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Immunotherapy has been developed, which harnesses and enhances the innate

powers of the immune system to fight disease, particularly cancer. PD-1

(programmed death-1) and PD-L1 (programmed death ligand-1) are key

components in the regulation of the immune system, particularly in the

context of cancer immunotherapy. PD-1 and PD-L1 are regulated by PTMs,

including phosphorylation, ubiquitination, deubiquitination, acetylation,

palmitoylation and glycosylation. PROTACs (Proteolysis Targeting Chimeras)

are a type of new drug design technology. They are specifically engineered

molecules that target specific proteins within a cell for degradation. PROTACs

have been designed and demonstrated their inhibitory activity against the PD-1/

PD-L1 pathway, and showed their ability to degrade PD-1/PD-L1 proteins. In this

review, we describe how PROTACs target PD-1 and PD-L1 proteins to improve

the efficacy of immunotherapy. PROTACs could be a novel strategy to combine

with radiotherapy, chemotherapy and immunotherapy for cancer patients.
KEYWORDS
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Introduction

Post-translational modification (PTM) is one kind of the chemical modification of a

protein after its synthesis (1). PTM often occurs after the translation process in which

ribosomes create proteins from mRNA templates. It has been known that PTMs have

profound effects on protein stability, activity, localization, and interaction with other

cellular molecules, leading to regulation of the cellular function that was governed by
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proteins (2). PTMs play a central role in a wide range of biological

processes, including cell signaling pathway, immune response,

DNA damage response, and metabolism (3, 4). Dysregulation of

PTMs is associated with various diseases, including cancer (5–7),

neurodegenerative disorders (8, 9), cardiovascular diseases (10), and

metabolic syndromes (11, 12). It is critical to explore the regulatory

mechanism of PTMs in order to discover the new targets for

disease treatments.

The common types of PTMs include ubiquitination (13),

acetylation (14, 15), phosphorylation (16), methylation (17),

glycosylation (18, 19), SUMOylation (20), prenylation (21),

GlcNAcylation (18), succinylation (22), palmitoylation (23), and

neddylation (24, 25). Ubiquitination is one common type of PTMs,

in which a target protein is added a small protein called ubiquitin or

multiple ubiquitins, leading to protein degradation by the

proteasome (26). This process involves three key enzymes: E1

(Ubiquitin-activating enzyme), E2 (Ubiquitin-conjugating

enzyme) and E3 (Ubiquitin ligase). The E1 enzyme activates

ubiquitin in an ATP-dependent manner, forming a high-energy

thioester bond with ubiquitin. The activated ubiquitin is transferred

to E2, maintaining the high-energy bond. The E3 enzyme facilitates

the transfer of ubiquitin from E2 to the substrate protein (27). E3

ligases are responsible for the specificity of the ubiquitination

process, as they recognize specific target proteins to be

ubiquitinated (28). There are different outcomes of ubiquitination,

which are dependent on the number and linkage type of ubiquitin

molecules. Monoubiquitination means only single ubiquitin is

added to the substrate protein (29). Polyubiquitination means

multiple ubiquitin molecules are attached and forma chain (30).

The common and well-studied forms are linked through the lysine

48 (K48) residue and lysine 63 (K63) residue of ubiquitin. K48-

linked polyubiquitination often tags the substrate protein for

degradation by the proteasome, a cellular complex that breaks

down proteins (31). K63-linked polyubiquitination often has

different roles, such as in signaling pathways, DNA repair, or

trafficking of membrane proteins (32). Beyond K48 and K63,

non-canonical protein ubiquitination through K6, K11, K27, K29

and K33 residues have been reported (33). K6-linked ubiquitination

is involved in autophagy and DNA damage response, while K27-

linked ubiquitination participates into innate immunity. K29-linked

ubiquitination plays a role in neurodegenerative disorders, whereas

K11- and K33-linked ubiquitination should be further

investigated (33).

E3 ubiquitin ligases are crucial enzymes in the ubiquitin-

proteasome system (UPS). E3 ligases play a pivotal role in the

process of ubiquitination, which involves attaching ubiquitin

molecules to specific substrate proteins (34). They act as a bridge

between the E2 enzyme and the substrate, ensuring accurate

ubiquitin transfer. The E3 ligases are primarily responsible for the

specificity of ubiquitination, determining which proteins will be

tagged for various fates, including degradation, localization, or

involvement in various cellular processes (35). There are several

types of E3 ligases, categorized mainly based on their mechanism of

action and structural features. The common types are RING (Really

interesting new gene) finger ligases and HECT (Homologous to E6-

AP carboxyl terminus) ligases. RING ligases directly transfer
Frontiers in Immunology 02
ubiquitin from the E2 enzyme to the substrate. HECT ligases

form a covalent bond with ubiquitin before transferring it to the

substrate (36).

RING E3 ligases are a diverse group with several types and

subtypes, each having unique structural features and mechanisms of

action (37). The notable types of RING E3 ligases have single-

subunit RING E3 ligases and multiple-subunit E3 ligases. The

former type is composed of a single protein that contains both

the RING domain necessary for E2 binding and a substrate-

recognition domain, such as MDM2. MDM2 targets the tumor

suppressors p53, and c-Cbl. The latter type are complexes made up

of multiple protein subunits. One of the subunits contains the RING

domain, while others are responsible for substrate recognition and

regulation. Multiple-subunit E3 ligases mainly have cullin-RING

ligases (CRLs) and RBR (RING-between-RING) E3 Ligases (38).

CRLs are the largest family of multi-subunit RING E3 ligases, which

include several subfamilies like SCF (Skp1-Cullin1-F-box protein)

complexes. CRLs are involved in various cellular processes

including cell cycle control and signal transduction (39). RBR are

a unique class of E3 ligases that contain two RING domains

separated by a non-RING domain. They function through a

hybrid mechanism that has characteristics of both RING and

HECT type E3 ligases (40).

Unlike RING E3 ligases, HECT E3 ligases form a covalent bond

with ubiquitin before transferring it to the substrate protein. This

family is characterized by the HECT domain, which is responsible

for this unique enzymatic activity (41). HECT ligases are classified

into different types based on structural features and functional

domains. HECT ligases have several notable types, including

NEDD4 family and HERC family (42). Members of this family

typically have a C2 domain that binds to phospholipids, two to

four WW domains that recognize proline-rich motifs in substrates,

and the HECT domain for ubiquitin transfer (43). NEDD4 family is

the largest group of HECT E3 ligases and is composed of nine

members, each with distinct but sometimes overlapping substrate

specificities and functions (44). These members typically include

NEDD4 (Neural Precursor Cell Expressed Developmentally

Downregulated 4), NEDD4L (NEDD4-Like), ITCH (Itchy E3

Ubiquitin Protein Ligase), WWP1 (WW Domain Containing

E3 Ubiquitin Protein Ligase 1), WWP2, SMURF1 (SMAD

Specific E3 Ubiquitin Protein Ligase 1), SMURF2, NEDL1

(NEDD4-Like E3 Ubiquitin Protein Ligase 1) and NEDL2 (45–

48). HERC E3 ligases are characterized by their large size and the

presence of one or more RCC1-like domains (RLDs) in addition to

the HECT domain. The HERC family is involved in processes such

as protein trafficking and cellular growth control (49, 50).

Ubiquitination is a dynamic and reversible process, with

deubiquitinating enzymes (DUBs) able to reverse the

ubiquitination of proteins (51). This process, known as

deubiquitination, is essential for maintaining the balance and

regulation of protein ubiquitination within the cell, impacting

various cellular processes and homeostasis (52, 53). DUBs are a

group of proteases that play a critical role in the UPS by removing

ubiquitin molecules from substrate proteins. Different DUBs have

specificity for different types of ubiquitin linkages. Some are

specialized in trimming ubiquitin chains from the distal end,
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while others can cleave ubiquitin at specific linkage points within a

chain. There are several classes of DUBs, based on their structural

and functional characteristics (54). The two main classes are

cysteine proteases and metalloproteases. These classes are further

divided into families such as USP (ubiquitin-specific protease),

UCH (ubiquitin C-terminal hydrolase), OTU (ovarian tumor

protease), and JAMM/MPN+ (Jab1/MPN domain-containing

metalloenzymes) (55–58).
PROTACs

PROTACs (Proteolysis Targeting Chimeras) are a type of new

drug design technology. They are specifically engineered molecules

that target specific proteins within a cell for degradation (59).

PROTACs consist of three key components: a target protein

ligand, a E3 ubiquitin ligand, and a linker. Target protein ligand

is the part of the PROTAC molecule that specifically binds to the

protein targeted for degradation (60). The selection of this ligand is

critical as it ensures the specificity of the PROTAC for its intended

protein target (61). The PROTAC recruits an E3 ubiquitin ligase,

which is responsible for transferring ubiquitin molecules to the

target protein, tagging it for degradation. The linker connects the

target protein ligand and the E3 ligase ligand (Figure 1). The length

and composition of the linker are crucial for the effective proximity

of the target protein and the E3 ligase, facilitating the transfer of

ubiquitin from the E3 ligase to the target protein (62, 63).

Unlike traditional inhibitors that simply block protein activity,

PROTACs work by recruiting an E3 ubiquitin ligase to tag the target

protein with ubiquitin. This tag marks the protein for destruction

by the cell’s proteasome, a protein complex responsible for

degrading and recycling damaged or unneeded proteins (64).

PROTAC technology allows for more precise control targeting

protein levels within cells, which can be used to target proteins
Frontiers in Immunology 03
that are traditionally considered “undruggable” by conventional

methods (65). AbTAC, molecular glue, LYTAC and Nano-

PROTAC have been emerged to target proteins (66). PROTACs

have been gaining attention in the field of drug development,

particularly for their potential in treating diseases such as cancer,

where certain proteins are overexpressed or mutated (67, 68).
Immunotherapy

Immunotherapy has been developed, which harnesses and

enhances the innate powers of the immune system to fight

disease, particularly cancer (69). Unlike chemotherapy and

radiation, which directly target and kill cancer cells ,

immunotherapy performs its function via stimulating or restoring

the immune system’s ability to detect and destroy tumor cells (70,

71). There are several types of immunotherapy to boost the immune

response via employing a different strategy (72). Checkpoint

inhibitors were discovered, which block proteins that prevent

immune cells from attacking cancer cells (73). By inhibiting these

“checkpoints”, checkpoint inhibitors enable the immune cells to

recognize and destroy cancer cells, including inhibitors targeting

PD-1, PD-L1, and CTLA-4 (74).

CAR T-cell therapy (Chimeric Antigen Receptor T-cell

Therapy) involves genetically engineering a patient’s own T cells

to produce special receptors on their surface (75, 76). These

receptors will make T cells to better recognize and attack cancer

cells. Cancer vaccines are designed to treat existing cancers by

stimulating the immune system to attack cancer cells, such as

targeting specific antigens found on cancer cells (77). Cytokine

therapy boosts the immune system’s ability to fight cancer via using

cytokines, such as interferons and interleukins (78, 79).

Immunotherapy has shown remarkable overcomes in treating

certain types of cancer, including melanoma, lung cancer, and
FIGURE 1

PROTAC diagram is illustrate. The PROTAC recruits an E3 ubiquitin ligase, which is responsible for transferring ubiquitin molecules to the target
protein, tagging it for degradation. The linker connects the target protein ligand and the E3 ligase ligand.
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leukemia. However, its effectiveness can vary widely among various

cancer patients. In addition, immunotherapy could have side effects

due to an overactive immune response and resistance (80).

Therefore, immunotherapy represents a significant shift in cancer

treatment, moving toward more personalized and targeted

approaches that leverage the body’s natural defenses.
PD-1 and PD-L1

PD-1 (programmed death-1) and PD-L1 (programmed death

ligand-1) are key components in the regulation of the immune

system, particularly in the context of cancer immunotherapy (81).

Their interaction plays a significant role in preventing the immune

system from attacking normal cells, but it can also enable cancer

cells to evade immune surveillance (82, 83). PD-1 is a protein

receptor expressed on the surface of certain immune cells, such as T

cells, B cells, and natural killer cells (84). PD-L1 is a ligand that is

expressed on the surface of many cell types, including some cancer

cells and immune cells (85). Under normal conditions, PD-L1

binding to PD-1 sends an inhibitory signal to T cells, telling them

not to attack the cells presenting PD-L1. This is a natural

mechanism to prevent autoimmunity and control inflammation

(86). Many types of cancer cells exploit this pathway by

overexpressing PD-L1. When cancer cells present high levels of

PD-L1, they can bind to PD-1 receptors on T cells, effectively

“turning off” these immune cells and preventing them from

attacking the cancer (87). Given the role of the PD-1/PD-L1

pathway in allowing cancer cells to evade the immune system,

blocking this interaction has become a key strategy in cancer

immunotherapy (88). Drugs known as checkpoint inhibitors have

been developed to target PD-1, PD-L1 and CTLA-4 (89, 90).

PD-1 inhibitors bind to PD-1 on immune cells, and block its

interaction with PD-L1, such as nivolumab and pembrolizumab

(91). PD-1 inhibitors allow the T cells to remain active and able to

attack cancer cells. PD-L1 Inhibitors bind to PD-L1 on cancer cells

or other cells in the tumor environment, which prevent it from

binding to and inhibiting PD-1 on T cells. PD-L1 inhibitors include

atezolizumab and durvalumab (92). PD-1 and PD-L1 inhibitors

have shown significant success in treating various types of cancer,

including melanoma, non-small cell lung cancer, kidney cancer,

bladder cancer, and head and neck cancers. Although the

development and use of PD-1 and PD-L1 inhibitors represent a

major advancement in cancer therapy, offering hope for many

patients with advanced or hard-to-treat cancers, side effects and

resistance reduced the efficacy of PD-1/PD-L1 inhibitors in

immunotherapy (93, 94).
PD-1 and PD-L1 are regulated
by PTMs

It has been reported that PD-1 and PD-L1 are regulated by

PTMs , i n c l ud ing phospho ry l a t i on , ub iqu i t i n a t i on ,
Frontiers in Immunology 04
deubiquitination, acetylation, palmitoylation and glycosylation

(95–97). PD-1/PD-L1 modification participated in governing

immune escape and affecting cancer immunotherapy (98).

Moreover , the E3 ubiquit in l igases improved tumor

immunotherapy via control l ing PD-1/PD-L1 prote in

accumulation in tumor microenvironment (99). In the following

paragraphs, we will describe the role of PTMs in regulation of PD-1

and PD-L1 (Tables 1, 2).
Phosphorylation

PD-L1 phosphorylation has been found to regulate cancer

immune evasion. For example, IL-6/JAK1 signaling pathway

directed PD-L1 phosphorylation at Tyr112 site and promoted

tumor immune evasion (120). When IL-6 activated JAK1, it led

to the phosphorylation of PD-L1 at Tyr112. This phosphorylation

attracted the N-glycosyltransferase STT3A from the endoplasmic

reticulum, which initiated the glycosylation of PD-L1, thereby

stabilizing it. By using an IL-6 antibody to inhibit IL-6, enhanced

T cell killing effects in animal models were reported, especially when

used in combination with anti-Tim-3 therapy. Furthermore, a

direct relationship between the levels of IL-6 and PD-L1 was

found in the tumor tissues of patients with hepatocellular

carcinoma (120).

Another study revealed that in both cancer and dendritic cells

(DC), PD-L1 underwent phosphorylation and subsequent

stabilization by CK2 enzyme. This phosphorylation at the Thr285

and Thr290 sites on PD-L1 interfered with its binding to the

adaptor protein, SPOP (speckle-type POZ protein). As a result,

PD-L1 was shielded from CUL3/SPOP-mediated proteasomal

degradation. When CK2 activity was hindered, there was a

noticeable reduction in PD-L1 protein levels, facilitating the

mobilization of CD80 from DC, which subsequently revitalized

T-cell activities. Using a treatment combination of a CK2 inhibitor

and a Tim-3 antibody in a mouse model, marked suppression of

tumor growth and a signification prolongation of survival were

reported. Hence, CK2-mediated PD-L1 phosphorylation and

stability inhibited biological function of dendritic cells (121).

Recently, Miao et al. reported that circ_0136666 regulated PD-

L1 phosphorylation and miR-375/PRKDC pathway, leading to

promoting tumor development and immune escape in gastric

cancer (122). Specifically, the expression of hsa_circ_0136666 was

prominent in gastric cancer tissues and cell lines. Functionally,

hsa_circ_0136666 enhanced the proliferation of gastric cancer and

contributed to the development of the tumor microenvironment,

enabling the tumor to evade immune surveillance through

the modulatory activities on CD8+ T cells. At the mechanistic

level, hsa_circ_0136666 induced the increase of PRKDC expression

by competitively binding to miR-375-3p, affecting the

phosphorylation and subsequent stabilization of PD-L1.

Moreover, hsa_circ_0136666 suppressed the body’s immune

vigilance and countering anti-cancer efficacy. Furthermore, lipid
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nanoparticle (LNP)-delivered siRNA strategies markedly improved

anti-PD-L1 efficacy and inhibited immune escape (122).
Ubiquitination

SPOP targets PD-L1
Zhang et al. found that Cyclin D/CDK4 kinase leads to PD-L1

destabilization through SPOP-mediated degradation of PD-L1 and

controls cancer immune surveillance (100). The levels of the PD-L1

protein are controlled through the actions of cyclin D-CDK4 and

the CUL3-SPOP E3 ligase, which facilitate its degradation via the

proteasome. Blocking the activity of CDK4 and CDK6 in vivo leads

to an elevation in PD-L1 protein. This increase is due to the

inhibition of the phosphorylation by cyclin D-CDK4 on the

SPOP, which in turn enhances the breakdown of SPOP by the

FZR1. Furthermore, mutations that result in a loss of SPOP

function disrupt the PD-L1 degradation, resulting in heightened

levels of PD-L1 and a decrease in the number of tumor-infiltrating

lymphocytes in both mouse tumors and prostate cancer tissues.

Importantly, CDK4/6 inhibitor therapy plus anti-PD-1

immunotherapy significantly boosts tumor shrinkage and

substantially enhances survival rates in mouse models of

cancer (100).

RIG-I modulated SPOP-mediated degradation of PD-L1 and

elevated immune evasion in colon cancer (101). Suppressing RIG-I

led to a decrease in the ability of T cells to eliminate tumor cells and

reduced the growth of colon tumors in mice with a fully functional

immune system. Conversely, increasing RIG-I expression

accelerated tumor growth, and high levels of RIG-I made cells

more responsive to anti-PD-1 treatment in vivo. Intriguingly, RIG-I

modulates the expression of PD-L1, facilitating immune escape in
TABLE 1 Ubiquitination and deubiquitination of PD-1/PD-L1
are summarized.

PTM Targets Functions Reference

SPOP Cyclin D/CDK4
causes PD-L1
destabilization
through SPOP-
mediated PD-
L1 degradation.

Cyclin D/CDK4
controls cancer
immune surveillance.

(100)

SPOP RIG-I modulates
SPOP-mediated
degradation of PD-L1.

RIG-I elevates immune
evasion in
colon cancer.

(101)

FBXO38 FBXO38 induces
ubiquitination of
PD-1.

FBXO38 controls anti-
tumor immunity of
T cells

(102)

NEDD4 NEDD4 mediates PD-
L1 ubiquitination
and degradation.

NEDD4 regulates T
cell-induced immune
surveillance in
bladder cancer.

(103)

RNF125 RNF125 promote the
degradation of PD-L1
in K48-linked manner.

RNF125 was
overexpressed, PD-L1
levels decreased, and
tumor growth slowed.

(104)

RNF125 RNF125 targets PD-
L1 expression.

RNF125 suppresses
immune escape in head
and neck squamous
cell carcinoma.

(105)

TRIM21 TRIM21 mediates PD-
L1 ubiquitination.

TRIM21 involves in
regulation of anti-PD-
L1
immunotherapeutic
efficacy.

(106)

TRIM21 CDK5 inhibition
reduced PD-L1 levels
by TRIM21.

CDK5 inhibition
improves antitumor
immunity in
lung adenocarcinoma.

(107)

TRIM21 TRIM21 restricts the
expression of PD-1 in
lymphocytes and PD-
L1 in tumors.

TRIM21 limits the
emergence of HCC
nodules in mice
with NASH.

(108)

c-Cbl c-Cbl induces
proteasomal
degradation of PD-1
in immune cells.

c-Cbl regulates
colorectal
tumor growth.

(109)

FBW7 FBW7 promotes PD-1
destruction in non-
small cell lung cancer.

FBW7 enhanced
sensitivity of anti-PD-
1 immunotherapy.

(110)

USP22 USP22
deubiquitinated PD-
L1 and maintained
its stabilization.

USP22 inhibits
anticancer immunity.

(111, 112)

USP7 USP7 regulates PD-
L1 stability.

USP7 modulates
sensitization of gastric
cancer cells to T
cells killing.

(113)

USP7 USP7 inhibitors
upregulated the
expression of PD-L1
in tumors.

USP7 reprogrammed
macrophages and
modulates antitumor
immune response in
lung cancer.

(114)

(Continued)
TABLE 1 Continued

PTM Targets Functions Reference

USP7 USP7 contributed to
the stabilization of
PD-L1.

Knocking down USP7
in glioma cells
enhanced CD8+ T cell
proliferation, prevented
immune evasion.

(115)

USP8 USP8 inhibition
elevates PD-L1
abundance via
elevating TRAF6-
induced
ubiquitination of
PD-L1.

USP8 inhibition
reshapes an inflamed
TME that enhances
the immunotherapy.

(116)

USP8 USP8 deubiquitinates
PD-L1.

Targeting USP8
sensitized anti-PD-
L1 immunotherapy.

(117)

OTUB1 circIGF2BP3 stabilizes
OTUB1 mRNA and
inhibits PD-
L1 degradation.

circIGF2BP3 regulates
tumor immune escape.

(118)

OTUB2 OTUB2 regulates PD-
L1 degradation.

Targeting OTUB2
increased cytotoxic T
cells efficacy.

(119)
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colon cancer independently of type I interferon activation. RIG-I

prevents PD-L1 destruction by SPOP (101).

FBXO38 targets PD-1
Meng et al. found that FBXO38 induced ubiquitination of PD-1

and controlled anti-tumor immunity of T cells (102). PD-1 on the

surface of activated T cells was internalized, then underwent

ubiquitination and proteasome-mediated degradation. FBXO38

targeted PD-1 for Lys48-linked polyubiquitination, leading to its

degradation. Eliminating Fbxo38 in T cells accelerated tumor

growth in mice due to increased PD-1 levels in the tumor-

infiltrating T cells. Applying anti-PD-1 therapy counteracted the

tumor growth observed with FBXO38 deficiency, indicating that

PD-1 is a crucial target of FBXO38 in T cells. In both human tumor

samples and a mouse cancer model, the expression levels of

FBXO38 and Fbxo38 were reduced in tumor-infiltrating T cells.

Nonetheless, IL-2 treatment was able to boost Fbxo38 expression,

thus lowering PD-1 levels in PD-1-positive T cells in mice. FBXO38

controlled PD-1 levels, suggesting a novel strategy for inhibiting the

PD-1 pathway by regulation of FBXO38 (102).

NEDD4 targets PD-L1
NEDD4 mediated PD-L1 ubiquitination and degradation and

regulated T cell-induced immune surveillance in bladder cancer,

which was regulated by fibroblast growth factor receptor 3 (FGFR3)

(103). Blocking FGFR3 in bladder cancer with FGFR3 activation

increased PD-L1 protein levels by altering its ubiquitination
TABLE 2 PTMs of PD-1/PD-L1 are summarized.

PTM Targets Functions Reference

Phosphorylation IL-6/JAK1
directed PD-L1
phosphorylation
at Y112 site.

Promotes tumor
immune evasion.

(120)

Phosphorylation CK2 mediated
PD-L1
phosphorylation
at the Thr285
and Thr290
and stability.

Inhibits biological
function of
dendritic cells.

(121)

Phosphorylation circ_0136666
regulates PD-L1
phosphorylation
and miR-375/
PRKDC pathway.

Promotes tumor
development and
immune escape in
gastric cancer.

(122)

Acetylation p300 mediates
PD-L1
acetylation, while
HDAC2 mediates
deacetylation of
PD-L1.

Targeting PD-L1
acetylation increases
efficacy
of immunotherapy.

(123)

Acetylation HBXIP interacts
with p300 and
promotes PD-L1
acetylation
and stability.

PD-L1-induced
tumor growth was
retarded by
HBXIP
downregulation.

(124)

Palmitoylation Stabilizes PD-L1. Contributes to
promotion of tumor
growth in
breast cancer.

(125)

Palmitoylation Stabilizes PD-L1
by blocking its
ubiquitination
and degradation
by lysosomes.

Suppression of PD-
L1 palmitoylation
increases T cell
immune efficacy
against tumors.

(126)

Palmitoylation One peptidic
inhibitor targets
PD-1
palmitoylation
and

One peptidic
inhibitor blocks PD-
1 expression and its
biological functions

(127)

Palmitoylation ZDHHC9
downregulation
enhances the
degradation of
PD-L1 via
reducing
its
palmitoylation.

Regulates anti-
tumor immunity
and growth of lung
cancer cells.

(128)

Glycosylation ISG15 influenced
glycosylated PD-
L1 and induced
its destruction.

ISG15 increases
antitumor immune
functions in
lung
adenocarcinoma.

(129)

Glycosylation MDM2 governs
degradation of
PD-1 through
regulating
crosstalk between
ubiquitination

Stimulating the p53-
MDM2, IFN-a
reduces PD-1 levels
in T cells, exhibits
sensitizing anti-PD-
1 immunotherapy.

(130)

(Continued)
TABLE 2 Continued

PTM Targets Functions Reference

and
deglycosylation.

Glycosylation GLT1D1
regulates
PD-L1
glycosylation.

GLT1D1
upregulation
causes
immunosuppression.

(131)

Glycosylation PD-1
glycosylation
promoted the
binding
of cemiplimab.

Affects the efficacy
of immune
checkpoint
inhibitors.

(132)

Glycosylation TGF-b1 induced
PD-L1
glycosylation.

TGF-b1 causes
immune escape via
regulating Jun/
STT3A in
nasopharyngeal
carcinoma.

(133)

UFMylation UFL1 ablation in
T cells suppresses
PD-1
UFMylation.

UFL1 enhances
anti-
tumor immunity.

(134)

UFMylation UFMylation of
PD-L1
destabilizes
PD-L1 by
synergizing
its ubiquitination.

PD-L1 dysregulation
by UFMylation
regulates tumor
immune evasion.

(135)
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process, which in turn, hampered the anticancer activity of CD8+ T

cells. An analysis of tissue microarrays from human urothelial

carcinoma (UC) revealed a negative relationship between FGFR3

expression and PD-L1 levels. Additionally, NEDD4 became

phosphorylated upon FGFR3 activation, playing a pivotal role in

controlling PD-L1 ubiquitination. NEDD4 directly interacted with

PD-L1, leading to the polyubiquitination of PD-L1 at the Lys48

(K48) linkage. In mice models with NEDD4-deficient bladder

cancer, an increase in PD-L1 levels within the cancer cells

resulted in reduced infiltration and antitumor activity of CD8+ T

cells. In various FGFR3-activated tumor models, the diminished

antitumor effectiveness due to targeted FGFR3 therapy could be

counterbalanced by combining it with anti-PD-1 immunotherapy,

thus significantly reducing tumor growth. NEDD4 could be a key

E3 ubiquitin ligase that regulates PD-L1 for destruction in FGFR3-

driven bladder cancer (103).

RNF125 targets PD-L1
Ubiquitin ligase RNF125 was reported by Wei et al. to promote

the ubiquitination and degradation of PD-L1 in K48-linked manner

(104). RNF125 binds to PD-L1, influencing its protein levels by

facilitating K48-linked polyubiquitination, leading to its

degradation. When RNF125 was knocked out in MC-38 and H22

cell lines, which were then implanted into C57BL/6 mice, an

increase in PD-L1 levels and accelerated tumor growth were

observed. Conversely, when RNF125 was overexpressed in these

cell lines, PD-L1 levels decreased, and tumor growth slowed.

Furthermore, MC-38 tumors with RNF125 overexpression had an

increased in the infiltration of CD4+, CD8+ T cells, and

macrophages. A positive association between RNF125 expression

and the infiltration of CD4+, CD8+ T cells, and macrophages was

observed in tumor tissues from TCGA public database.

Additionally, RNF125 expression was found to be notably

reduced in various human cancer tissues, inversely related to the

clinical stage of the cancers, and tumor patients with elevated

RNF125 levels displayed more favorable clinical outcomes (104).

In head and neck squamous cell carcinoma (HNSCC) cells,

RNF125 expression was low. When RNF125 was overexpressed, it

curtailed the immune evasion of HNSCC cells, as demonstrated by

reduced proliferation, migration, and invasion of TSCCA cells,

alongside enhanced proliferation of CD8+ T cells and increased

levels of IL-2 and TNF-a. RNF125 also reduced PD-L1 expression

in TSCCA cells and promoted its degradation. Overexpression of

PD-L1 partially reversed the effects of RNF125 on the immune

evasion of TSCCA cells. Additionally, RNF125 suppressed tumor

formation and growth in mice. Collectively, RNF125 facilitates the

ubiquitin-mediated degradation of PD-L1, thereby impeding

immune escape in HNSCC (105).

TRIM21 targets PD-L1
Sun and coworkers reported that TRIM21 mediated PD-L1

ubiquitination and involved in regulation of anti-PD-L1

immunotherapeutic efficacy. LINC02418 acted as a suppressor of

PD-L1 expression and was associated with increased CD8+ T cell

infiltration, indicating better clinical outcomes for NSCLC patients.
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It reduced PD-L1 levels by promoting its ubiquitination through

TRIM21. Both human LINC02418 and its mouse equivalent, mmu-

4930573I07Rik, influenced the effectiveness of PD-L1-targeted

therapies in NSCLC by facilitating T cell-mediated apoptosis.

Additionally, the suppression of METTL3 by YTHDF2 led to the

upregulation of hsa-LINC02418 and mmu-4930573I07Rik. In

NSCLC patients, high levels of LINC02418 are linked to lower

PD-L1 expression and a higher presence of CD8+ T cells (106).

Inhibition of CDK5 reduced PD-L1 levels via the ubiquitination-

proteasome pathway by TRIM21 and improved antitumor

immunity in lung adenocarcinoma (107). Silencing Trim21 in

mice increased HCC oncogenesis in a non-alcohol ic

steatohepatitis (NASH) context, which was due to overexpression

of PD-1 in lymphocytes and PD-L1 in tumors (108).

c-Cbl targets PD-1
One group showed that casitas B lymphoma (c-Cbl) induced

proteasomal degradation of PD-1 in immune cells and regulated

colorectal cancer (CRC) growth (109). A significantly increased

growth of xenografts and enhanced infiltration of immune cells in

c-Cbl heterozygous (c-Cbl+/-) mice was observed compared to c-

Cbl+/+. Tumor-associated CD8+ T-lymphocytes and macrophages

in c-Cbl+/- mice exhibited upregulation of PD-1 levels.

Macrophages from c-Cbl+/- mice displayed a 4-5 times decrease

in their ability to phagocytize tumor cells, which was recovered by

the application of an anti-PD-1 neutralizing antibody, indicating a

regulatory role of c-Cbl on PD-1. The C-terminus of c-Cbl

interacted with the cytoplasmic tail of PD-1, leading to PD-1

destabilization. Hence, c-Cbl could be as an E3 ligase for PD-1

and a modulator of the tumor microenvironment (109).

FBW7 targets PD-L1
Liu et al. reported that FBW7 enhanced sensitivity of anti-PD-1

immunotherapy via promotion of PD-1 ubiquitination and

destruction in non-small cell lung cancer (110). FBW7 was

identified to act as an E3 ubiquitin ligase targeting the PD-1

protein, specifically promoting K48-linked polyubiquitination at

the Lys233 residue of PD-1. Targeting FBW7 caused faster

degradation of the PD-1 protein, thereby boosting antitumor

immunity effectively in vivo. Additionally, phosphorylation of the

Ser261 residue by CDK1 enhanced the PD-1 protein for nuclear

translocation and interaction with FBW7. A higher level of FBW7

was found in immunologically active TME, resulting in improved

responses to PD-1 blockade therapy (110). Hence, ubiquitination

plays a critical role in the regulation of PD-1/PD-L1 in tumor

immunotherapy (136).
Deubiquitination

USP22 targets PD-L1
Huang et al. reported that USP22 deubiquitinated PD-L1 and

maintained its stabilization, leading to inhibition of anticancer

immunity. USP22 was identified as a deubiquitinase for PD-L1,

where it binds directly to PD-L1’s C-terminus, leading to its
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deubiquitination and stabilization. USP22 showed high expression

levels and frequent alterations in liver cancer, which was strongly

linked to a dismal prognosis for these cancer patients. The genetic

removal of USP22 led to the suppression of liver cancer growth,

boosted tumor immunogenicity and the presence of tumor-

infiltrating lymphocytes, and heightened the effectiveness of

therapies targeting PD-L1 and CDDP-based chemotherapy in

mouse models (111). Another study also showed that USP22

interacted with PD-L1, enhancing its stability by removing

ubiquitin and preventing its breakdown by the proteasome.

Additionally, USP22 forms a complex with CSN5, maintaining its

stability via deubiquitination. USP22 or CSN5 can enhance the

binding between PD-L1 and the other molecule. The reduction of

USP22 levels was found to suppress tumor growth and enhance the

cytotoxicity of T cells. Moreover, in samples from patients with

non-small cell lung cancer, there was a notable positive relationship

between the levels of USP22 and PD-L1 expression (112). Hence,

USP22 plays a critical role in immune evasion in human cancer

cells (137).

USP7 targets PD-L1
USP7 was reported to regulate PD-L1 stability and modulate

sensitization of gastric cancer cells to T cells killing. Analyzing data

from TCGA and tissues, a direct correlation between PD-L1 and

USP7 expressions was found in gastric cancer. USP7 interacted with

PD-L1, enhancing its stability, whereas inhibiting USP7 reduced the

PD-L1/PD-1 interaction and made cancer cells more susceptible to

T cell-mediated destruction. Additionally, USP7 inhibitors reduced

cell growth by stabilizing p53 in gastric cancer. USP7 inhibitors not

only hinder the cell proliferation but also reduce PD-L1 levels,

thereby boosting the anti-tumor immune response (113). USP7

reprogrammed tumor-associated macrophages and modulates anti-

tumor immune response in lung cancer. USP7 inhibitors

upregulated the expression of PD-L1 in tumors, while inhibiting

PD-1 had an effective anti-tumor activity (114). In glioma cells,

USP7 showed high expression levels, but PD-L1 protein levels

increased. Knocking down USP7 in glioma cells reduced their

growth, increased apoptosis, and enhanced CD8+ T cell

proliferation, thereby preventing immune evasion. USP7

contributed to the stabilization of PD-L1. The overexpression of

PD-L1 counteracted the effects of USP7 silencing on the immune

escape of glioma cells (115).

USP8 targets PD-L1
Blocking the USP8 significantly boosts the effectiveness of anti-

PD-1/PD-L1 immunotherapy by altering the TME. Inhibiting USP8

elevated PD-L1 protein levels by promoting TRAF6-mediated K63-

linked ubiquitination of PD-L1. USP8 blockade enhances the innate

immune response and MHC-I expression via the activation of NF-

kB signaling. Combining a USP8 inhibitor with PD-1/PD-L1

blockade markedly stimulates CD8+ T cell infiltration, leading to

tumor suppression and improved survival in various mouse tumor

models (116). In pancreatic cancer, USP8 levels were significantly

higher in tumor tissues compared to normal tissues. The expression

of USP8 was notably linked to the TNM stage in various pancreatic
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cancer patient cohorts. Inhibition of USP8 led to diminished tumor

invasion, migration, and overall tumor size, enhancing anti-tumor

immunity. USP8 inhibitor resulted in decreased tumor formation,

and mice with Usp8 deficiency showed improved survival rates.

Additionally, USP8 positively influenced PD-L1 expression by

blocking its degradation in pancreatic cancer. A USP8 inhibitor

and anti-PD-L1 together significantly halted pancreatic tumor

growth through the activation of cytotoxic T-cells. The

effectiveness of this anti-tumor immunity was primarily reliant on

the PD-L1 pathway and CD8+ T cells. Hence, targeting USP8

sensitized anti-PD-L1 immunotherapy via regulation of PD-L1

degradation in pancreatic cancer (117).

OTUB1 targets PD-L1
CircRNA circIGF2BP3 stabilized OTUB1 mRNA and inhibited

the ubiquitination and degradation of PD-L1 in a PKP3-dependent

way, leading to tumor immune escape (118). circIGF2BP3 increases

PKP3 expression by sequestering miR-328-3p and miR-3173-5p,

thus impairing the cancer immune response. PKP3 then interacts

with the RNA-binding protein FXR1 to enhance the stability of

OTUB1 mRNA, which in turn boosts PD-L1 levels by promoting its

deubiquitination. The elimination of tumor PD-L1 effectively

nullified the influence of the circIGF2BP3/PKP3 axis on the CD8

+ T cell response. Blocking the circIGF2BP3/PKP3 pathway

improved the efficacy of anti-PD-1 treatment in a Lewis lung

carcinoma mouse model (118).

OTUB2 targets PD-L1
Recently, targeting OTUB2 increased cytotoxic T cells efficacy

via regulating PD-L1 degradation. OTUB2 directly bound to PD-

L1, hindering its ubiquitination and subsequent degradation within

the endoplasmic reticulum. Eliminating OTUB2 significantly

reduced PD-L1 protein levels on tumor cells, enhancing their

vulnerability to the cytotoxic effects of CD8+ T cells. A notable

association between OTUB2 levels and PD-L1 was found in human

non-small cell lung cancer samples. An OTUB2 inhibitor effectively

diminished PD-L1 levels and inhibited tumor growth. OTUB2 plays

a key role in regulating PD-L1 expression and tumor immune

evasion (119).
Acetylation

PD-L1 acetylation has been uncovered by Gao and coworkers in

2020. This study showed that p300 mediated PD-L1 acetylation,

while HDAC2 mediated deacetylation of PD-L1. Genetically or

pharmacologically modulating acetylation of PD-L1 reduced its

nuclear translocation, which promoted the anti-PD-1 efficacy via

regulation of the expression of several immune-response-related

genes in cancer cells. Targeting PD-L1 acetylation could increase

the efficacy of tumor immunotherapy (123). Another study showed

that HBXIP oncoprotein and PD-L1 expressions were upregulated

in clinical breast tumor samples. Moreover, HBXIP expression was

associated with PD-L1 expression in breast cancer tissues.

Mechanistically, HBXIP elevated the PD-L1 transcription via
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activation of ETS2. Furthermore, HBXIP interacted with p300 and

promoted PD-L1 acetylation and resulted in promotion of PD-L1

stability. PD-L1-induced tumor growth was retarded by

downregulation of HBXIP in breast cancer (124).
Palmitoylation

Palmitoylation has been discovered to stabilize PD-L1 and

contribute to promotion of tumor growth in breast cancer (125).

Yao et al. reported that suppression of PD-L1 palmitoylation

increased T cell immune efficacy against tumors (126). One

peptidic inhibitor has been developed for targeting PD-1

palmitoylation and blocking PD-1 expression and its biological

functions (127). Evidence showed that downregulation of ZDHHC9

enhanced the degradation of PD-L1 protein via reducing its

palmitoylation levels in lung adenocarcinoma (128). Hence, PD-

1/PD-L1 palmitoylation is involved in immunotherapy in

human cancers.
Glycosylation

N-glycosylation and stabilization of PD-L1 were reported to

inhibit T-cell activity. Glycogen synthase kinase 3b (GSK3b) can
bind to PD-L1 and promote PD-L1 degradation by beta-TrCP in

phosphorylation-dependent manner. Moreover, epidermal growth

factor (EGF) treatment made PD-L1 stabilization due to

inactivation of GSK3b in breast cancer. Consistently, gefitinib

destabilized PD-L1 due to suppression of EGF pathway, which

increased T-cell immunity and promoted PD-1 blockade efficacy in

mice (138). ISG15 influenced glycosylated PD-L1 and induced its

destruction to increase antitumor immune functions in lung

adenocarcinoma (129). MDM2 (murine double minute 2)

governed degradation of PD-1 through regulating crosstalk

between ubiquitination and deglycosylation in tumor cells (130).

Removal of N-glycosylation increased the detection of PD-L1 and

provided the prediction of anti-PD-1/PD-L1 treatment efficacy

(139). GLT1D1 upregulation caused immunosuppression via

regulation of PD-L1 glycosylation and directed poor prognosis in

B-cell lymphoma (131). N-glycosylation of PD-1 enhanced the

interaction with a PD-1-specific monoclonal antibody,

camrelizumab (140). PD-1 glycosylation promoted the binding of

cemiplimab to affect the efficacy of immune checkpoint inhibitors

(132). TGF-beta-1 induced PD-L1 glycosylation and led to immune

escape via regulation of Jun/STT3A pathway in nasopharyngeal

carcinoma (133).
UFMylation

UFMylation, a post-translational modification akin to

ubiquitination, plays a crucial role in various biological functions,

with its dysregulation linked to several human diseases, including

cancer (141, 142). Mice lacking the UFMylation E3 ligase UFL1

specifically in T cells demonstrated superior tumor suppression.
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Through single-cell RNA sequencing, an increase in tumor-

infiltrating cytotoxic CD8+ T cells was observed in these UFL1

conditional knockout (cKO) mice. UFL1 was found to enhance PD-

1 stability by promoting its UFMylation, which counters PD-1

ubiquitination and subsequent degradation (134). Moreover,

AMPK activation led to the phosphorylation of UFL1 at Thr536,

which inhibited PD-1 UFMylation and promoted its degradation.

Notably, the removal of UFL1 in T cells led to reduced PD-1

UFMylation, destabilizing PD-1 and thereby boosting CD8+ T cell

activity. Consequently, tumors in UFL1 cKO mice responded more

favorably to anti-CTLA-4 immunotherapy (134). Another study

showed that PD-L1 underwent UFMylation, leading to destabilizing

PD-L1 by promoting its ubiquitination. Disrupting PD-L1

UFMylation through the silencing of UFL1 or UFM1 resulted in

PD-L1 stabilization in a variety of human and mouse cancer cell

lines, which weakened antitumor immunity both in vitro and in

mouse models. Reduced UFL1 levels were observed across several

cancers, and lower UFL1 expression was associated with a

diminished response to anti-PD1 therapy in melanoma patients.

An inhibitor of UFSP2 enhances UFMylation activity and displayed

potential to augment PD-1 blockade therapy (135).
PROTACs target PD-1/PD-L1

Numerous PROTACs have been developed for targeting PD-L1

and PD-1 (Table 3). In the following sections, we will highlight the

multiple PROTACs that target PD-1/PD-L1 in human

cancers (Figure 2).
Compound 22 targets PD-L1

Novel resorcinol diphenyl ether-based PROTACs have been

designed and demonstrated their inhibitory activity against the PD-

1/PD-L1 pathway, and showed their ability to degrade PD-L1

protein. This study used HTRF binding assay to assess the

inhibitory activities of PROTACs against PD-1/PD-L1. Most of

PROTACs obtained excellent inhibition of PD-1/PD-L1.

Compound 22 is one of the best PROTACs with low IC50 value.

Moreover, except suppression of PD-1/PD-L1 interaction,

compound 22 restored the immunity repressed in CD3 T cells

and Hep3B/OS-8/hPD-L1 cells. Compound 22 decreased the

expression of PD-L1 protein via lysosome-dependent pathway.

Hence, compound 22 could work as a potential agent for the

degradation of PD-L1 via PROTAC strategy (143).
AC-1 targets PD-L1

One group developed antibody-based PROTACs (AbTACs),

which are fully recombinant bispecific antibodies. AbTACs

degraded cell-surface proteins via recruitment of membrane-

bound E3 ligases. AC-1, an AbTAC, enhanced the lysosomal

degradation of PD-L1 via recruitment of the RNF43 E3 ligase.

Moreover, AC-1 promoted the degradation of PD-L1 after one day
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treatment in three cancer cell lines, including MDA-MB-231,

HCC827, and T24, indicating that AC-1 has wide cellular

applicability. Furthermore, due to human parts of AbTAC, AC-1

makes it unlike to illicit an immune response. In summary, AC-1

could be a good AbTAC to target PD-L1 for degradation (144). New

AbTACs were engineered for efficient degradation of two

membrane proteins, PD-L1 and EGFR (145). In this research,

they apply protein engineering techniques to study and enhance
Frontiers in Immunology 10
the degradation capabilities of PD-L1 and EGFR for therapeutic

purposes. They created several antibodies targeting RNF43,

discovering that the precise binding sites on RNF43 and the

proteins of interest are crucial for degradation effectiveness, which

have more binding strength than the AbTAC antibodies.

Additionally, this group introduced ZNRF3, another E3 ligase,

into our arsenal for degrading PD-L1 and EGFR. Notably,

AbTACs targeting RNF43 and ZNRF3 do not trigger WNT

signaling pathways. This work suggests that optimizing the

development of AbTACs will enhance their utility for targeted

protein degradation (145).
CDTACs target PD-L1

Carbon-dot (CD)-based PROTACs (CDTACs) have been

established, which degrade membrane proteins via the UPS

pathway. CDTACs were found to interact with PD-L1, and

recruit cereblon (CRBN) to induce the ubiquitination and

degradation of PD-L1 via proteasomes. Fasting-mimicking diet

(FMD) was observed to promote the cellular uptake and

proteasome activity. CDTACs treatment led to more than 90% of

PD-L1 degradation in CT26 and B16-F10 cancer cells. Furthermore,

CDTACs enhanced immune responses via activation of the STINF

pathway. Consistently, the combination of CDTACs and FMD

treatment suppressed the tumor growth of CT26 and B16-F10

cells. CDTACs displayed effective PD-L1 degradation and

activation of immune system (146).
Compound 21a targets PD-L1

A new PROTAC, compound 21a, has been designed and

demonstrated effective functions on the degradation of PD-L1

protein in multiple malignant cells via proteasome pathway,

which was in time- and dose-dependent manners. These different

cancer cells include MCF-7 breast cancer cell, SW-480 colon cancer

cells, PC-3 prostate cancer cells, MB-49 murine bladder tumor cells,

and hematological cancer cells (HL-60, Kasumi-1, Skno-1).

Compound 21a was designed based on a BMS-37 derivates,

which act as small molecule inhibitors against PD-L1. Compound

21a induced PD-L1 degradation in the cytoplasm. In vivo

experiment data showed that compound 21a increased the

invasion ability of CD8+ T cells and retarded the tumor growth

of MC-38 cancer cells via reduction of PD-L1 protein levels.

Altogether, compound 21a might be an alternative agent for

cancer immunotherapy (147).
Peptide-PROTACs target PD-1/PD-L1

Dai et al. designed Peptide-PROTACs that target PD-1 and PD-

L1 in human cancer cells (148). The peptide degraders include a

cell-penetrating peptide (CPP) sequence, targeting protein

recognition (TPR) peptide sequence, E3 recruitment peptide
TABLE 3 PROTACs target PD-1/PD-L1 in cancer.

Compounds Targets Functions Reference

Compound 22 Restores the
immunity
repressed in
CD3 T cells

Restored the
immunity repressed
in CD3 T cells

(143)

AC-1 Enhances
lysosomal
degradation of
PD-L1 via
RNF43 E3 ligase

Improve
the immunotherapy

(144)

AbTACs Efficient
degradation of
PD-L1
and EGFR

Enhances
immunotherapy

(145)

CDTAC Displays
effective
PD-L1
degradation

Enhances immune
responses via
activation of the
STINF pathway

(146)

Compound 21a Induces PD-L1
degradation in
the cytoplasm

Increases the
invasion ability of
CD8+ T cells and
retards the tumor
growth of MC-
38 cells

(147)

Peptide-
PROTACs

Targets the
degradation of
PD-1 and
PD-L1

The combination of
peptide-PROTACs
and cisplatin
exhibits a
synergistic
inhibition on
cell proliferation

(148)

R2PD1 Causes PD-L1
degradation in
melanoma cells,
which is
dependent on
ZNRF3/RNF43.

Increases cytotoxic
ability of T cells,
leading to
inhibition of tumor
cell growth

(149)

SP-PROTAC Destroys
DHHC3 and
leads to
reduction of
PD-L1 in
cervical cancer
cell lines

Enhances effective
on IFN-g and
TNF-a release

(150)

Liner
peptide PROTAC

Stimulates
DHHC3
degradation,
reduces PD-L1
expression in
cervical
cancer cells

Enhances cisplatin-
induced
proliferation
suppression and
IFN-g and
TNF-a release

(151)
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(ERP) sequence, and peptide linker. Peptides 1 and 2, consisting of

VHL binder and CPR sequence, exhibited the highest efficiency for

PD-1 and PD-L1 degradation, respectively. Based on TPR sequence,

Peptides 1 and 6 targeted PD-1, and Peptide 11 targeted PD-L1.

Peptide 1 displayed a higher potent for PD-1 degradation than

peptide 6 in C33A cells (148). By AI-direct peptide design, Peptide 2

also targeted PD-L1 palmitoylation. Peptide 12 targeted PD-L1

palmitoylation without ERP sequence. Moreover, Peptide-

PROTACs with CPP sequences were found to cross the cell

membrane. Furthermore, Peptide-PROTACs displayed a low

toxicity to C33A cells. Notably, a combination of Peptide-

PROTACs and cisplatin exhibited a synergistic inhibition on cell

proliferation via induction of cell apoptosis compared with cisplatin

monotherapy (148). Peptide-PROTACs could provide better

clinical benefit for cancer patients.
R2PD1 targets PD-L1

Sun and colleagues discovered ROTACs, which was bispecific

WNT- and BMP-signaling-disabled R-spondin (RSPO) chimeras, to

influence transmembrane protein degradation via leveraging the

specificity of stem cell factors for ZNRF3/RNF43 ligases. R2PD1, a

RSPO2 chimera, was uncovered to target the degradation of PD-L1.

The R2PD1 protein interacted with PD-L1 and led to its lysosomal

degradation. Surprisingly, R2PD1 caused 50% to 90% PD-L1

degradation in melanoma cell lines, which was dependent on

ZNRF3/RNF43. Functionally, R2PD1 increased cytotoxic ability of

T cells, leading to inhibition of tumor cell growth. Hence, ROTACs

represent a new strategy for degrading cell surface proteins (149).
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SP-PROTAC decreases PD-L1

A stapled peptide-based PROTAC (SP-PROTAC) was designed

to specifically destroy palmitoyl-transferase (DHHC3), which led to

the reduction of PD-L1 in cervical cancer cell lines. In C33A and

HeLa cells, SP-PROTAC remarkably reduced PD-L1 protein levels at

low concentration. The proteasome inhibitor MG132 attenuated the

SP-PROTAC-induced PD-L1 degradation in cancer cells. When T

cells and C33A cells were cocultured, SP-PROTAC enhanced IFN-g
and TNF-a release via promotion of PD-L1 degradation. Compared

with BMS-8, an ICI, SP-PROTAC displayed more effective on IFN-g
and TNF-a release. Taken together, SP-PROTAC targeted DHHC3

and alleviated PD-L1 protein levels in human cervical cancer (150).
Liner peptide PROTAC decreases PD-L1

A cyclic peptide-based PROTAC was synthesized to stimulate

the degradation of DHHC3 palmitoyltransferase, which resulted in

reduce PD-L1 expression in cervical cancer cells (151). This cyclic

peptide PROTAC consists of disulfide bonds to maintain their

structure via keeping the stability of N- and C-termini of the

peptide. MG132 can block cyclic peptide PROTAC-induced

degradation of PD-L1. Moreover, cyclic peptide PROTAC

enhanced cisplatin-induced proliferation suppression in C33A

cells. Furthermore, after C33A and T cells were cocultured, cyclic

peptide PROTAC blocked the PD-1/PD-L1 binding via

enhancement of PD-L1 degradation, eventually contributing to

increased secretion of IFN-g and TNF-a. This cyclic peptide

PROTAC promotes anti-PD-L1 activity in cancer cells (151).
FIGURE 2

Various PROTACs target PD-L1 in human cancer. Linear peptide PROTAC, SP-PROTAC, R2PD1, Peptide-PROTACs, Compound 21a, CDTACs, AC-1,
and Compound 22 target and decrease the PD-L1 and block the PD-1/PD-L1 pathway.
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Conclusion

In conclusion, PD-1 and PD-L1 are regulated by PTMs,

including phosphorylation, ubiquitination, deubiquitination,

acetylation, palmitoylation, glycosylation and UFMylation.

Multiple PROTACs have been developed for targeting PD-L1 and

PD-1, including compound 22, AC-1, AbTACs, CDTAC,

compound 21a, peptide-PROTACs, R2PD1, SP-PROTAC, liner

peptide PROTAC. PROTAC is rapidly evolving and could be a

new approach for cancer therapies, including immunotherapy

(Figure 2). Several issues need to be discussed regarding

immunotherapy and PTMs of PD-1/PD-L1. Beyond the

abovementioned PTMs, it is unclear whether other types of PTMs

regulate PD-1 and PD-L1, which should be determined. Recent

studies suggest that miRNAs, lncRNAs and circRNAs are involved

in PD-1/PD-L1 expression and tumor immunotherapy (152).

LncRNA MALAT1 modulated METTL3-mediated PD-L1

expression and affected immune infiltrates in pancreatic cancer

(153). It is unclear whether noncoding RNAs regulate the PD-1/

PD-L1 PTMs in human cancer, which needs to be clarified. Besides,

PD-1 and PD-L1, whether other immune checkpoint factors are

regulated by PTMs and involve in cancer immunotherapy.

Although PROTACs have many advantages, such as modularity,

targeting on undruggable targets, selectivity, specificity and

compatibility, they have several disadvantages, including heavy-

molecular weight, unclear pharmacokinetics (67). It is necessary to

develop more general strategies for PROTAC-mediated protein

degradation. Moreover, it is required to determine whether

PROTACs could be used to combine with radiotherapy,

chemotherapy and immunotherapy for a wider range of cancers

and non-cancer diseases.
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AbTAC antibody-based PROTAC

CAR-T Chimeric Antigen Receptor T

c-Cbl casitas B lymphoma

CDTACs carbon-dot (CD)-based PROTACs

CRC colorectal cancer

CRLs cullin-RING ligases

DUBs deubiquitinating enzymes

FGFR3 fibroblast growth factor receptor 3

HECT Homologous to E6-AP carboxyl terminus

HNSCC head and neck squamous cell carcinoma

ITCH Itchy E3 Ubiquitin Protein Ligase

JAMM/MPN+ Jab1/MPN domain-containing metalloenzymes

LYTAC lysosome targeting chimera

Nano-
PROTAC

nanoparticle-based PROTAC

NEDD4 Neural Precursor Cell Expressed Developmentally
Downregulated 4

NEDD4L NEDD4-Like

NEDL1 NEDD4-Like E3 Ubiquitin Protein Ligase 1

OUT ovarian tumor protease

PD-1 programmed death-1

PD-L1 programmed death ligand-1

PROTACs proteolysis targeting chimeras

PTM post-translational modification

RBR RING-between-RING

RING Really interesting new gene

RLDs RCC1-like domains

USP ubiquitin-specific protease

SCF Skp1-Cullin1-F-box protein

SPOP speckle-type POZ protein

SP-PROTAC stapled peptide-based PROTAC

SMURF1 SMAD Specific E3 Ubiquitin Protein Ligase 1

UCH ubiquitin C-terminal hydrolase

WWP1 WW Domain Containing E3 Ubiquitin Protein Ligase 1.
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