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Universidad Nacional Autónoma de México, Mexico City, Mexico, 2Departamento de Fisiologı́a,
Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico,
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Microglia are highly dynamic cells that have been mainly studied under

pathological conditions. The present review discusses the possible implication

of microglia as modulators of neuronal electrical responses in physiological

conditions and hypothesizes how these cells might modulate hypothalamic

circuits in health and during obesity. Microglial cells studied under

physiological conditions are highly diverse, depending on the developmental

stage and brain region. The evidence also suggests that neuronal electrical

activity modulates microglial motility to control neuronal excitability.

Additionally, we show that the expression of genes associated with neuron-

microglia interaction is down-regulated in obese mice compared to control-fed

mice, suggesting an alteration in the contact-dependent mechanisms that

sustain hypothalamic arcuate-median eminence neuronal function. We also

discuss the possible implication of microglial-derived signals for the excitability

of hypothalamic neurons during homeostasis and obesity. This review

emphasizes the importance of studying the physiological interplay between

microglia and neurons to maintain proper neuronal circuit function. It aims to

elucidate how disruptions in the normal activities of microglia can adversely

affect neuronal health.
KEYWORDS

arcuate nucleus, hypothalamus, microglia, microglial-neuronal interaction,
physiological function, obesity
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1 Introduction

Microglial cells, one of the resident macrophages of the central

nervous system (CNS) in mammals, originate from mesodermal

yolk sac myeloid progenitors during neurodevelopmental stages.

These cells infiltrate the brain during embryogenesis and play a

crucial role in neuronal differentiation and maturation (1).

Microglia constitute approximately 10% of CNS cells and account

for 5 to 20% of glial cells (2, 3).

Although there is no denying that microglia are the first

responders against damage and infection, they are also crucial for

maintaining brain homeostasis (4), as they can support neurons

through several processes such as synaptic pruning, learning,

memory, neurogenesis, and neuronal connectivity (2, 5).

However, since their role in the brain was first discovered in

pathological conditions, studies have paid particular attention to

their pathologic role and relegated their physiological function to a

dormant sentinel under physiological conditions.

Some studies suggest that microglial activities differ depending

on brain region, age, and health status, suggesting that microglia

function is heterogeneous, and not restricted to injury-related

responses (6, 7). Microglia around various regions of the brain,

including the arcuate nucleus (ARC) of the hypothalamus, play a

crucial role in maintaining metabolic homeostasis and neuronal

communication, so proper development and physiological

functioning of microglial cells are essential for preventing

metabolic disturbances linked to obesogenic diets. Disruptions in

the normal activities of these resident immune cells can contribute

significantly to the pathogenesis of obesity and related metabolic

disorders (8, 9).

Understanding the mechanisms by which microglia in different

brain regions influence metabolic processes is essential for

developing targeted therapeutic strategies. This review aims to

describe hypothalamic microglial function under physiological

conditions, highlighting their critical role in maintaining proper

neuronal activity and the physiological responses of ARC.

Additionally, it explores the implications of ARC microglia in

altered responses to dietary challenges, providing valuable insights

into obesity-related neuroinflammatory conditions.
2 Brief scope on microglia

Microglia are the primary immunocompetent cells in the brain.

As one of the main CNS resident macrophages, microglia play a

critical role during physiological conditions. The induction of their

immune program has been related to the development of diseases

such as Alzheimer’s disease, ischemia, and even obesity (10–13).

Microglial cells present a highly dynamic resting non-immune

state to surveil the brain parenchyma constantly; therefore, resting

microglia does not mean “inactive” (14). Instead, they maintain

baseline motility without inflammation, which consists of their

processes’ extension, retraction, and movement. As a result,

microglia can survey their environment, clear cellular debris,

interact with neurons and other glial components, and remodel
Frontiers in Immunology 02
the extracellular matrix (15, 16). Furthermore, surveillance motility

is highly correlated with morphological modifications such as the

number, length, and ramification of their filipodia (17).

As CNS sentinels, quiescent microglia constantly survey the brain

parenchyma, searching for damaging signals that may disrupt brain

homeostasis (4). Damage-derived stimuli can be detected by microglia

throughout four different types of pattern recognition receptors (PRRs):

toll-like receptors (TLRs), nod-like receptors (NLR), rig-like receptors

(RLR), and c-type lectin receptors (CLR) (11, 12, 16, 17). Activation of

these receptors can initiate a multifaceted response in microglia,

including phagocytosis, production of cytotoxic molecules, and

promotion of signals that repair and restore brain tissue (17).

The microglial cytotoxic response is triggered by exposure to

pathogen‐derived antigens like lipopolysaccharide (LPS), dying

cells, or the accumulation of misfolded proteins in the

extracellular matrix (4, 18). This function implies the production

of pro-inflammatory cytokines such as tumor necrosis factor-a
(TNFa), interleukin-1b (IL-1b), IL-6, IL-12, IL-23, nitric oxide

(NO), reactive oxygen species (ROS), matrix metalloproteinases

(MMPs), chemokines and redox molecules (e.g., NADPH oxidase

or iNOS), among others. They also express other molecules like

scavenger receptors (e.g., macrophage receptors with collagen

structure), co-stimulatory proteins like the cluster of

differentiation 40 (CD40), and the major histocompatibility

complex II (MHC-II) (12, 18, 19). A similar pro-inflammatory

response has been observed in the absence of infection, for example,

during brain trauma, cell degeneration, or chemical exposure (19).

Microglia may also have a neuroprotective capacity characterized

by the production of anti-inflammatory cytokines such as IL-4, IL-13,

IL-10, transforming growth factor beta (TGF-b), and neurotrophic

factors like vascular endothelial growth factor (VEGF), and epidermal

growth factor (EGF) (12). After the initial pro-inflammatory immune

activation, microglia gradually acquire a neuroprotective function to

promote tissue repair, neuronal survival, and the reconstruction of the

extracellular matrix (12, 20, 21).

Different stimuli, such as physical trauma, infection, systemic

inflammation, tumor, ischemia, and neurodegeneration, may

activate microglial immune functions. In the present review, we

will not employ the terms M1 and M2 activated microglia since

these profiles were coined based on studies exposing in vitro

microglia to immune challenges such as LPS or combinations of

pro-inflammatory cues, which are not replicated in vivo (21, 22).

Besides these widely studied immune functions, microglial cells

might perform other tasks without any immune challenge. These

tasks might be determined by different factors such as

developmental stage, brain region, sexual dimorphism, and even

animal species (22–27). The following sections will discuss

microglia’s less-described physiological functions.
3 Microglia diversity in
physiological conditions

Microglial cells are far more complex under physiological

conditions. Despite the countless publications assessing the role of
frontiersin.org
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microglia under many pathological conditions, we still do not know

the exact implications of microglial function under physiological

conditions beyond the embryonic stages, such as synapse pruning,

axon myelination, and trophic factor secretion for neurogenesis

(28, 29).

In the yolk sac, early progenitor c-kit+ lineage cells give rise to

microglia Cx3CR1+ colonizing brain tissue and accompanying

neural precursors during neurodevelopmental stages (30).

Afterward, during embryogenesis and early postnatal life,

microglia respond to brain microenvironment changes (31). They

can engulf presynaptic inputs and phagocyte apoptotic cells,

pruning synapses, guiding neurogenesis , and refining

synaptogenesis and myelin formation (32, 33). This microglial

developmental role is thought to be associated with their

immune function.

Microglia can trigger neuronal apoptosis by secreting TNFa,
reactive oxygen species, and glutamate, among other factors (34), to

initiate cell death programs in stressed or damaged cells to

eventually phagocyte them through signaling pathways that

include triggering the receptor expressed on myeloid cells 2

(TREM2), MER proto-oncogene, tyrosine kinase (MERTK), and

milk fat globule EGF and factor V/VIII (MFG-E8) (35).

In addition, microglia maintain CNS homeostasis, and

alterations in their function caused by deletions or mutations in

TREM2 or the colony-stimulating factor 1 receptor (CSF1R) cause

neurodegeneration or leukodystrophies, respectively (36–38).

During development, microglial cells contact synapses through

CX3CR1 and the P2Y12 receptor (P2Y12R) by sensing and

responding to neuronal activity. After the induction of long-term

potentiation (LTP) in the hippocampus, ramified CX3CR1+ cells

increase, thus establishing more contact with dendritic spines (39).

These effects in LTP-induced microglial dynamic were absent after

the administration of an NMDA antagonist. Importantly,

microglia-spine contacts are rare and brief during basal synaptic

hippocampal activity, suggesting that microglia sense high-

frequency neuronal activity as indicated by the associations

observed between dendrites, somas, and axons in the healthy

brain (40, 41). Notwithstanding, it is unknown which signals may

induce microglia-neuron associations, although glutamate has been

a feasible candidate.

Embryonal and neonatal microglia express a highly

characteristic transcriptomic profile, which differs from those

encountered in adult microglia (6, 26), which might reflect their

accelerated activity during these developmental stages. Hammond

et al. identified transcriptionally distinct microglial subpopulations

along distinct developmental ages, embryonic day 14.5 (E14.5),

early postnatal day 4 or 5 (P4/5), late juvenile stage at postnatal day

30 (P30), adulthood at postnatal day 100 (P100), and old age at

postnatal day 540 (P540), where the greatest microglial diversity

was found at E14.5 and P4/5. Interestingly, the transcriptomic

profile in these early stages completely differed from the microglia

in old animals P540 and injured brains (6).

As previously mentioned, early postnatal brain microglia cells

are involved in regulating axonal growth and fasciculation and in

the refinement of synaptic circuits. These early-life microglial cells

express high levels of genes like the insulin-like growth factor 1
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(Igf1), which is an essential embryonic growth factor for

myelinogenesis (42), the glycoprotein non-metastatic melanoma

protein B (GpnmB), that is thought to provide neuroprotection (43),

galectin-1 (Lgals1) and galectin-3 (Lgals3), well know immuno-

modulators known to deactivate cytotoxic microglia (44) and the

lysosomal markers; lysosomal-associated membrane protein 1

(Lamp1) (45) and (Cd68) (6, 46).

In the same study, eight microglial subpopulations were defined

during early developmental stages by analyzing their specific

transcriptional programs defined by the expression level of the

following genes: arginase 1 (Arg1) (47), ribonucleotide reductase

M2 (Rrm2) (48), ubiquitin-conjugating enzyme E2C (Ube2c) (49),

centromere protein A (Cenpa) (50), fatty acid binding protein 5

(Fabp5) (51), osteopontin (Spp1) (52), heme oxygenase 1 (Hmox1)

(53), and membrane-spanning 4-domains, subfamily A, member 7

(Ms4a7) (54), suggesting that each microglial subpopulation may

perform specific functions (see Table 1).

Meanwhile, there is varying information about transcriptional

profiles regarding juvenile and adult-derived microglial states. Some

authors claim these are less diverse, identifying only three or two

distinct subpopulations. These groups were sorted by their

differential gene expression rather than specific genes (6, 70). In

contrast, other studies using genome-wide chromatin and

expression profiling, combined with single-cell transcriptomic

analysis in the cortex, hippocampus, and spinal cord, describe a

global gene expression pattern for adult microglia. It highlights

Selectin P ligand (Selplg) (56), Prostate transmembrane protein

androgen-induced 1 (Pmepa1) (63), cluster of differentiation 14

(Cd14) (63), Activator protein-1 family transcription factors Jun

(Jun) and Fos (Fos) (61), Myocyte enhancer factor 2A (Mef2a) (60),

and Maf family protein B (MafB) (59) as genes strongly correlated

with adult microglia in physiological conditions (Table 1) (61, 71).

Further studies have determined that markers like TMEM119,

P2ry12, and P2ry13 are up-regulated in the mature brain (55,

57, 72).

Furthermore, the microglia derived from aged mice present

transcriptional profiles with the up-regulation of genes involved in

immune activation and the development of neurodegenerative

diseases (64–69, 73, 74) (Table 1). All these data suggest that

microglial function under physiological conditions varies

according to the developmental stage.

Healthy microglia also present brain-region-associated

transcriptional profiles. Masuda et al. also performed single-cell

RNA sequencing (scRNA-seq) of microglia in homeostatic

conditions of multiple anatomical regions of the CNS of

embryonic, juvenile, and adult mice. Authors found two main

clouds differentiating embryonic from juvenile and adult from

postnatal microglia. Within the cloud derived from postnatal

mice, t-SNE analysis showed six sub-clusters in postnatal

microglia, while juvenile and adult microglia only presented four.

Each sub-cluster had specific transcriptional patterns suggesting the

existence of different microglial subclasses during both embryonic

and juvenile/adult stages (27).

Similarly, the analysis of different regions within either embryonic,

postnatal, and juvenile/adult mice revealed that each anatomical area of

the CNS presented a regional distribution of transcript expression,
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TABLE 1 Genes defining microglial subclasses along developmental stages.

Developmental stage Up-regulated genes Function References

Embryonal and early postnatal

Insulin-like growth factor 1 (Igf1)
Pleiotropic molecule with neurotrophic
and immunomodulatory functions

Wlodarczyk et l. (42)

Glycoprotein non-metastatic melanoma protein B (GpnmB) Neuro-protection Satoh et al. (43)

Galectin-1 (Lgals1) and galectin-3 (Lgals3)
Immuno-modulators that deactivate
cytotoxic microglia

Starossom et al. (44)

Lysosomal-associated membrane protein 1 (Lamp1)
Glycoprotein expressed in
lysosomal membranes

Barrachina et al. (45)

Cluster of differentiation 68 (Cd68) Receptor expressed in lysosomes
Hammond et al. (6),
Kettenmann
et al. (46)

Subpopulation defining genes Function References

Arginase 1 (Arg1)
Metalloenzyme that inhibits the
production of nitric oxide (NO) usually
expressed in anti-inflammatory microglia

Cherry et al. (47)

Ribonucleotide reductase M2 (Rrm2)

Small subunit in ribonucleotide
reductases, that participates in nucleotide
metabolism and catalyzes the conversion
of nucleotides to deoxynucleotides

Zuo et al. (48)

Ubiquitin-conjugating enzyme E2C (Ube2c)

Enzyme that is part of an intrinsic
inhibitory mechanism, required for the
disintegration of mitotic cyclins and
securins after spindle assembly
during mitosis

Kumar et al. (49)

Centromere protein A (Cenpa)
Part of the centromere proteins involved
in epigenetic regulation of centromeres

de Rop et al. (50)

Fatty acid binding protein 5, epidermal (Fabp5)

Member of the FABP family with a high
affinity for docosahexaenoic acid (DHA),a
molecule that is able to reduce the release
of pro-inflammatory molecules from
primary murine microglia

Low et al. (51)

Osteopontin (Spp1)

Matricellular protein secreted by every
CNS cell that signals to CD44 triggering
pro-inflammatory responses in
macrophages. Associated to Tract-
Associated Microglia (ATM) of the early
PN brain

Rosmus et al. (52)

Heme oxygenase 1 (Hmox1)
Catalyzes the oxidation of heme to
biliverdin and carbon monoxide

Deininger et al. (53)

Membrane-spanning 4-domains, subfamily A, member
7 (Ms4a7)

Membrane protein expressed in anti-
inflammatory microglia with a pro-
oncogenic role in glioblastoma

Ni et al. (54)

Juvenile and adult

Transmembrane protein 119 (Tmem119)
Membrane type-I protein with amyloid
precursor protein-like structure.

Ruan et al. (55)

Selectin P ligand (Selplg)
Adhesion molecule critical for cell
migration and chemotaxis.

Rossi et al. (56)

Purinergic G Protein-coupled receptor Y13 (P2ry13)
Purinergic receptor involved in motility of
microglial processes to focal damage sites.

Kyrargyri et al. (57)

Colony-stimulating factor 1 receptor (Csf1r)
Tyrosine-kinase transmembrane receptor
that regulates microglial homeostasis.

Hu et al. (38)

C-X3-C motif chemokine receptor 1 (Cx3cr1)
Chemokine receptor that binds to
fractalkine ligand which is associated with
crosstalk between neurons and microglia.

Ho et al. (58)

(Continued)
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denoted as microglial molecular signature, evidencing the existence of

spatiotemporal microglial subclasses (27).

Later, Zheng et al. reported differences in the molecular

signature between cortical and spinal microglia. This study

characterized three distinct microglial clusters in the cortex and

two in the spinal cord (7). Within cortical microglia, two sub-

clusters exhibiting different expression levels of homeostatic genes

were defined as homeostatic microglia 1 and 2 (HOM-M1 and

HOM-M2), both differing in the expression of genes coding

ribosomal proteins, molecular pathways involved in the
Frontiers in Immunology 05
establishment of homeostatic functions, among others (7).

Furthermore, another subtype that expressed immune genes was

identified as inflammatory microglia (IFLAM-M). This IFLAM-M

was less represented in the cortex, while it constituted 45% of the

spinal microglia in two-month-old mice; this percentage varied

along the lifespan, suggesting that the immune function of these

cells is age-related.

Interestingly, cortical microglia maintained a relatively low

proportion of IFLAM-M, suggesting that the expression of

inflammatory genes is more restrained in the cortex than in the
TABLE 1 Continued

Developmental stage Up-regulated genes Function References

Maf family protein B (MafB)

bZIP transcription factor involved in
negative regulation of GM-CSF signaling
and promotes an anti-
inflammatory phenotype.

Koshida et al. (59)

Myocyte enhancer factor 2A (Mef2a)
Protein involved in inflammatory gene
expression and its modulation.

Cilenti et al. (60)

Activator protein-1 family transcription factors Jun (Jun) and
Fos (Fos)

Transcription factors which maintain
microglia in surveilling phenotype.

Holtman et al. (61)

Complement C1q fraction a (C1qa)
Polypetide A from C1q protein involved
in the complement enzymatic
cascade reactions.

Fonseca al. (62)

Early growth response-1 (Egr1)
Oxidative stress-sensitive transcriptional
factor involved in proinflammatory
responses and neuronal plasticity.

Yu et al. (33)

Prostate transmembrane protein androgen induced 1 (Pmepa1)
and cluster of differentiation 14 (Cd14)

Protein core that modulates
immune reactions.

Javanmehr et al. (63)

Aged

Aged Subtype OA2

Galectin-3 (Lgals3)
Immuno-modulators that deactivate
cytotoxic microglia

Starossom et al. (44)

Cystatin F (Cst7)
Is amongst the most robustly upregulated
genes in diseased associated microglia

Daniels et al. (64)

Chemokine Ccl4 or macrophage inflammatory protein-1b
(Mip-1b)

Chemokines regulate the recruitment and
activation of circulating and resident
immune cells in all tissues,

Kremlev et al. (65)

Chemokine Ccl3

Interleukin 1 beta (Il1b) Pro-inflammatory cytokine Liu et al. (66)

Transcriptional regulator DNA binding protein inhibitor
2 (Id2)

ID2 represses basic helix-loop-helix
transcription factors and is involved in
the differentiation of immune cells

Holtmann et al. (61)

Activating transcription factor 3 (ATF3)
Negative regulator of Il6 and
Il12b transcription

Holtmann et al. (61)

Aged Subtype OA3

Interferon induced transmembrane protein 3 (Ifitm3) Member of the interferon-inducible
transmembrane family, that serves as a
molecular mediator between amyloid
pathology and neuroinflammation.

Harmon et al. (67)

Receptor transporter protein 4 (Rtp4) Member of the RTP family known to
negatively regulate of IFN-I responses

He et al. (68)

2 -5 oligoadenylate synthetase-like 2 (Oasl2) Involved in the innate antiviral response.
OASL enhances DNA virus replication by
binding to the DNA sensors, inhibiting
IFN induction.

Ghosh et al. (69)
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spinal cord (7). Hammond et al. reported that the microglia of

young mice are more heterogeneous and that the inflammatory

pathways were mainly enriched in aged individuals (6). All these

studies suggest that microglial molecular signatures differ according

to age, brain region, and health status, indicating that these cells’

function is not homogeneous.

As dynamic cells, besides constantly surveilling the milieu,

microglia are thought to detect neural electrical activity (40, 41,

75). Nimmerjahn et al., using in vivo two-photon microscopy,

determined that microglial processes were significantly motile,

where their filopodia experienced several extend-withdraw cycles

under physiological conditions (14, 75). This motility process

directs microglial podocytes to establish transitory contacts with

dendritic spines in healthy mice’s somatosensory and visual

cortexes in response to neuronal sensory stimulation (40).

Conversely, sensory deprivation results in filopodial retraction,

thus reducing the number of neuronal contacts in the visual

cortex in vivo (40).

The exact signal microglia detect that redirects their processes

toward activated neurons is unclear. Neuronal mitochondrial

activity, induced by neuronal electrical activation, rapidly triggers

the establishment of the microglia-neuron junction and is blocked

by inhibition of P2Y12 receptors for adenosine 5’diphosphate

(ADP), suggesting that the communication established through

this receptor might allow the transitory junction observed

between neurons and microglia (76).

Stimulation of hippocampal CA3 neurons that project to CA1

pyramidal cells through the Schaffer collateral pathway in mice

results in an increase in microglial Ca2+ in early postnatal

hippocampal CA1; this effect depends on neuronal action

potentials since tetrodotoxin (TTX) administration significantly

reduce microglial Ca2+ influx (77).

Microglial cells’ ability to detect and redirect their filopodia in

response to neuronal electrical activity might be crucial to

preserving a homeostatic neuronal firing rate (78–80). Blocking

microglial capacity to redirect themselves toward firing neurons

leads to the hyper-synchronicity of cortical circuits in response to

sensory stimulation (79).

Although microglial transcriptional profiles vary depending on

brain region, only a handful of studies approach region-specific

microglial function in homeostatic conditions. Hypothalamic

microglia have been approached to understand their implication

in neuroinflammation resulting from consuming a high-fat diet

(HFD), considering microglial cells as mere sentinels instead of

active participants of the hypothalamic circuits’ physiology. In the

following sections, we will explore the possible implications of

hypothalamic microglia for its daily homeostatic function.
4 Brief scope of the medio-basal
hypothalamic arcuate nucleus

Two primary problems in studying ARC microglial cells are that

many of the models employed are not ARC-specific and that the

studies do not focus on what this cell type does under

physiological conditions.
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Comparative studies in mammals suggest that species-specific

developmental programs link anatomy, cellular differentiation, and

gene expression to create hypothalamic ‘modules’ that can be

gained or lost through evolution (81). Similar hypothalamic

nuclei found in rodents and humans indicate possible homology

at both anatomical and functional levels (82). In humans, the

arcuate nucleus (ARC) is located in the medio-basal

hypothalamus, adjacent to the third ventricle and attached to the

median eminence (ME) (Figure 1). It is considered a

circumventricular organ (83). This location allows cerebrospinal

fluid (CSF) and blood-borne cues to enter the ARC parenchyma

since the ME is highly vascularized with fenestrated capillaries

originating from the hypophyseal portal system (84). Therefore,

metabolic signals, like plasmatic glucose, triglycerides, leptin,

insulin, and ghrelin, can freely reach and modulate the neuronal

activity of the ARC (85–90).

In response to metabolic status, ARC neurons modulate both

aspects of energy balance, food intake, and energy expenditure. In

fasting conditions, plasmatic glucose levels decrease, and the hunger

hormone ghrelin is secreted in response to gastric emptying. Both

low glucose and ghrelin are known to activate ARC neuropeptide Y

(NPY) and agouti-related peptide (AgRP) neurons to promote food

intake and diminish energy expenditure (85). NPY and AgRP are

also glucose-inhibited neurons since food intake-induced blood

glucose elevations inhibit them from ceasing their orexigenic

function and preventing overeating (91–94).

ARC-NPY afferences to secondary hypothalamic nuclei reduce

the sympathetic output to the brown adipose tissue (BAT), a region

that increases energy expenditure for heat production (95). In

fasting conditions, NPY-mediated BAT thermogenic inhibition is

observed (96). In addition, activation of the ARC-NPY neurons

suppresses the sympathetic output of pre-autonomic pathways, thus

decreasing blood pressure (97). Similarly, activation of the ARC-

AgRP neurons promotes insulin resistance by inhibiting the

sympathetic output that activates BAT glucose uptake (98).

Furthermore, NPY projections to the paraventricular nucleus

(PVN) are known to induce food intake (99, 100) (Figure 1).

Conversely, after food ingestion, satiety cues such as elevated

glucose and insulin levels increase, and adipose-derived signals like

leptin inhibit the NPY/AgRP neuronal activity and increase the

firing rate of the pro-opiomelanocortin (POMC) and cocaine

amphetamine-related transcript (CART) neurons, known to

inhibit food intake and to increase energy expenditure (85, 101,

102, 103) (Figure 1). Additionally, ARC-GABAergic-RIP neurons

modulate the sympathetic outflow, promoting energy expenditure

by the noradrenergic stimulation of BAT-mediated thermogenesis

(104) (Figure 1).

Although the neurons in the ARC are critical players in

modulating the outputs that regulate several bodily functions

involved in controlling metabolism, recent studies have

demonstrated that ARC glial populations are also crucial for

maintaining their function (105–107). Specifically, hypothalamic

microglia maintain ARC neuronal function and are essential for

developing metabolic diseases such as obesity (108, 109).

As previously mentioned, microglia are highly active cells under

both physiological and pathological conditions; however, the ARC
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microglia have mainly been implicated in the hypothalamic

inflammation resulting from obesity, although a few studies

suggest that ARC microglia are constantly surveilling ARC

neuronal function.
5 Microglia physiological functions in
the ARC

The traditional view of microglia as mere phagocytic cells

responsible for eliminating synapses, dead or apoptotic cells, and

cellular debris is overly simplistic. Microglia play a crucial role in

synaptic formation, reorganization, maturation, and neurogenesis.

They achieve this through direct contact, the release of soluble factors,

the engulfment of synaptic structures, and various microglia-

neuronal signaling pathways during the remodeling of brain

circuits. This dynamic process continues throughout life, allowing

the brain to adapt to its ever-changing microenvironment. In

addition, proper development and maintenance of hippocampal

and hypothalamic neuronal circuits rely heavily on functional

microglia (110). It has been suggested that the physiological

implication of ARC microglia modulates feeding behavior and

energy balance.

One piece of evidence is that the functional microglial marker,

such as the cluster of differentiation 68 (CD68), a vesicle marker,

changes according to the time of the day without immune

stimulation (111). CD68, a member of the lysosome-associated

membrane protein (LAMP) family, participates in vesicle

mobilization, a process found in macrophages during

phagocytosis, lysosome digestion, and solute secretion. The daily

non-immune associated changes in CD68 expression in the ARC

could be involved in any vesicle-forming process that repeats itself

every 24 h (69).

Another ARC microglial action observed by Winkler et al. is the

rearrangement of these cells in juxtaposition to NPY-activated

neurons in response to a drop in plasmatic glucose levels elicited

either by fasting or an insulin i.v. administration (112). This effect

was inhibited by an intracerebroventricular (i.c.v.) minocycline

microinjection, a microglial inhibitor (112). Furthermore,

minocycline i.c.v. administration increased the counterregulatory

glucose production in response to a hypoglycemic stimulus,

indicating that ARC-NPY (glucose-inhibited) neuronal activity is

sensed by microglial cells, thus modulating these cells’ response to

hypoglycemia (Figure 2A).

In another study, Jin and collaborators demonstrated that

stimulating the microglial TLR2 through an i.c.v. Pam3CSK4

administration rapidly triggers the rearrangement of these

macrophages toward ARC-POMC neurons. This effect was

associated with changes in the percentage of synaptic inputs

contacting POMC neurons, increasing their excitatory inputs and

raising their excitatory activity, ultimately resulting in anorexia and

increased body temperature (113). In the same study, the

minocycline-mediated microglial inhibition successfully prevented

the observed anorexia and thermogenesis (113). Also, stimulation of

microglial TLR4 promotes an excitatory response in POMC

neurons, whereas inhibiting AgRP/NPY neurons (114). These
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data demonstrate that ARC microglia not only sense ARC

neuronal activity but may also regulate neuronal excitability and

their output, consequently modulating the biological effect of ARC

neuronal populations.

In anorexic humans and rodent models, Iba1 brain expression

and enrichment of microglia genes are increased (115, 116). Also,

the administration of deoxynivalenol (DON), a compound known

to induce microglial inflammatory function in circumventricular

organs such as the ME, causes anorexia. Interestingly, PLX3397

microglial depletion enhanced DON sensitivity, causing food intake

inhibition in response to non-anorectic DON doses and increased

neuronal activation in the ARC and the PVN (117).

Furthermore, ARC microgliosis has been described in the early

phases of pancreatic ductal adenocarcinoma, which has been

associated with cachexia by altering the communication between

POMC ARC neurons and the PVN (118). CSF1-R-mediated

microglia depletion accelerates the cachexia onset and increases

anorexia (118). These data suggest that microglia is a crucial

modulator of ARC neuronal excitability, and its respective

outputs control feeding behavior. Furthermore, microglial

response to metabolic and immune challenges might contribute

to preventing energy imbalance.

Other studies have also inhibited or depleted microglia and

observed critical metabolic effects. Eight-week-old C57BL/6 mice

subjected to whole-body irradiation received bone marrow

transplants from green fluorescent protein (GFP)-transgenic

C57BL/6 mice with a deletion of the BDNF gene, resulting in

higher body weights. However, the establishing site of these cells is

preferentially the PVN instead of the ARC (119). Likewise,

conditional ablation of microglia in Cx3cr1-Dtr rats reduced food

intake and energy expenditure (120). Interestingly, increasing brain

CX3CL1 levels prevented diet-induced obesity in male mice (121),

suggesting that the contact-dependent relationship established

between microglia and neurons is crucial for maintaining

energy homeostasis.

Campbell et al. performed a single-cell analysis of the ARC-ME

of mice fed a normocaloric diet or an HFD, thus presenting a

transcriptional census of these areas. They identified 50 distinct

ARC-ME cell populations, such as tanycytes, leptin-sensing

neurons, AgRP, and POMC subtypes, among others (122). Since

ARC microglial cells respond to NPY and POMC neuronal activity,

the mechanisms that connect these cellular populations might be

deeply affected by an HFD.

The CD200-CD200R1 system is an in vivo “Off” signal that

comprises the transmembrane glycoprotein ligand CD200,

expressed by neurons and endothelial cells, and its receptor

CD200R1, which is expressed in myeloid cells like microglia

(123). Studies have demonstrated an up-regulation in CD200 in

the neocortex, hippocampus, and striatum of the R6/1 transgenic

mouse model of Huntington’s disease (HD), with unaltered

expression in CD200R1 (124). This data indicates a counter-

regulatory neuronal mechanism to maintain the neuronal–

microglial communication to sustain neuronal function under a

pro-inflammatory condition like HD or an HFD. The relationship

established between microglia and the ARC-neuronal circuits has

been widely studied during obesity; the following section will
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discuss how microglial non-physiological function in response to

high-fat, high-carbohydrate diet consumption and the resulting

low-grade inflammation during obesity may impair the ARC

microglial-neuronal relationship therefore, de-regulating

metabolic homeostasis.
6 Microglial response to obesity and
its possible implications for ARC
neuronal activity

Obesity is a pro-inflammatory state characterized by the

hypertrophy and hyperplasia of the white adipose tissue (WAT), in

which adipocytes secrete pro-inflammatory cytokines and

chemokines, thus maintaining a mild inflammatory tone in the

body for prolonged periods (125). Not only do cytokines and

chemokines have inflammatory roles in obesity, but WAT can also

react by producing and secreting biologically active substances as

hormones or peptides, which are termed “adipokines” (126) that
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contribute to the obesity-derived chronic low-grade systemic pro-

inflammatory condition, also known as “metainflammation” (127).

The hypothalamus responds to the low-grade inflammation observed

during obesity by further expressing pro-inflammatory cytokines (108,

128–131) that eventually impair hypothalamic insulin and leptin

sensitivity (132, 133).

As previously mentioned, the ARC is a sensory region. Thus, its

distinct cell populations can detect and respond to blood-borne

circulating metabolic and inflammatory signals. The consumption

of high-fat and high-carbohydrate diets increases plasmatic free

fatty acids (134, 135), which, as they tend to accumulate in the white

adipose depots, can cause inflammation and, eventually,

neuroinflammation (136, 137), by initiating an innate immune

response elicited in glial cells (138, 139).

Specifically, microglia are the first to respond to dietary

saturated fatty acids, promoting lipid-induced neuronal stress,

hypothalamic inflammation, leptin and insulin resistance, and

hyperphagia in mice (140, 141). Furthermore, i.c.v. infusions of

saturated and polyunsaturated fatty acids induce the expression of

neuroinflammatory markers (131, 142–144), alter autophagic
FIGURE 1

Arcuate nucleus location and neuronal organization. (A) The arcuate nucleus (ARC) is located in the medio-basal hypothalamus, adjacent to the third
ventricle (3V), attached to the median eminence (ME). (B) The left panel presents ARC under fasting conditions, where hunger cues like low glucose
levels and ghrelin secreted by the stomach can access the ARC parenchyma through the fenestrated vascularization of the median eminence, which
eventually reaches the orexigenic neuropeptide Y (NPY) expressing neurons. NPY activation reduces sympathetic output, which consequently
decreases energy expenditure. In addition, NPY neurons promote food intake. (C) The right panel presents the entrance of satiety/adiposity signals
like insulin and leptin, which are known to activate pro-opiomelanocortin (POMC), promoting energy expenditure and inhibiting food intake.
Furthermore, leptin is known to activate RIP neurons known to increase energy expenditure by promoting brown adipose tissue-
induced thermogenesis.
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protection from cellular stress (145), and increase endoplasmic

reticulum stress responses to unfolded proteins (130, 146).

In diet-resistant mice fed an HFD for only 1-2 weeks, which is

not enough time to develop increased adiposity nor metabolic

impairments, the number of inhibitory synapses directed towards

the ARC-POMC neurons was elevated in the non-diet-resistant

mice (control) that eventually became obese. Later, when HFD non-

obesity resistant mice became obese, the number of inhibitory

synapses associated with ARC-POMC neurons was significantly

increased (147). As mentioned, POMC neurons inhibit food intake

and promote energy expenditure by regulating the pathways

controlling autonomic outputs. This suggests that microglial

response during the first stages of HFD consumption highly

regulates the synaptic inputs that modulate neuronal excitability.

Paradoxically, Douglass et al. recently showed that microglial

inflammatory function during an HFD consumption enhances

glucose physiological responses regardless of inducing adiposity
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(148) and preventing microglial IKKb signaling pathway in

response to an HFD prevents obesity but impairs glucose

tolerance (148). Furthermore, hypercaloric diets stimulate

microglial TLR4, which responds to lipids (149, 131), thus

inducing TNFa secretion, inhibiting NPY/AgRP neuronal activity

(150) and increasing POMC neuronal excitability (114, 151).

Thaler et al.’s observations could explain this paradoxical effect

of microglial pro-inflammatory response in glucose tolerance since

a significant rise in hypothalamic pro-inflammatory gene

expression was detected after only three days of consuming a

hypercaloric diet. This gene profile was associated with increased

ARC microglial markers, suggesting that the Iba1 increase within

the first days of an obesogenic diet might reflect an increase in

microglial function to counteract the excess in energy intake (108).

This hypothesis is supported by the Douglass et al. report, where

microglial activation promoted parasympathetic insulin

secretion (148).
FIGURE 2

Hypothetic microglia-neuron circuit in the arcuate nucleus (ARC). (A) A hypoglycemic state induces the activation of neuropeptide Y (NPY) neurons
and the rearrangement of microglial cells during fasting, increasing excitatory inputs to NPY neurons and their firing rate. Consequently, NPY output
would inhibit the neuronal activity of second-order nuclei like the paraventricular nucleus (PVN), decreasing the sympathetic tone and reducing
energy expenditure by inhibiting heat production and decreasing blood pressure. (B) The short-term consumption of a high-fat diet (HFD) could
induce the rearrangement of microglia towards POMC neurons, raising their firing rate in response to glucose, insulin, and leptin to promote the
activation of sympathetic outputs that improve energy expenditure and decrease hepatic glucose production. (C) When the consumption of an HFD
is chronic, the inflammation of the adipose tissue induces the presence of pro-inflammatory circulating signals that reach and activate ARC
microglia. The inflamed hypothalamus would cause neuronal damage, especially in POMC neurons and not in NPY cells, which may contribute to
low metabolic rates and probably hyperglycemia.
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Furthermore, high-fat intake increases palmitate levels in

cerebrospinal fluid and triggers a wave of microglial metabolic

activation characterized by mitochondrial membrane activation,

fission, and metabolic skewing towards aerobic glycolysis (152).

Also, a hypercaloric diet increases microglial lipoprotein lipase

(LPL) expression, an enzyme relevant for microglial lipid uptake.

Mice lacking microglial-LPL are prone to become obese when fed

both a control and an HFD (153), implying that ARC microglial

immune activity might be part of the normal responses evoked by

hypercaloric diets to prevent the metabolic impairments caused by

the increased glucose disponibility before the development of

obesity (Figures 2B, C). Further studies should assess if microglia

can adapt or change their morphology, biomarkers, and cytokine

secretion profile to the neuronal activity elicited by the

consumption of HFD before developing a pro-inflammatory state.

Previous studies have suggested that defective regulation of

POMC neurons precedes HFD inflammation and obesity

development (154). RNA-seq studies of the POMC neurons of

obese mice unveil an enrichment in apoptosis, chemokine signaling,

and sphingolipid metabolism pathways, suggesting that an

obesogenic diet causes POMC apoptotic neuronal loss (155). As

previously mentioned, TNFa increases POMC neuronal excitability

(151) and induces elevated blood pressure via a central mechanism

involving sympathetic activation (156). This hypothesis is

supported by the observation that during obesity, POMC neurons

present a higher percentage of microglial contacts (151), suggesting

that microglial TNFa constant release during obesity might affect

POMC activity and even induce neurotoxicity since there is a

significant decrease in the number of POMC neurons after

chronic feeding with a high fat and carbohydrate diet (151).

These observations indicate that TNFa secreting microglia may

increase ARC-POMC neuronal activity, altering their

autonomic output.

In contrast, postmortem studies in type II diabetic patients have

shown an increase of NPY neurons in the ARC (157), implying that

inflammatory signals’ effect on NPY neurons does not promote

excitatory inputs, hence not hindering their survival. In fact, studies

have demonstrated that long-term palmitate and TNFa exposure

promotes NPY mRNA transcription (158); however, King et al.

reported NPY neuronal inhibition after IL-1ß, IL-6, and TNFa
administrations (159) (Figure 2C). Future studies of the exact effect

of cytokines in NPY cell cycle programs or survival markers should

be performed to understand how they survive an HFD while POMC

neurons are significantly reduced.

Moreover, microglia trigger a complex hypothalamic immune

response to dietary excess. After one week of a hypercaloric diet,

mice presented a monocytic infiltration in the ARC; this infiltration

was absent in control-fed mice (160). However, circulating

monocyte recruitment is not the primary mechanism for

microgliosis and its pro-inflammatory response during the

development of obesity (161). Valdearcos et al. also defined two

ARC microglial subpopulations: CX3CR1+/P2Y12+ and CX3CR1

+/TMEM119+ microglial cells. After the HFD, GFP+CD68+ bone-

marrow-derived cells were detected in the ARC; these cells were

neither TMEM119+ nor P2Y12+, indicating their myeloid origin.

These infiltrating cells arrive after the inflammatory response
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el icited by the hypothalamic parenchyma (162, 163),

consequently recruiting further immune cells from the periphery,

such as neutrophils, lymphocytes, and natural killer T cells, into the

hypothalamus. Also, dendritic cell migration could be associated

with the obesity-induced myeloid cell hypothalamic monocytic

invasion contributing to hypothalamic inflammation (160).

Lee et al. demonstrated that perivascular macrophages secrete

inducible nitric oxide synthase (iNOS) in mice fed an HFD,

contributing to BBB leakage and increased vascular permeability

in the hypothalamic parenchyma (164), probably facilitating

peripheral immune cell infiltration. Likewise, hypothalamic

infiltrated myeloid cells and perivascular macrophages secrete the

VEGF (165), contributing to blood-borne metabolic signals’

increased permeability in the ARC (166). These data indicate that

non-microglial macrophages are crucial for maintaining

hypothalamic circuit homeostasis.

Since metainflammation has been correlated with a “low-grade”

chronic microglial activation state, hypercaloric diets have been

associated with hypothalamic dysfunction, including loss of synapses,

lack of response to metabolic hormones, disturbed organelles function,

and cell death (167). The sustained microglial immune response after

the long-term consumption of a hypercaloric diet leads to

hypothalamic injury and dysfunction, indicating that the relationship

between ARCmicroglia and neurons is essential for preventing obesity.

Taking into consideration the chemokines’ role in obesity-derived

hypothalamic microglia activities, Dorfman et al. demonstrated that

male mice fed an HFD for 18 weeks presented a reduction in the

hypothalamic expression of the neuron-microglia binding protein

CX3CL1 (fractalkine) and the mRNA levels of its receptor

CX3CR1 (121).

CX3CL1 is a crucial axis for neuron-microglia communication

(58, 62, 168). Dissociation of the contact established through

CX3CL1 and its receptor promotes microglial pro-inflammatory

response (169). I.c.v. CX3CL1 administration significantly

suppressed food intake after 48 hours of fasting, while i.c.v.

CX3CL1 and NPY co-administration prevented NPY-induced

food intake (170). In contrast, maintaining CX3CL1-mediated

microglial-neuronal interactions protects against diet-induced

obesity (170), highlighting the importance of preserving the

relationship between neurons and microglial cells to prevent

obesity caused by dietary factors. Future studies should identify

the molecular mechanisms involved in the hypothalamic neuron-

microglial relationship between health and obesity. In addition,

studies should focus on determining the exact moment this

interaction is disrupted during a hypercaloric diet since

identifying this specific moment might provide information

regarding possible targets to restore this interaction and revert the

metabolic impairments caused by obesity.

Additionally to the CX3CL1 role, other chemokines are also

involved in hypothalamic neuroinflammation. CXCL12 is a

chemokine that shows neuroactive effects by promoting the

migration of dopaminergic neurons in the midbrain through the

Akt-1/FOXO3a axis (171) and modulating electrical excitability in

hypothalamic neurons through CXCR4, one of the CXCL12

receptors (172). HFD-fed rats increased expression of CXCL12

and its receptors CXCR4 and CXCR7, which correlated with
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cognitive decline and locomotor dysfunction (173). CCL2, also

known as MCP-1, is produced by microglial cells after an

inflammatory st imulus and has been associated with

chemoattraction of monocytes in response to acute and chronic

inflammatory responses through JAK2/STAT 3, MAPK, and PI3K

Pathways (174). Peripheral myeloid cells can be recruited to ARC in

hypercaloric diet conditions by crossing fenestrated blood vessels

and the third ventricle, which has been related to hypothalamic

microgliosis using the CCL2/CCR2 axis in obesogenic diet rodent

models (175). CCL2 treatment attracted peripheral macrophage-

like cells, and promoted microglial migration, and enhanced CCL2

and proinflammatory cytokine production (176).

As mentioned, cytokines and chemokines are not the only

molecules involved in metainflammation and hypothalamic

microglial responses. Adipokines have also activity over microglia

function since it described that increased leptin, adiponectin, and

resistin are correlated with metabolic dysfunction, decreasing food

intake and increasing energy expenditure and insulin resistance

[reviewed in Recinella et al. (177)]. The effects of the most relevant

adipokines on the microglia function are described in Table 2.

Although the literature has explored the topic deeply, the

mechanisms underlying microglial interactions in obesity remain

unclear and require further studies.
7 Conclusion

Microglial function under physiological conditions is crucial for

maintaining brain homeostasis. Even though not many studies describe

the physiological role of microglia in the hypothalamus, it is clear that

these cells respond to neuronal activity by rearranging themselves

towards these activated neurons, suggesting that these cells play a role

in maintaining adequate neuronal functioning in the hypothalamic

area. The relationship between these two cell types becomes evident

during a hypercaloric diet, where microglial cells surround ARC-

POMC neurons and secrete pro-inflammatory molecules like TNFa.
Future studies should describe 1) how ARC microglia sense neuronal
TABLE 2 Summary of known adipokines and their relationship with
microglia in vitro and/or in vivo.

Adipokines Effect on microglia References

Anti-inflammatory adipokines

Adiponectin Intraperitoneal administration of
adiponectin suppressed fatty acid-derived
hypothalamic neuroinflammation by
modulating COX-2, Iba1, CD11b, IL-1b,
IL-6, and TNFa expression.

Song
et al. (178)

Apelin Exposition to apelin-13 preserved CD16/
32, CD206, iNOS, Arg-1, IL-10, IL-6, and
TNFa basal levels ameliorating LPS-
induced BV-2 microglia pro-
inflammatory response through inhibiting
H3K9ac and promoting autophagy.

Peng
et al. (179)

(Continued)
F
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TABLE 2 Continued

Adipokines Effect on microglia References

Anti-inflammatory adipokines

CTRPs CTRP4 decreased food intake, suppressed
NF-kB signaling and microglial activation
in vivo, and decreased IL-6 and TNFa
production while inhibiting the NF-kB
pathway in BV-2 cells.

Ye et al. (180)

Nesfatin-1 Nesfatin-1 reduced microglia
proinflammatory activation by decreasing
IL-1b, IL-6, and TNFa expression in a rat
ischemia model.

Erfani
et al. (181)

Omentin-1 Exposition to recombinant omentin-1 in
microglial cell culture suppressed
proinflammatory activation, while its
depletion increased IL-1b, IL-6, and
TNFa cytokine levels.

Ji et al. (182)

PAI-1 Plasminogen activator inhibitor type 1
(PAI-1) promoted the migration of
microglial cells in culture via the LRP/
JAK/STAT1 axis and inhibited microglial
engulfment of zymosan particles.

Jeon et al. (183)

SPARC Secreted protein acidic rich in cysteine
(SPARC) regulated microglial expansion,
branch extension and
microglia activation.

Lloyd-Burton
et al. (184)

Proinflammatory adipokines

Chemerin Through Chemerin/CMKLR1 pathway
microglia enhanced IL-6 and TNFa
production, which was reversed by using
a-NETA, an antagonist of CMKLR1.

Yun et al. (185)

FAM19A5 Unless there are lack of information of
obesity-derived increase of FAM19A5 on
microglia function, a knockdown model
of FAM19A5 expression resulted in
decreased TNFa levels. Also was
described as a chemokine which induces
hypothalamic inflammation.

Kang
et al. (186)

FSTL1 A knockdown FSTL1 mouse model
inhibited microglia activation through the
TLR4/MyD88/NF-kB pathway.

Xiao et al. (187)

LCN2 Lipocalin-2 (LCN2) is produced by pro-
inflammatory activated microglia through
NF-kB signaling.

Jung et al. (188)

Leptin Leptin-stimulated microglia enhanced a
pro-inflammatory secretion profile
through the ObRb leptin receptor.
In rat primary microglial culture leptin
induced IL-1b production via STAT3
activation.
In mice primary hypothalamic microglia,
leptin induced IL-1b, and TNFa, but not
Iba1 expression.

Fujita et al.
(189)
Pinteaux et al.
(190)
Gao et al. (191)

RBP4 Retinol-binding protein 4 (RBP4) activate
microglia enhancing Iba1 expression.

Xu et al. (192)

Visfatin Exposition to visfatin in BV2 microglial
cells promoted an elevated release of
MCP-1, TNFa, IL-6, and IL-1b.

Tu et al. (193)
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activity, 2) the functional implication of the neuron-microglial

associations, and 3) how these associations become dysregulated

during metabolic impairments such as obesity.

Understanding the nature and physiological implication of the

relationship between the ARC neuronal populations and microglial

cells during health might contribute to identifying therapeutic

targets aimed at maintaining this connection even under

pathological conditions such as obesity.
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(UNAM). BT-H is part of the Programa de Apoyo y Fomento a la

Investigación Estudiantil (AFINES), Facultad de Medicina, UNAM.

MV-R is part of the Plan de Estudios Combinados en Medicina

(PECEM), Facultad de Medicina, UNAM. RR-C is a doctoral student

from Programa de Doctorado en Ciencias Biomé dicas, UNAM, and
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