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In the recent history of the SARS-CoV-2 outbreak, vaccines have been a crucial

public health tool, playing a significant role in effectively preventing infections.

However, improving the efficacy while minimizing side effects remains a major

challenge. In recent years, there has been growing interest in nanoparticle-based

delivery systems aimed at improving antigen delivery efficiency and

immunogenicity. Among these, self-assembled nanoparticles with varying

sizes, shapes, and surface properties have garnered considerable attention.

This paper reviews the latest advancements in the design and development of

SARS-CoV-2 vaccines utilizing self-assembled materials, highlighting their

advantages in delivering viral immunogens. In addition, we briefly discuss

strategies for designing a broad-spectrum universal vaccine, which provides

insights and ideas for dealing with possible future infectious sarbecoviruses.
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1 Introduction

Since the emergence of SARS-CoV-2, the rapid expansion and mutation of the virus

have led to a significant increase in morbidity and mortality worldwide. According to the

World Health Organization, the COVID-19 pandemic has resulted in more than 776

million confirmed cases, including nearly 7 million deaths (https://www.who.int/). During

this period, vaccines have played a crucial role as a powerful health tool for preventing viral

infection. The approval of multiple COVID-19 vaccines and vaccination campaigns in

more than 200 countries have increased herd immunity, reduced disease severity and

mortality, and helped curb the spread of pandemics (1). Current COVID-19 vaccines based

on traditional vaccine platforms include CoronaVac, BBIBP-CorV, NVX-CoV2373, and

Ad26.COV2-S, etc. (2). Studies from various countries indicate that the efficacy of the

inactivated vaccines CoronaVac and BBIBP-CorV ranges from 50.7% to 91% (3). The

protein subunit vaccine NVX-CoV2373 has shown an efficacy of 95.6% against the SARS-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392898/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392898/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1392898/full
https://www.who.int/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1392898&domain=pdf&date_stamp=2024-09-11
mailto:guo596@cdutcm.edu.cn
https://doi.org/10.3389/fimmu.2024.1392898
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1392898
https://www.frontiersin.org/journals/immunology


Yang et al. 10.3389/fimmu.2024.1392898
CoV-2 wild-type (WT) (4). Additionally, one dose of the viral

vector vaccine Ad26.COV2-S was 67% effective against moderate

disease and 77% effective against severe disease (5). Despite their high

efficacy, these vaccine platforms have the weakness of limited

immunogenicity, insufficient cross-protection, and the induction of

anti-vector immunity (6, 7). These challenges have prompted the

development and exploration of novel vaccine platforms that offer

higher efficacy and fewer side effects.

The ongoing development of nanotechnology presents new

opportunities for creating highly effective vaccines. Nanoparticle

vaccines can be broadly categorized into two main types based on

their strategies for delivering antigens (8). The first category

encapsulates the antigen within the carrier, such as liposomal

nanoparticles and polymeric nanoparticles (8). Among the

approved COVID-19 vaccines, mRNA vaccines are impressive

and stand out, as they encapsulate nucleic acid molecules of the

antigen in a vector that delivers them to human host cells (9). The

efficacy of mRNA vaccines, represented by BNT162b2 and mRNA-

1273, can reach as high as 96.7% and 94.1% against severe disease,

respectively (10, 11). The rapid development of mRNA vaccines,

driven by revolutionary vaccine technologies, has set historic

milestones and significantly advanced the clinical translation of

nanoparticle vaccines. However, the widespread use of these

vaccines is limited by storage stability (12). The second category

of nanoparticle vaccines delivers the antigen to the surface of the

carrier, which includes protein nanoparticles, virus-like particles

(VLPs), and micelles (8, 13). Proteins with self-assembly capabilities

are popular in this field. The varying copy numbers and geometries

of self-assembling proteins enable diverse vaccine delivery options.

Not only can antigens be densely arranged on their surfaces, but

multivalent antigen presentation can also be achieved (14, 15).

Additionally, cell-penetrating peptides and antigen-presenting cell

(APC)-targeting antibodies can be incorporated onto the surface to

enhance APC targeting and boost the immune response (16, 17).

Furthermore, the strong thermal and chemical stability of certain

self-assembled proteins helps overcome the challenges associated

with cold chain transportation in underserved areas. Given these

advantages, self-assembled nanoparticle (SANP) vaccines appear

promising and will be highlighted and summarized in this review.
2 SANPs

Generally, nanoparticles are tunable particles of nanoscale size

that mimic the structural characteristics of viruses (8). When the

attractive/repulsive forces within and between SANPs molecules are

in equilibrium, the formation of various non-covalent interactions

such as electrostatic, hydrophobic, hydrogen bonding, van der

Waals, and p-p interactions allow the basic building blocks to

assemble autonomously, a process that does not require human

intervention (18, 19). Exogenous genes or antigenic proteins can be

attached to specific positions in the basic building blocks of SANPs

by gene fusion, tag coupling, etc., and antigens are presented to the

surface of the particles as the basic building blocks of SANPs self-

assemble (20) (Table 1) (Figure 1). Polysaccharides, ferritin, and

other natural self-assembling molecules present in various
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organisms and the engineering self-assembling proteins have been

widely used in the development of COVID-19 vaccines (Table 2).
2.1 VLPs

VLPs are virus-like man-made nanostructures consisting of all

or part of the proteins that make up the viral capsid, but lacking the

viral genome (21). These structural proteins can self-assemble when

produced in expression organisms such as bacteria, yeast,

mammalian, and insect cells (22). However, not all pathogenic

proteins can self-assemble into VLPs after overexpression, and 110

viral proteins in 35 virus families can self-assemble (23, 24).
2.1.1 Phage
MS2 phage is an icosahedral structure of 180 monomeric coat

proteins self-assembling to form 90 homodimers (20) (Figure 1A).

The AB loop in the homodimer is exposed on the surface and is a

natural site for delivery of antigen (25). Genomic insertion of

exogenous antigens into the AB loop tends to cause protein

folding failure, a defect that can be ameliorated by constructing

single-stranded homodimers, which greatly improves protein

stability (25). Based on this research, AviTag was inserted into

the single-stranded dimer and Spike (S) for biotinylation, then S was

displayed on the surface of MS2 in the presence of high-affinity

biotin-streptavidin. The vaccine provided protection against SARS-

CoV-2 after a single injection in hamsters (26).

2.1.2 Plant viruses
Most plant viruses are envelope-free and their viral particles are

formed by highly repetitive protein subunits assembled around the

genome, which are basically divided into two symmetrical types of

structure: helical and icosahedral (27). The most common helical

plant virus is tobacco mosaic virus (TMV) (Figure 1B). Since WT

TMV lacks exposed active lysine, Royal et al. mutated the N-terminal

end of TMV with lysine (TMV NtK) to facilitate the chemical

coupling of the SARS-CoV-2 receptor-binding domain (RBD)-Fc

with it to construct a vaccine that triggered IgG antibody titers

more than 10-fold higher than the RBD alone (28). The adjuvanted

nanoparticle vaccine triggered more Th1-oriented cellular immunity,

while the non-adjuvanted nanoparticle vaccine resulted in a more
TABLE 1 Regional pockets of individual nanoparticles to
deliver antigens.

Nanoparticle Protein Region Ref.

MS2
Coat
protein homodimer

AB loop (25)

TMV Coat protein
N-terminus,
C-terminus

(81)

PapMV Coat protein N-terminus (82)

Ferritin Ferritin N-terminus (48)

I53-50 I53A N-terminus (48)

Mi3 Engineered aldolase N-terminus (42, 45)
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balanced Th1 and Th2 response (28). Free monomeric antigens

stimulate mainly Th2 responses compared to nanoparticle vaccines

(28). Papaya mosaic virus (PapMV) vaccine platforms are rod-like

virus-like particles made of PapMV capsid protein self-assembled

around single-stranded RNA (ssRNA) (29). PapMV nanoparticles are

one of the few vaccine technologies capable of stimulating TLR7/8,

other TLR7/8 agonists are not suitable for developing safe vaccines

due to their toxicity (30). SRAS-CoV-2 S RBD coupled to PapMV by

relying on sortase A, which can trigger the creation of covalent

junctions between proteins (30). The sera produced after two

immunizations of mice were 54, 111, and 5.2 times more efficient

in neutralizing the ancestral SARS-CoV-2 strain, Delta and Omicron

variant, respectively, than the uncoupled formulation (30). The RBD-

PapMV vaccine can be stored stably at 4 ± 3°C for one month, which

is an advantage over mRNA vaccines that require refrigeration (30).

The generic T-cell epitopes derived from tetanus toxin was

incorporated into the cucumber mosaic virus (CuMV) VLP

platform (CuMVTT–VLP) for immune optimization to obtain T-cell

help (31). The vaccine constructed by chemically coupling the RBD to

CuMVTT-VLP prevents the binding of the RBD to the ACE2 receptor,

and in addition, the antibodies induced in mice are effective in

neutralizing SARS-CoV-2 (31). Delivery of oversized or positively

charged proteins on the outer surface of plant viruses by genetic

fusion can affect the yield of plant viruses (27). To improve yields,
Frontiers in Immunology 03
genetically fused smaller fragments of receptor-binding motif (RBM)

was displayed into CuMVTT to construct the vaccine candidates (32).

Sera frommice vaccinated with the CuMVTT-RBM vaccine candidate

successfully recognized variants E484K, N501Y, K417N/E484K/

N501Y and L452R/E484Q (32).
2.2 SANPs based on the ferritin system

Ferritin is one of the oldest molecule that is found in a variety of

biological species such as fungi, archaea, bacteria, and viruses.

Ferritin has excellent thermal and chemical stability and vaccines

made upon it are useful in countries and regions with limited cold

chain supply resources (23, 33). Ferritin is an octahedral

nanoparticle consisting of eight identical trimeric subunits and

therefore can display 24 copies of RBD or 8 copies of stable S-

protein trimers on a single particle (8, 34) (Figure 1C).

Simultaneously expression of SRAS-CoV-2 S RBD and heptad

repeat 1(HR) on a single ferritin nanoparticle induced a 10-100-

fold higher neutralizing potency than the monomeric antigens, as

well as a safer and more effective Th1-based immune response (35).

In mice injected with ferritin nanoparticle vaccines and monomeric

antigens, respectively, and lymph nodes (LNs) were isolated for

analysis of DCs and macrophages, the nanoparticle vaccine was
FIGURE 1

Partial nanoparticle structure and location of delivered antigens. (A) The MS2 phage consists of 90 dimers forming an icosahedron, and the AB loop
of the homodimer is used for antigen presentation. (B) TMV is helical particle with the N- and C-terminus of the coat proteins exposed on the
surface of the particle, which can be used to display antigens. (C) Ferritin consists of 8 trimers that form a sphere, and the N-terminus of each
monomer is used to display antigenic. (D) Mi3 is shown as an icosahedron composed of 60 polymers, with the antigen attached to the N-terminus
of each monomer. (E) I53-50 is an icosahedral nanosphere consisting of two parts, trimeric I53A and pentameric I53B. The N-terminus end of the
monomeric I53A is connected to the antigen.
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TABLE 2 Self-assembled nanoparticles in COVID-19 vaccine candidates.
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Th1 or Th2 ori-
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SARS-CoV-2/UT-
NCGM02/
Human/

2020/Tokyo

—— —— (26)

WT 10

Th1 (with
adjuvants),

balanced Th1
and Th2
response
(without
adjuvants)

(28)

WT, Delta,
and Omicron

54 (WT), 111
(Delta),

5.2 (Omicron)
Th1 (30)

SARS‐CoV-2/
ABS/NL20

—— —— (32)

V,
oV-
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13

SARS-CoV-2 10-100 Th1 (35)

SARS-CoV-2
viruses USA-
WA1/2020

(WA1), Alpha,
Beta, Gamma,
and Delta
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a,
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pha, SARS-CoV-2
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platform

Presentation
method

Presented
antigens

Sequence Size
Route of

administration
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schedule
Animal models

Pseudovirus
neutralizatio

assay

MS2
Biotin-

streptavidin
Spike 1–1208 ~50 nm

Subcutaneous
inoculation

1 dose (60 µg) Hamster ——

TMV
Chemically
conjugated

RBD-Fc
331–632
from

the WT

Diameter
< 20 nm,
average
length
300 nm

Subcutaneous
inoculation

2 doses (45 µg,
14 days apart)

Mice WT

PapMV Sortase A RBD
331–591
from

the WT

Average
length 80

nm,
width
14 nm

Intramuscular
injection

2 doses (115 mg
of nanoparticles
coupled to 4.6 mg

of RBD, 21
days apart)

Mice ——

CuMV Genetic fusion RBM —— 94 nm
Subcutaneous
inoculation

2 doses (20 µg,
28 days apart)
2 doses (100 µg,
28 days apart)

Mice ——

Ferritin
SpyTag/

SpyCatcher
RBD

and HR

RBD:319-
541
HR1-

HR2:910-
1213

——
Subcutaneous
inoculation

2 doses (10 µg,
28 days apart)

Mice WT, SARS-Co
MERS-CoV, HC

229E, HCoV
OC43, RATG

Intramuscular
injection

2 doses (50 µg, 28
days apart)

Rhesus
macaques

Genetic fusion Spike
12-1158
from

the WT
——

Intramuscular
injection

2 doses (50 µg,
28 days apart)

Rhesus macaques WT

Protein A
tag-Fc

RBD

331-524
from

omicron
BA.1

37.3 ±
1.3 nm

Intramuscular
injection

2 doses (10 µg,
14 days apart)

Mice
WT, Alpha, B
Gamma, Del

Omicron BA.1,

Genetic fusion Spike
1-1208
from

the WT
——

Intramuscular
injection

1 dose (100 µg) Hamsters
WT, D614G, A

Beta, Delta
e
t
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Ref.

SARS-CoV,
MERS-CoV,
SARS-CoV-2

—— Th1 (41)

—— —— Th1 (59)

SARS-CoV-2
strain

2020XN4276
8-120 Th2 (48)

Beta,
elta,
nd
S-CoV,
oV

SARS-CoV-2
strain

2020XN4276
30 —— (49)

a, Beta,
,
cron

D614G,
Beta, Delta

—— —— (57)

-2
SARS-CoV-2 virus

(hCoV-19/
England/02/2020)

—— —— (45)

SARS-CoV-2
strain

2020XN4276
8-120 Th2 (48)

Beta,
elta,
icron,
V,
oV

SARS-CoV-2
strain

2020XN4276
8 —— (49)

-2,
V

SARS-CoV-2 —— —— (47)
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Animal models

Pseudovir
neutraliza

assay

Genetic fusion

RBD (SARS-
CoV, SARS-

CoV-2,
MERS-CoV),

—— 17.6 nm
Intramuscular

injection

2 doses (10 µg,
21 days apart)

Mice

——
2 doses (100 µg,
21 days apart)

Cynomolgus
monkeys

Genetic fusion
Spike (WT,

Beta,
Epsilon)

——

21.4 nm,
20.54 nm,
20.3 nm

Subcutaneous
inoculation

2 doses (50 µg,
23 days apart)

Mice ——

DN1-
SpyCatcher

RBD
319–541
from

the WT

32.99 ±
0.04 nm

Subcutaneous
inoculation

3 doses (9.34 µg,
14 days apart)

Mice WT

SpyTag/
SpyCatcher

S1
16-685
from

the WT

57.71 ±
0.22 nm

——

3 doses (0.646/
6.46 µg, 14
days apart)

Mice

WT, Alpha
Gamma, D
Lambda,

Omicron, SA
MERS-C

GvTagOpti/
SdCatcher

D614G_RBD —— ——
Subcutaneous
inoculation

2 doses (12 µg,
28 days apart)

Mice
D614G, Alph

Gamm
Delta, Om

Mi3
SpyTag/

SpyCatcher003
RBD 331–529

20.7
± 4.2 nm

Intramuscular
injection

2 doses (0.1/0.5
µg, 14 days apart)

Mice

SARS-Co
2 doses (5/50 µg,
28 days apart)

Pigs

DN1-
SpyCatcher

RBD
319–541
from

the WT

55.19
± 0.4

Subcutaneous
inoculation

3 doses (9.51 µg,
14 days apart)

Mice WT

SpyTag/
SpyCatcher

S1
16-685
from

the WT

65.88 ±
0.69 nm

——
3 doses (6.46 µg,
14 days apart)

Mice

WT, Alpha
Gamma, D

Lambda, Om
SARS-C
MERS-C

I53–50 Genetic fusion RBD 328-531 37-41 nm
Intramuscular

injection

2 doses (0.9/5 µg,
21 days apart)

Mice
SARS-Co
SARS-C2 doses (250 µg,

28 days apart)
Pigtail macaque
,

a
R
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Route of

administration
Immunization

schedule
Animal mode

DN1-
SpyCatcher

RBD
319–541
from

the WT

50.67 ±
0.11 nm

Subcutaneous
inoculation

3 doses (11.91 µg,
14 days apart)

Mice

SpyTag/
SpyCatcher

S1
16-685
from

the WT

90.00 ±
0.27 nm

——

3 doses (0.721/
7.21 µg, 14
days apart)

Mice

PPS14
Chemically
conjugated

RBD 319–531 8-23 nm
Intramuscular

injection

3 doses (1/3/10
µg, 21 days apart)

Adult mice

3 doses (1/3 µg,
21 days apart)

Aged mice

3 doses (20/60
µg, 21 days apart)

Rats

2 doses (10 µg,
21 days apart)

Rhesus macaqu

PRBS
Hydrogen
bond

RBD —— 250 nm
Intramuscular

injection

3 doses (10 mg
RBD protein and
50 mg PRBS, 14
days apart)

Mice

DNA Plasmids S-HBsAg
1-1206
from

the S6P
——

Intramuscular
immunizations

plus
electroporation

2 doses (10/2/
0.4 µg, 28
days apart)

Mice

Plasmids
RBD g5.1
120-mer

331-527 ——

Intramuscular
immunizations

plus
electroporation

1 dose (1 µg) Mice

RNA
LNP

encapsulation
RBD-ferritin —— 121.9 nm

Intramuscular
injection

2 doses (1.5/15
µg, 14 days apart)

Mice
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found to be more susceptible to antigen capture and presentation by

APCs, which in turn effectively activated CD8 T cells (35). Utilizing

gene fusions, the prefusion-stabilized S has been expressed on the

surface of ferritin to induce immune responses against SARS-CoV-2

(36). The vaccine triggered high levels of neutralizing antibodies in

rhesus monkeys, an order of magnitude higher than human

recovered serum, and induced Th1-biased CD4 T-cell helper

responses (36). Serum from mice, immunized with Omicron RBD

linked to ferritin by Fc interaction with protein A tags, showed

strong neutralizing potency against BA.1 and BA.2 and Th1-biased

cellular immune responses (37). Attached the WT strain S protein

to ferritin by gene fusion and the nanoparticle vaccine

demonstrated similar protection against WT, D614G, and Alpha

in Syrian golden hamsters (38). A recombinant spike ferritin

nanoparticle vaccine for SARS-CoV-2 has entered human clinical

trials for the first time, demonstrating the ability to elicit

neutralizing antibody titers exceeding 10,000 against the D614G

variant in humans. This vaccine primarily causes self-limiting

adverse reactions and shows no evidence of long-term toxicity

(39). Additionally, conserved epitopes of pre-existing neutralizing

antibodies (CePn) were delivered using Helicobacter pylori ferritin

to generate nanoparticle vaccines that protect mice against the

Delta, WIV04, and Omicron variants (40). Ferritin nanoparticle

vaccines that present the RBD of SARS-CoV, MERS-CoV, and

SARS-CoV-2 simultaneously elicited Th1-biased immune

responses in mice, providing protection against all three types of

b-coronaviruses (41).
2.3 Engineering self-assembling protein

The naturally occurring self-assembling proteins described

above are generally chosen as the platform for antigen delivery,

however, the number of naturally occurring self-assembling

proteins is rather limited (8). With advances in bioengineering, it

is currently possible to artificially modify the size of the

nanoparticles, the spacing, and the number of antigens presented

to further optimize the next generation of vaccines (8).

Computationally constructed I53-50 and mi3 (the variant of I3-

01) self-assembled nanoparticles have been successfully applied in

SARS-CoV-2 vaccine design (42, 43). The mi3 is a dodecahedral

one-component nanocage that can deliver 60 monomers on the

surface (44) (Figure 1D). Construction of nanoparticle vaccine

based on SpyTag/SpyCatcher technology for delivery of RBD on

SpyCatcher003-mi3 platform induces stronger immune responses

in mice and pigs compared to human recovered serum (45). Patel

et al. developed an intranasal nanoparticle vaccine with modified

the I3-01 protein into nanoparticles with a flexible SpyCatcher

system to display the RBD. On day 5 after infection, the number of

virus particles in golden Syrian hamsters vaccinated with the

nanoparticle vaccine was 10 times lower than in those vaccinated

with the monomer vaccine. Nanoparticle vaccine cleared viral

particles from the respiratory tract much faster than the

monomer vaccine (46). I53-50 is an icosahedral symmetric

protein oligomer composed of 20 trimers (I53-50A) and 12

pentamers (I53-50B) (34, 43) (Figure 1E). The RBDs were linked
Frontiers in Immunology 07
to I53-50A by genetic fusion, and RBD-I53-50A and I53-50B were

expressed independently and then mixed and assembled into

nanoparticle vaccine (47). The vaccine induced a 10-fold higher

neutralizing activity in mice at lower doses than the pre-fused stable

S protein and a robust generating center (GC) B-cell response,

favoring a durable humoral response (47). The DN1-SpyCatcher
system was designed to express SARS-CoV-2 RBD on ferritin, mi3,

and I53-50 NPs to construct nanoparticle vaccines, and the sera

obtained after immunization of mice with the vaccines showed 8 to

120 times higher neutralizing activity against pseudoviruses and

real viruses than sera from mice immunized with monomeric RBD

(48). Three different sizes of nanoparticle vaccines were constructed

by linking WT S1 to ferritin, mi3, and I50-53 via SpyTag/

SpyCatcher system (49). Among them, the I50-53 nanoparticle

vaccine induced the highest neutralizing antibody titer in mice,

which was 39 times higher than that of the S1 monomeric vaccine,

while the mi3 nanoparticle vaccine had the lowest neutralizing

potency, which was only 8 times that of the S1 monomeric vaccine

(49). The number of antigens on the surface of the particles does not

necessarily correlate positively with the neutralizing antibody titer.

Overall, all three vaccines produced high levels of neutralizing

antibodies against multiple variants of SARS-CoV-2, including

the Omicron variant, and protection against SARS-CoV and

MERS-CoV (49).
2.4 Natural polysaccharides

Similar to the protein-based SANPs described above, natural

polysaccharides can also be assembled through non-covalent

interactions (50). A polysaccharide-protein conjugated

nanoparticle vaccine against SARS-CoV-2 was constructed by

coupling the SARS-CoV-2 recombinant RBD protein to capsular

polysaccharide of streptococcus pneumoniae serotype 14 (PPS14)

using a reductive amination method (51). This SANP triggers 3.7-

fold higher neutralizing antibodies than the monomer RBDs

vaccine and induces a Th1-biased immune response in mice

while inducing a balanced Th1 and Th2 immune response in

rhesus monkeys (51). A new natural polysaccharide was extracted

from Bletilla striatal rhizomes (PRBS), which can be used for the

development of a SARS-CoV-2 vaccine (52). Compared to the RBD

monomeric vaccine, the PRBS-RBD vaccine triggered 5-fold higher

neutralizing antibodies in mice and promoted phagocytosis of

phagocytes and antigen presentation by B cells (52).
3 Nucleic acid-encoded nanoparticle
vaccine platforms assembled in vivo

The production process of SANPs vaccines is mainly prepared in

vitro, using protein expression systems and protein purification

techniques, which can be costly. The incorporation of components

like SpyTag/SpyCatcher necessitates even more expensive

purification methods, such as size exclusion chromatography. In

the event of an outbreak, these cumbersome preparation steps and
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high costs may hinder the rapid development and scaling of vaccines.

Therefore, the in vivo assembly of self-assembled nanoparticle

vaccines could represent a new paradigm in this field (53).

DNA and RNA vaccines are two approaches that enable in vivo

self-assembly. Antigens encoded in DNA or RNA can enter host

cells through methods like electroporation, jet delivery, or

encapsulation in nanoparticles. Once inside, nanoparticle

proteins are expressed and successfully assembled in vivo. For

instance, Liu et al. designed a DNA plasmid encoding a Spike-

HBsAg fusion protein, which was delivered to mice via

intramuscular injection combined with electroporation. 2 µg

DNA vaccine provided protection for over 7 months and

exhibited higher neutralization activity compared to equal doses

of soluble protein (54). Similarly, Konrath et al. discovered that

DNA vaccines encoding nanoparticle proteins maintained high

immunogenicity; a single dose of just 1 µg of a DNA-launched RBD

g5.1 120-mer nanovaccine was sufficient to protect mice from

SARS-CoV-2 challenges (55). Sun et al. prepared mRNA encoding

RBD-ferritin nanoparticles, encapsulated in LNP, to induce a Th1-

biased immune response in mice (56). These LNPs can

simultaneously encapsulate three mRNAs corresponding to

different mutant strains (WT, Alpha, Beta) of RBD, resulting in a

trivalent vaccine that generates broad-spectrum neutralizing titers

against a variety of pseudovirus (56).
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4 Developing broad-spectrum
vaccines with nanoparticle platforms
The RBD in S is a hot region of constant mutation and vaccines

made using the WT S have shown varying degrees of reduced

protection against multiple variants such as Alpha, Beta, Gamma,

Delta, Lambda, and Omicron (38, 49). Thus, one of the biggest

hurdles for a SARS-CoV-2 vaccine is the development of a universal

vaccine that can overcome the viral immune escape and maintain

neutralizing efficacy against multiple variants of concern.

Cocktail nanoparticle vaccines and mosaic nanoparticle

vaccines are capable of inducing a wider range of neutralizing

antibodies and are commonly used to construct universal

vaccines against SARS-CoV-2. Cocktail nanoparticles are

combinations of three or more independently assembled

nanoparticles expressing only a single type of antigen (Figure 2).

For instance, the mixing of three ferritin nanoparticle vaccines

linked to D614G, Beta, and Delta RBD in a 1:1:1 ratio forms a

cocktail of nanoparticle vaccines (57). There were no pathological

changes in the lungs and the viral RNA was almost undetectable in

mice injected with this trivalent vaccine after infection with the

SARS-CoV-2 variant (57). Co-injection of D614G and Beta ferritin

nanoparticle vaccines as booster shots into rhesus monkeys
FIGURE 2

Design of broad-spectrum vaccines based on nanoparticle platforms. Cocktail or mosaic nanoparticle vaccines are commonly used strategies for
broad-spectrum vaccine design, and Mi3 and I53-50 are mostly used for broad-spectrum vaccine design because of the high number of antigens
that can be delivered on their surfaces. Mice injected with cocktail or mosaic nanoparticle vaccines developed resistance to infection with multiple
SARS-CoV-2 mutant strains. In the figure, the different colored S trimers are from different strains.
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effectively induced antibodies to neutralize multiple variants of

interest, including D614G, Alpha, Beta, Gamma, and Delta, and

increased the neutralization potency by 21-110-fold (58). Three

different RBD antigens derived from WT, Beta, and Epsilon were

used to construct three ferritin nanoparticle vaccines utilizing

genetic fusion, respectively (59). In mice immunized with

monovalent and polyvalent vaccines, respectively, the number of

memory cells in the LN was higher in the mice of the polyvalent

vaccine group (59). In addition, mosaic nanoparticle vaccines can

bind multiple antigens on the surface of a single nanoparticle, where

the nanoparticles were mostly selected from I53-50 or mi3

(Figure 2). A quadrivalent mosaic nanoparticle vaccine was

constructed by co-associating S of WT, Alpha, Beta, and Gamma

with I50-53, which improved the breadth of neutralizing antibodies

and showed 1.6-4 times higher neutralizing antibody titers against

several variants of SARS-CoV-2 (Alpha, Beta, Gamma, Omicron,

Lambda, Eta, and D614G) than the WT monovalent nanoparticle

vaccine (60). Bivalent nanoparticle vaccines co-expressing WT and

Beta S on I53-50 nanoparticles triggered 6.2, 4.7, 7.3, and 4.6-fold

higher neutralizing antibody titers against Beta, Gamma, and

Omicron BA.1 and BA.4/5, respectively, in rabbits than WT

monovalent nanoparticle vaccines (61).

The strategy of the mosaic nanoparticle vaccine is also

applicable to the development of a universal vaccine against

sarbecovirus. Bivalent mosaic nanoparticle vaccines co-expressing

S constructs of SARS-CoV and SARS-CoV-2 on the surface of I53-

50 nanoparticles produce potent and high-level neutralizing

antibodies against SARS-CoV, SHC014, and WIV1 (61). An 8-

valent mosaic mi3 nanoparticle vaccine expressing eight different

zoonotic coronavirus RBDs simultaneously increased the breadth of

antibody recognition of heterologous RBDs compared to

homologous SARS-CoV-2 RBD nanoparticle vaccines (62).

Similarly, an octavalent mosaic mi3 vaccine co-expressing SARS-

CoV-2 Beta and seven animal sarbecoviruses RBDs increased

targeting of conserved epitopes and induced antibodies binding

mismatched viruses such as WA1, Delta, and Omicron RBDs in

non-human primates, offering the possibility of preventing future

sarbecoviruses -induced diseases (63). The mosaic-8 nanoparticles

are currently undergoing clinical trials. However, the large-scale

production of this type of vaccine is constrained by the need to

produce nine components (eight different receptor-binding

domains, or RBDs, along with SpyCatcher003-mi3). To address

this challenge, Hills et al. have introduced an innovative solution by

developing multiviral quartet nanocages. In this approach, four viral

RBDs (SHC014, Rs4081, RaTG13, and SARS-CoV-2) are linked

into a single peptide chain. This chain is then assembled into

SpyCatcher003-mi3 using SpyTag, resulting in a nanoparticle

vaccine with a branching morphology that elicits a broad immune

response against sarbecoviruses (64). The development of broad-

spectrum vaccines utilizing mosaic nanoparticles should prioritize

the spatial arrangement and proportions of heterotypic antigens.

Simply increasing the number of antigens without careful

consideration can lead to a reduction in neutralization potency

and may trigger excessive inflammatory responses (65).
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5 Nanoparticle vaccine activates
immune cells - APCs, B cells,
and T cells

Vaccine antigens primarily activate the body’s adaptive immune

system to fight off the invasion of foreign pathogens. The LNs are

the primary site for the initiation of the adaptive immune response

and therefore antigens first need to be transported from the

injection site into the LN. Nanoparticles of different sizes enter

the LN through different pathways after injection into the

interstitium (66) (Figure 3A). Particles that are too small (<5nm)

enter the capillaries because they diffuse faster than convection and

vaccination is ineffective because of clearance effects (66, 67).

Particles between 20 and 200 nm are effective in entering the

lymphatic system (68), with medium-sized particles (20 to 50

nm) being the best size as they are more likely to be convectively

governed to enter the lymphatic vessels (66). Larger particles above

50 nm slow down the rate of entry into the lymph vessels as they

increase in size (66). Most protein-based SANPs and VLPs are

concentrated in the 20-200 nm size range and are suitable for direct

LN drainage. Particles over 200-500 nm become trapped in the

interstitial space, increasing the chance of contact with APCs such

as DCs in peripheral tissues and transport to lymph vessels via

APCs (69).

The nanoparticles entering the lymphatic vessels reach the LN

with the lymphatic fluid. The particles are distributed in the

subcapsular sinus (SCS) and over time penetrate deeper into the

lymphatic parenchyma such as the cortical and paracortical areas

(69). The SCS is rich in macrophages and below it is the paracortical

area with T cells and resident DCs as well as the cortical area with B

cells (70, 71) (Figure 3B). The nanoparticles in turn trigger T and B

cell responses upon contact with lymphatically resident APCs.

However, the exact pathway of movement of nanoparticles deep

into the LN parenchyma is not fully understood.

Deeper transfer of particles from the SCS and around the B-cell

follicle to the interior of the B-cell follicle can be observed in the

experiments of Manolova et al. (69). This process may be mediated

by subcapsular sinus macrophages (SSM) (Figure 3C). SSM

transports antigen to naive B cells, which transport it from the

SCS to the follicle and the follicular dendritic cells (FDCs) in a

complement receptor-dependent manner (72). FDCs endocytose

antigen and present it to GC B cells, which are activated and

differentiated into antibody-producing plasma cells or memory cells

with the help of T cells (72). It is also possible that nanoparticles can

penetrate from the lymphatic ducts deep into the T cell zone of the

LN (Figure 3C). It is often thought that particles larger than 4-5 nm

are excluded from the conduits (73), however, this is not absolute

and cowpox and Zika particles have been shown to penetrate deeply

into the parenchyma through the lymphatics (74). LN-resident DCs

located near the LN conduits capture and present antigen to the T

cells (74). In addition, there is a specialized population of DCs

residing in the lymphatic endothelium, capable of capturing

granular antigens from the lymphatic sinus (75) (Figure 3C).
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Finally, a few particles are possibly captured by peripheral tissue-

resident DCs (69) (Figure 3C). Lymphatic endothelial cells secrete

CCL21 chemokine, and CCRL1 can bind and remove CCL21 from

the lumen of the lymphatic sinus, thus creating a gradient of high to

low CCL21 concentrations from the LN parenchyma (inside the

LN) to the subepithelial lymphatic sinus (LN margin), and

peripheral tissue-resident DCs migrate to the paracortical layer by

upregulating the chemokine receptor CCR7, which in turn presents

antigen to surrounding T cells (76, 77).

Based on all these pathways, nanoparticle vaccines are exposed

to various APCs and are phagocytosed into the endosome (66). CD8

+T cel ls recognize the ant igens presented by major

histocompatibility complex (MHC) class I molecules through the

T cell receptor (TCR), which are activated in the presence of co-

stimulatory factors and cytokines, and subsequently activated CD8

+T cells induce cytotoxicity to kill the virus-infected cells (78). CD4

helper T cells are activated by TCR recognition of peptides binding

to MHC class II molecules on the surface of DCs (78). Activated

CD4 helper T cells differentiate into memory T cells that play a role

in secondary immunity and follicular T cells that secrete molecules

such as IL-21 to aid B cell differentiation (79). B cells with the help
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of T cells differentiate into memory cells as well as plasma cells,

which produce antibodies to bind to the virus (80) (Figure 3D).
6 Conclusion and perspective

Nanoparticle vaccines have great potential in vaccine

development, where multiple vectors are applied, each with their

own characteristics, to address the limitations of current vaccine

technology. The diversity of VLP structures and their expression

hosts, which are upwards of 170, make them attractive. The strong

thermal and chemical stability of ferritin makes it ideal for carrying

antigens. Certain modifications of proteins by computational design

can further improve the stability or yield of nanoparticles.

Engineering SANPs also favored the design of universal vaccines.

Bacterial polysaccharides vaccines are well developed and the

coupling of viral proteins to polysaccharides can prevent bacterial

and viral co-infection. Nucleic acid-emitting nanovaccines offer a

promising new approach that enables the in vivo synthesis of self-

assembled proteins. This method helps to overcome the

manufacturing and cost challenges typically associated with in vitro
FIGURE 3

Nanoparticle vaccine triggers the immune response. (A) Nanoparticles of different sizes enter the LN. Particles smaller than 5 nm mainly enter
capillaries. 20-200 nm particles drain directly into LNs. Particles larger than 200-500 nm enter the LNs by active transport of DC cells. (B) Structure
of LN and cellular distribution. (C) Nanoparticles contacted with different APCs. (I) Antigen is presented to B cells via SSM, FDC to trigger an adaptive
immune response. (II) LN resident DCs capture antigen at two sites. Antigens are captured by DCs near the lymphatic endothelium after entering the
SSM or by DCs near the duct after entering the lymphatic conduit. (III) DCs that have captured antigen in peripheral tissues migrate to the
paracortical region of LNs in response to low to high concentrations of CCL21, presenting the antigen to T cells to trigger an adaptive immune
response. (D) APC presents antigens to T cells and B cells to trigger a cellular and humoral immune response respectively. DC, dendritic cells. LN,
lymph nodes. SSM, subcapsular sinus macrophage. SCS, subcapsular sinus. FDC, follicular dendritic cells. APCs, antigen presenting cells.
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production. In future, the emergence of new viruses is unpredictable,

and accelerating the development of nanoparticle vaccines could

shorten the response time to unknown epidemics. Although there is

no doubt that nanoparticle vaccines can improve immunogenicity,

we should still work on continuous development and optimization of

nanoparticle vaccines, such as improving the delivery efficiency of the

carriers and optimizing the distribution and quantity of antigens. In

addition, the deployment of viral vaccines still varies globally, and

vaccine cost and storage are issues that need to be urgently addressed.

Therefore, it is necessary to develop more stable and easier-to-

produce nanoparticle vaccines. In conclusion, nanoparticle vaccines

are an effective way to combat infectious viruses, and it is believed

that they can be used to improve the health of all human beings in the

near future.
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et al. Activation of innate immunity in primary human cells using a plant virus derived
nanoparticle TLR7/8 agonist. Nanomedicine: Nanotechnology Biol Med. (2018)
14:2317–27. doi: 10.1016/j.nano.2017.10.015

30. Olivera-Ugarte SM, Bolduc M, Laliberté-Gagné M, Blanchette LJ, Garneau C,
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