFs by T

cells, the CD40/CD40L pathway also plays a key role in the

activation of T cells by OFs in TED patients, evidenced by TED-

OFs promoting the proliferation of autologous T cells (81). The
Frontiers in Immunology 06
proportion of CD4+ CD28- T cells in the peripheral blood of TED is

reported to be significantly increased in comparison to normal

individuals and is positively correlated with disease severity (82).

CD40L may be crucial in activating T cells in TED or other

autoimmune diseases when CD28, the second T cell activation

signal, is absent. The activation of CD4+ CD28- T cells is potentially

reliant on the activation of CD40L. This is evident as inhibitory

antibodies against CD40L considerably impede the activation of

CD4+ CD28- T cells (82). The precise mechanism of action of CD4+

CD28- T cells, which contribute to orbital inflammation in TED,

remains unclear. However, in the thyroid tissue of GD patients,

activated CD4+ CD28- T cells can secrete various inflammatory

factors, promoting local tissue inflammation and the secretion of

TRAb by B cellsleading to thyroid cell proliferation and tissue

hyperplasia. Compared with CD4+ CD28+ T cells, CD4+ CD28- T

cells are insensitive to signals for cell apoptosis (83), suggesting that

T cell apoptosis deficiency may be involved in the orbital

inflammation of TED.
FIGURE 1

The potential mechanism of immune checkpoints in the pathogenesis of TED (By Figdraw). In peripheral blood, CD34+ fibrocytes with antigen-
presenting function interact with and then activate naive CD4+ T cells, with the alteration of the expression of CTLA-4, Tim-3, and PD-1 on the
activated T cells. Activated T cells activate B cells through the CD40-CD40L pathway and produce autoantibodies. Autoantibodies bind and activate
TSHR and IGF-1R on the orbital fibroblasts, promoting the secretion of chemokines and recruiting T cells to the orbit, exacerbating local
inflammation. T cells further activate orbital fibroblasts, causing them to differentiate into adipocytes and myofibroblasts. CD34+

fibrocytes also
migrate to the orbit and differentiate into CD34-OFs under the action of Slit2 secreted by orbital fibroblasts in situ, accompanied by downregulation
of immune checkpoint molecules such as MHC II, B7, and PD-L1. Teprotumumab can inhibit the interaction between T cells and OFs or fibroblasts
by downregulating MHC II, B7, and PD-L1 molecules. Teprotumumab can also reduce inflammation by directly reducing the number of fibrocytes-
adherent CD4+ T cells in peripheral blood and attenuating the secretion of IFN-g and IL-17A.
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Ultimately, CD40 shows potential as a viable focus for

addressing TED therapeutically. RNA aptamers specifically

targeted CD40(CD40Apt) in TED mice, thereby significantly

inhibiting the CD40-CD40L pathway. Moreover, CD40Apt

reduced the expression of CD40, collagen I, TGF-b, and a-SMA

in mice’s extraocular muscles and orbital fat tissue. Additionally, the

aptamers effectively suppressed the Erk, p38, JNK, and NF-kB
signaling pathways (84). The therapeutic effect of CFZ533 (CD40

monoclonal antibody) on TED still needs further research.

However, CD40 is widely expressed in various cells throughout

the body, including B cells, macrophages, dendritic cells (DC),

platelets, endothelial cells, and epithelial cells (68). Close

monitoring of systemic side effects is necessary when using

therapies that target CD40.
4.2 CTLA-4

CTLA-4, also referred to as CD152, is mainly found in Tregs

and activated T cells. Its principal function is to control the

activation of T cells during the early stage. This procedure mostly

takes place within the lymph nodes. In naïve T cells, CTLA-4 is

present in intracellular vesicles. The binding of CD28 and CD80/

CD86 causes CTLA-4 to migrate to the membrane of T cells. In

comparison to CD28, CTLA-4 shows a higher affinity for B7.

Therefore, CTLA-4 competitively binds to the ligands CD80 and

CD86 on APCs, transmitting inhibitory signals for T cell activation

and preventing their further proliferation (85). CTLA-4 inhibitors

hinder the transmission of inhibitory signals from CTLA-4 to cells,

stimulating the proliferation of T cells that target tumor antigens

and strengthen the immune system’s ability to eliminate tumor

cells (7).

Currently, ipilimumab and tremelimumab are FDA-approved

CTLA-4 inhibitors (86). There have been reports of cancer patients

developing Graves’ disease following therapy with ipilimumab or

tremelimumab (87–89). Administration of CTLA-4 inhibitors,

either alone or in combination with PD-1/PD-L1 inhibitors, can

lead to acute exacerbation of pre-existing Graves’ disease in

advanced melanoma patients (90, 91). An initial case of TED

development after four doses of ipilimumab treatment was

reported by Min et al., with the patient presenting severe eye

pain, proptosis, and periorbital edema. The CT and MRI scans

revealed significant thickening of the extraocular muscles, but

laboratory testing indicated a normal concentration of TRAb

(17). Subsequently, McElnea, Borodic, Sheldon, and Sagiv

independently documented instances of tumor patients who had

no prior record of Graves’ disease developing TED after receiving

ipilimumab therapy (18–21). These patients presented varying

thyroid function and TRAb (Table 1). Rhea reported a case of a

patient with Graves’ disease who had a sudden and rapid worsening

of TED symptoms after receiving ipilimumab treatment. The

patient ’s periorbital edema improved significantly after

discontinuing ipilimumab and undergoing glucocorticoid pulse

therapy. However, there was a subsequent recurrence of TED

while receiving pembrolizumab treatment (22). Sagiv also

documented a case of a patient experiencing TED after receiving
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treatment with tremelimumab, a recently approved monoclonal

antibody that targets CTLA-4. The patient exhibited notable

thickening of the four rectus muscles, and abnormalities in

thyroid function were reported (21). These case reports suggest

that CTLA-4 may underlie the pathogenesis of TED.

Researchers have been intrigued by the association between the

risk of TED development and the polymorphism in the CTLA-4

gene for many years. Vaidya et al. first discovered that the G-

carrying genotype in the CTLA-4 A/G polymorphism is associated

with an increased risk of TED and the frequency of the G allele is

positively correlated with the severity of TED (92). There has been

considerable research interest in the SNP49 in exon 1 of the CTLA-

4 gene. However, the findings from different studies have yielded

inconsistent conclusions (93). Studies on gene polymorphisms in

various ethnic groups have shown that the G allele at SNP49

is associated with an increased risk of developing TED (94).

The findings of a systematic review indicated that the A/G

polymorphism at the SNP49 in exon 1 of the CTLA-4 gene has

been linked to the development of TED in Europeans. However, this

association does not appear to be statistically significant in Asians.

Among Europeans, the GG genotype has been observed to

significantly elevate the likelihood of developing TED.

Additionally, individuals carrying the G allele face a notably

higher risk than those with the A allele (95). The mechanism may

rely on the fact that the G allele at the SNP49 in exon 1 of CTLA4

leads to the substitution of threonine (Thr) for alanine (Ala), which

results in incorrect processing of the CTLA-4 in the endoplasmic

reticulum. This causes a reduction in glycosylation efficiency and

decreases the expression of CTLA-4 on the cell membrane (96).

Subsequent studies have shown a negative correlation between the

“TT” genotype frequency at the CTLA-4 rs733618 and TED.

Haplotype analysis indicates that Crs733618Crs16840252 may

potentially affect the risk of development of TED among patients

with GD (14). The T allele at position -318 in the CTLA-4 promoter

region is also speculated to increase the risk of TED in GD patients

(94, 97).

The exact function of CTLA-4 in the development of TED still

needs to be fully understood. The expression of Foxp3 (a vital

transcription factor in Tregs differentiation and maturation) and

CD40 is significantly increased in the orbital fat tissue of TED

patients. In contrast, the expression level of CTLA-4 decreases

significantly. According to the study, a positive correlation was

found between the severity of the disease and the expression levels

of Foxp3 and CD40. On the other hand, there is a negative

correlation between the severity of the disease and the expression

levels of CTLA-4, CD28, and CD40L (58). This indicates that Tregs

infiltrate the orbital tissue of individuals with TED, but their ability

to suppress inflammatory responses is impaired. The compromised

function of Tregs may be associated with the reduced production of

CTLA-4, which reduces the suppressive signal for T cell activation.
4.3 PD-1/PD-L1

Unlike CTLA-4, the inhibitory effect of PD-1 on T cells usually

occurs in the peripheral tissues (98). Typically, following the TCR
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and MHC-antigen peptide complex become linked, the proximal

signaling molecules of TCR undergo phosphorylation and trigger

the activation of downstream PI3K-Akt-mTOR, Ras-MEK-ERK

signaling pathways to relay signals that activate T cells. Tumor

cells have aberrantly increased expression of PD-L1. Following the

interaction between TCR and the MHC-antigen peptide complex,

PD-L1 specifically binds to PD-1 on the surface of T cells. This

binding triggers the phosphorylation of tyrosine in the intracellular

domain of PD-1, which then recruits SHP-2 to the ITIM motif.

As a result, the phosphorylation of proximal signaling molecules of

TCR, such as Lck and ZAP-70, is blocked. This disruption leads

to abnormal downstream activation signal transduction of

T cells, ultimately causing abnormalities in the T cell cycle, gene

transcription, cell metabolism, and epigenetics. Consequently,

the recognition and killing of tumor cells by T cells are

compromised (99).

Table 1 shows that some cancer patients experienced TED due

to the administration of PD-1 or PD-L1 inhibitors. Park et al.

reported the first case of bilateral TED following the treatment with

pembrolizumab (PD-1 inhibitor) (23). After treatment with

pembrolizumab, the patient developed asymmetric exophthalmos

and diplopia in both eyes; however, the thyroid function remained

normal. For patients with pre-existing Graves’ disease, there are

reports of the occurrence of TED after treatment with nivolumab

(PD-1 inhibitor) (21). Research has furthermore discovered that the

occurrence of hyperthyroidism and hypothyroidism in individuals

with cancer who use PD-1 inhibitors is significantly higher

compared to those who receive CTLA-4 inhibitors or PD-L1

inhibitors alone (100), suggesting that immune imbalance caused

by PD-1 abnormalities may play an essential role in TED. Further

investigation revealed a significant increase in the presence of PD-1

on the outer layer of CD4+ T cells and CD8+ T cells in the peripheral

blood of individuals with TED. Adding PD-L1 to the co-culture

system of T cells and OFs significantly inhibited the secretion of

IFN-g, IL-1b, TNF-a, and IL-2. Moreover, it significantly

downregulated the CD40L of T cells. The downregulation

of CD40L may have a therapeutic impact on TED by

downregulating the activation of CD40 on the surface of OFs

(31). This work elucidated the mechanism of regulation of the

CD40/CD40L pathway in patients with TED and proposed that PD-

L1 might serve as a promising therapeutic agent for the treatment of

TED. Furthermore, there was a significant increase in the

proportion of PD-1+ cells in CD4+ T, CD8+ T, and CD19+ B cells

in the peripheral blood of patients with GD (101). However, the

involvement of PD-1 on the surface of B cells, in developing TED is

still understudied. The role of CD19+ PD-1+ B cells in the

pathogenesis of TED and the disease diagnosis may have

potential implications against the production of autoantibodies.

Recent research has indicated that patients with TED exhibited

a significant increase in MHC II, B7, and PD-L1 expression on

CD34+ fibrocytes. In clinical trials, moderate to severe TED patients

treated with teprotumumab showed a substantial reduction in

MHC II, B7, and PD-L1 expression. However, this effect was not

observed in patients receiving a placebo (36). Since PD-L1 plays an

inhibitory role in T cell activation, and MHCII and B7 are two

important co-stimulatory molecules, this study suggests that MHC
Frontiers in Immunology 08
II and B7 may mask the immunosuppressive effect of PD-L1 on

CD34+ fibrocytes in TED patients. The upregulation of PD-L1 may

be an adaptive response to excessive immune activation. The study

also found that the secretion of Slit2 by OFs significantly

downregulated the expression of PD-L1 on CD34+ fibrocytes.

Suppressing the expression of Slit2 in patients with TED resulted

in a significant increase in the expression of PD-L1. These

findings indicate that in the orbital microenvironment, Slit2 may

intensify local inflammation by modifying the expression of

immune checkpoints.
4.4 MHC II

The major histocompatibility complex (MHC), also referred to

as human leukocyte antigen (HLA), has a role in the development of

TED due to its gene polymorphism. HLA is divided into type I

(HLA-A, B, C) and type II (DP, DQ, DR). Type II HLA, or MHC II,

is usually expressed on the surface of APCs, providing the first

signal for CD4+ T cells activation, and can enhance the

inflammatory response. In particular, MHC II is also expressed in

the OFs and is essential for stimulating T cells in individuals with

TED (80). The presence of TED increases MHC II in CD34+

fibrocytes. However, when IGF-IR inhibitors (teprotumumab,

lisitinib, 1H7) or IGF-IR knockdownare used, the expression

levels of MHC II decrease. This decrease is accompanied by a

reduction in the number of CD4+ T cells adhering to CD34+

fibrocytes and a decrease in the secretion of IL-17A, which is

mainly secreted by Th17 cells. These findings suggest that IGF-IR

inhibitors may restore immune tolerance in TED patients by

regulating the expression of immune checkpoints associated with

T cell activation in CD34+ fibrocytes and influencing the

proliferation and differentiation of CD4+ T cells (36). The

presence of MHC II on OFs and fibrocytes, rather than MHC I,

suggests their close direct interaction with CD4+ T cells in the

pathogenesis of TED. Similarly, numerous studies have reported

that the variation in type II HLA genes is linked to a higher risk of

developing TED (102). However, there is less research on the

differences in type I HLA variation between TED patients and

healthy individuals, indicating that the CD4+ T cell subset may

significantly impact the progression of TED.
4.5 Tim-3

The expression of Tim-3 is increased on the activated CD4+ T

cells. Activation of Tim-3 suppresses the proliferation of T cells and

the secretion of cytokines, leading to a decrease in the body’s

inflammatory response and the preservation of peripheral

immune tolerance. Research has demonstrated that individuals

with TED exhibit significant reductions in the expression of Tim-

3 on Th1 and Th17 cells in their peripheral blood in comparison to

patients with GD. Furthermore, there is an inverse relationship

between the number of Th1 and Th17 cells in the peripheral blood

of TED patients and the proportion of Tim-3+ cells (30). This

suggests that the downregulation of Tim-3 may disrupt immune
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tolerance in the body, increasing the immune activity of Th1 and

Th17 cells and causing excessive local inflammation in the orbit

region. Furthermore, research has shown that the presence of Gal-9

(the ligand for Tim-3) on DC cells in the peripheral blood of

patients with TED is significantly reduced, and its expression is

inversely associated with CAS. Adding Gal-9 to a co-culture system

of peripheral blood DCs and lymphocytes significantly inhibits the

secretion of Th1, Th2, and Th17-related cytokines. These studies

reveal that dysfunction of the Gal-9/Tim-3 pathway may be

associated with the pathogenesis of TED (103).
4.6 B7/CD28

B7.1 (CD80) and B7.2 (CD86) molecules are co-stimulatory

molecules on the surface of APCs. These molecules competitively

interact with CD28 against CTLA-4. The interaction between B7

and CD28 serves as the second signal in the T cell activation

pathway, resulting in the proliferation, and differentiation of T

cells, along with the release of downstream inflammatory cytokines

(104). In patients with GD, the polymorphism of CD80 and CD86

genes is related to the risk of TED. Multifactorial dimensionality

reduction analysis revealed that the interaction between CD80-

rs9289131 and CD86-rs9872483 has a protective effect on the onset

of TED (104). A study revealed that B7 molecules were consistently

expressed on CD34+ fibrocytes, and the expression of B7 molecules

may be significantly increased by thyrotropin or M22 (an antibody

that stimulates the TSHR). Conversely, Slit2 decreases the

expression of B7 molecules. These findings indicate that OFs

regulate the expression of B7 molecules on CD34+ fibrocytes,

which significantly impact T cell activation.

The mRNA levels of CD28 in the orbital tissues of severe

TED patients are significantly lower than those in mild TED

patients. Nevertheless, the degree of downregulation is less

pronounced compared to CTLA-4 (58), indicating that the

equilibrium between CD28 and CTLA-4 plays a role in preserving

the immune homeostasis of the orbit.
4.7 CD52

CD52 is widely expressed on mature B and T cells, with relatively

low expression on NK cells and other leukocytes. CD52 is not

expressed in hematopoietic stem cells (105). Alemtuzumab is a

monoclonal antibody that specifically inhibits the activity of CD52.

The FDA has approved it for treating multiple sclerosis and B-cell

chronic lymphocytic leukemia. Alemtuzumab primarily works by

quickly reducing the number of mature lymphocytes in the

bloodstream and then using the regeneration ability of hematopoietic

stem cells to restore a balanced immune system in the body. A subset of

multiple sclerosis patients developed TED as a consequence of taking

alemtuzumab therapy (105–108). Presently, there is a lack of research

on the involvement of CD52 in the development of TED. During

immune system reconstitution, lymphocytes undergo rapid

proliferation and sustained activation. This can lead to an imbalance

in the ratio of Tregs to Th1 and Th2 cells, thereby exacerbating the
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body’s inflammatory response and stimulating the production of

autoantibodies (109). Furthermore, following the administration of

alemtuzumab, there was a significant increase in the levels of IL-21 in

the peripheral blood of multiple sclerosis patients who had recently

developed autoimmune diseases. The activation of the IL-21 receptor

on effector T cells can stimulate the production of autoreactive T cells,

potentially facilitated by IL-21 (110).
Discussion and prospection

There are still some limitations in the research on the phenotype

and function of immune cells in TED. Primarily, most research

identifies immune cells in the peripheral blood, disregarding the

presence of infiltrating immune cells in orbital tissues. Recent studies

have shown the presence of tissue-resident immune cells in peripheral

tissues, indicating that they settle in these tissues and are not circulatory

in the bloodstream (111). Tissue-resident T cells and macrophages in

the visceral adipose tissue regulate adipose tissue inflammation and

lipid metabolism and thus maintain metabolic homeostasis (112, 113).

Dermatomyositis and autoimmune enteropathy, among other

autoimmune diseases, have discernible disparities in tissue-resident

memory T cells compared with those without these conditions. A study

utilized spatial transcriptomics to compare the expression of inhibitory

T cell ICs, specifically CTLA-4, TIGIT, LAG-3, and PDCD1 (encoding

PD-1), on tissue-resident memory T cells in patients with

dermatomyositis (Th1-driven) and psoriasis (Th17-driven). The

study revealed a significant increase in the expression of inhibitory T

cell ICs on tissue-resident memory T cells in patients with

dermatomyositis. This suggests that tissue-resident memory T cells

may play a role in developing autoimmune diseases (114). Secondly,

immune cells in tissues usually coordinate with different local

environments. The orbital microenvironment contains many types of

cells, including adipocytes, myocytes, and OFs. These cells can

influence the activity of immune cells through interactions between

cells and the secretion of cytokines. Hence, it is crucial to examine the

phenotypic and functionality of immune cells inside the orbital tissues,

together with their interaction with other cells in the orbit, to gain a

deeper comprehension of the pathophysiology of TED.

The role of immune checkpoints in regulating the development

of TED appears to be specific since not all co-inhibitory immune

checkpoints that suppress immune responses exhibit identical

patterns of change in TED. For instance, the expression of PD-1

is increased in the peripheral blood of T cells, while the expression

of Tim-3 is decreased in TED patients. Additionally, the expression

of PD-L1 is increased in fibrocytes. In the orbital tissues of severe

TED patients, CTLA-4 expression is significantly lower than in

those of mild patients. Therefore, it is necessary to study the

regulatory role of a single immune checkpoint in the pathogenesis

of TED. The metabolism of immune cells plays a crucial role in

controlling the differentiation of immune cells, the expression of

immune checkpoints, and the regulation of inflammation in tissues.

In visceral adipose tissue, the activation of PPAR-g in tissue-

resident Tregs can effectively alleviate low-grade inflammation in

adipose tissue (113), possibly by regulating T cell lipid metabolism

mediated by CD36 and carnitine palmityl transferase1 (CPT)-1.
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This ultimately upregulates the expression of Foxp3 and inhibitory

immune checkpoints CTLA-4 and TIGIT in T cells (115). Prior

research has established that endogenous prostaglandins released by

T cells modulate the activation of PPAR-g in OFs (80). Further

investigations on the immune metabolism of different immune cells

in orbital tissues, as well as the regulatory function of OFs and

CD34+ fibrocytes in immune metabolism, can enhance the

understanding of the development and pathogenesis of TED.

In conclusion, the pathogenesis of TED is still not fully

understood. Patients with TED often experience disfigurement,

which brings a tremendous psychological burden to them. While

the FDA has approved the use of teprotumumab in the treatment of

TED, some patients may exhibit intolerance to this medication,

experiencing adverse effects such as muscular spasms, nausea, and

hearing impairment (47, 48, 116, 117), and the high cost of

teprotumumab also brings heavy economic burden to patients

around the world. The identification of CD34+ fibrocytes and the

presence of immune checkpoints have introduced novel concepts in

the investigation of the underlying processes of TED. The

examination of the immune cells and immune checkpoints

present in peripheral blood and orbital tissues can enhance the

understanding of the disease and facilitate the identification of

reliable biomarkers and novel therapeutic targets for clinical use.
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