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Deciphering the molecular
landscape of rheumatoid arthritis
offers new insights into the
stratified treatment for
the condition
Min-Jing Chang1,2,3†, Qi-Fan Feng1,2†, Jia-Wei Hao3†,
Ya-Jing Zhang3†, Rong Zhao1,2, Nan Li3, Yu-Hui Zhao3,
Zi-Yi Han3, Pei-Feng He3* and Cai-Hong Wang1,2*

1Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China, 2Shanxi
Key Laboratory of Immunomicroecology, Taiyuan, China, 3Shanxi Key Laboratory of Big Data for
Clinical Decision, Shanxi Medical University, Taiyuan, China
Background: For Rheumatoid Arthritis (RA), a long-term chronic illness, it is

essential to identify and describe patient subtypes with comparable goal status

and molecular biomarkers. This study aims to develop and validate a new

subtyping scheme that integrates genome-scale transcriptomic profiles of RA

peripheral blood genes, providing a fresh perspective for stratified treatments.

Methods: We utilized independent microarray datasets of RA peripheral blood

mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs)

were subjected to functional enrichment analysis. Unsupervised cluster analysis

was then employed to identify RA peripheral blood gene expression-driven

subtypes. We defined three distinct clustering subtypes based on the identified

404 up-regulated DEGs.

Results: Subtype A, named NE-driving, was enriched in pathways related to

neutrophil activation and responses to bacteria. Subtype B, termed interferon-

driving (IFN-driving), exhibited abundant B cells and showed increased

expression of transcripts involved in IFN signaling and defense responses to

viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately

defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated

using the XGBoost machine learning algorithm. We also evaluated the

therapeutic outcomes of biological disease-modifying anti-rheumatic drugs.

Conclusions: The findings provide valuable insights for deep stratification,

enabling the design of molecular diagnosis and serving as a reference for

stratified therapy in RA patients in the future.
KEYWORDS

gene expression profiles, machine learning, rheumatoid arthritis, stratification,
unsupervised clustering
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by inflammatory polyarthritis, systemic inflammation,

and autoantibody production. Uncontrolled RA results in progressive

joint destruction and impaired functioning. Early and effective

treatment using immunomodulatory medications is critical due to

the potential for long-term chronic disease complications.

Nonsteroidal anti-inflammatory drugs, disease-modifying anti-

rheumatic drugs (DMARDs), and glucocorticoids are commonly

used conventional drugs for RA treatment. In recent years,

DMARDs have assumed a more prominent role in managing RA

and have been further categorized into conventional synthetic

DMARDs (csDMARDs), biological DMARDs (bDMARDs), and

target synthetic DMARDs according to the 2016 EULAR guideline

(1). The 2021 ACR guidelines recommend starting treatment with

csDMARDs in DMARD-naive patients. As second-line therapies,

bDMARDs such as Rituximab and Infliximab are commonly

utilized (2). Despite various available treatments, managing RA

remains complex due to variations in practice based on the latest

EULAR and ACR guidelines and challenges in predicting treatment

outcomes and choosing the most effective medications (2). This

underscores the necessity to identify and characterize patient

subtypes that share similar goals and biological markers.

Currently, the widely utilized rapid assessment of disease

activity in RA patients is the Disease Activity Score 28 (DAS28)

(3, 4). However, DAS28 may not be suitable for all patients across

different stages of RA and cannot precisely guide treatment

decisions. Consequently, there is growing interest in developing

more specific evaluation criteria and identifying predictors of

response to biologics in RA. Recent studies have focused on the

stratification of RA patients to predict prognosis and drug

response more accurately. For example, a study by Lewis et al.

utilized deep phenotypic profiling of RA synovial tissue,

identifying transcriptional subtypes linked to three distinct cell-

specific pathobiological modules (5). Their integration of

ultrasonographic and radiographic data revealed that the plasma

cell-infiltrated synovial module was associated with antibodies
Abbreviations: RA, rheumatoid arthritis; PBMCs, peripheral blood mononuclear

cells; GEO, Gene Expression Omnibus; HCs, healthy controls; DEGs,

differentially expressed genes; RNA-seq, RNA sequencing; DMARDs, Disease-

modifying anti-rheumatic drugs; MTX, Methotrexate; TCZ, Tocilizumab;

DAS28, Disease Activity Score 28; PCA, Principal components analysis; KEGG,

Kyoto Encyclopedia of Genes and Genomes; CDF, cumulative distribution

function; FDR, False discovery rate; log FC, Log fold change; GSEA, Gene-set

enrichment analysis; ssGSEA, Single-sample gene-set enrichment analysis; ROC,

receiver operating curve; AUC, area under the curve; MAF, minor allele

frequency; cis-pQTL, cis-protein quantitative trait loci; HEIDI, heterogeneity in

dependent instruments; PP, Posterior probabilities; GO-BP, Gene Ontology

Biological Process; IFN, Type I interferon; IL, Interleukin; BCR, B cell receptor;

TCR, T cell receptor; DC, Dendritic cells; RF, Rheumatoid factor; ACPA,

Antibodies against citrullinated proteins; CRP, C-reactive protein; ESR,

Erythrocyte sedimentation rate; HAQ, Health Assessment Questionnaire;

SDAI, Simplified Disease Activity Index; TNF, Tumor necrosis factor.
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against citrullinated proteins (ACPA) positivity and a poorer

prognosis in terms of radiographic damage at 12 months.

Additionally, Jung et al. categorized RA synovial tissue gene

expression into one inflammatory and two fibroblast subtypes,

validating treatment responses in patients treated with a triple

DMARD regimen (Methotrexate [MTX], Sulfasalazine, and

Hydroxychloroquine) and Infliximab (6). These subgroups

exhibited significant differences in ACPA positivity and treatment

response. Moreover, Kraan et al. performed gene set enrichment

analysis on peripheral blood data, identifying a high or low subtype

based on the type I interferon (IFN) signature, and investigated the

response to MTX treatment in this subtype (7). They found that

IFN expression signature was a persistent trait in RA patients

irrespective of MTX treatment. While these studies highlight the

potential of stratifying RA patients for understanding disease

pathogenesis and tailoring treatment more precisely, there

remains a notable gap in research using large, publicly available

peripheral blood databases, particularly concerning the response of

stratified patients to bDMARDs. Therefore, it is imperative to

leverage such publicly accessible data for RA stratification to

refine individualized therapeutic strategies.

In the present study, we have constructed the largest genome-

scale transcriptomic profiles of RA to identify patient subtypes

sharing various pathways and signaling signatures. Additionally, we

have evaluated the therapeutic outcomes of bDMARDs, providing a

novel perspective for treating RA patients.
2 Methods

2.1 Data selection and processing

The whole workflow of our study is presented in Figure 1. We

selected four recently compiled, independent microarray datasets

(GSE97810, GSE110169, GSE74143, GSE45291) (8–11) of RA

peripheral blood mononuclear cells (PBMCs) from the Gene

Expression Omnibus (GEO) database as the training sets. These

datasets consisted of a total of 1,138 RA patients and 97 HCs.

Additionally, three RNA sequencing (RNA-seq) datasets

(GSE138746, GSE129705, GSE120178) (12–14) from the GEO

database were collected as test sets, comprising a total of 268 RA

patients and 20 HCs. Given that our study focused on investigating

RA patients, more RA patients were enrolled to align well with real-

world conditions and enhance its clinical relevance (15, 16).

We included several DMARDs in the analysis to study the

association between RA peripheral blood subtypes and therapeutic

response. Specifically, MTX (GSE93272), Infliximab (GSE93272,

GSE78068 and GSE58795), Tocilizumab (GSE93272, and

GSE78068), Abatacept (GSE78068), and Rituximab (GSE54629)

(17–19). Supplementary Table S1 provides more details on the

study design and pre-processing of the microarray datasets.

The therapeutic response to conventional DMARDs such as

MTX or biologic DMARDs (Infliximab, Tocilizumab [TCZ],

Abatacept, and Rituximab) was evaluated by DAS28. Patients’

response was defined according to the EULAR response criteria

(20, 21). For example, patients with a DAS28 score below 2.6 were
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considered responders, while those with higher scores were

classified as non-responders.

To process the raw microarray data files from Affymetrix®, the

robust multi-array average approach was used. It involved

background correction, quantile normalization, and probe-set

summarization using the ‘affy’ and ‘Simpleaffy’ R packages (22).

The normalized matrix files for raw microarray data from Illumina

were directly downloaded.

The expression profile of the RNA-seq data was converted to

transcripts per kilobase millions format to allow for comparisons

with the microarray datasets. To mitigate systematic, dataset-

specific biases, the ‘ComBat’ function in the ‘sva’ R package was

employed to adjust for residual technical batch effects resulting

from integrating heterogeneous data (23). The ‘ComBat’ algorithm

also showed its robustness when dealing with datasets from

heterogeneous platforms, even the ones lacking HCs. Detailed

validation information was presented in Supplementary Tables

S2, S3 and Supplementary Figures S4, S5.

To ensure quality assurance and assess distribution bias,

principal component analysis (PCA) was conducted on the

identical datasets before and after normalization and

batch correction.
2.2 Differentially expressed genes obtaining
and functional enrichment analysis

We performed differential gene expression analysis between RA

patients and healthy controls using the “limma” R package,

incorporating a linear model and a modified t-test (24). We

adjusted the p-values using the false discovery rate (FDR)

correction to account for multiple hypothesis testing. The

Benjamin-Hochberg method was used to control the proportion

of false-positive results (25). A threshold of adjusted p-value < 0.05

and log fold change (log FC) > 0.32 was set to determine the

significance of DEGs.

To gain insights into the biological functions of the up-

regulated DEGs, we conducted functional enrichment analysis

using Metascape. This analysis included Gene Ontology (GO)

annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment, and Reactome. Enrichment terms with an

adjusted p-value < 0.05 were considered significantly enriched (26).
2.3 Gene-set enrichment analysis

To investigate the potential biological processes or signaling

pathways associated with the up-regulated DEGs between RA

patients and healthy controls, we performed gene-set enrichment

analysis (GSEA) using the GSEA software developed by UC San

Diego and the Broad Institute (27–29). We obtained gene-set

information on signaling pathways and biological processes from

the KEGG and Reactome databases. Gene sets that were enriched

among the up-regulated DEGs and had an FDR of less than 0.05

were identified.
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2.4 Unsupervised clustering for gene
expression-driven subtypes in RA patients

We utilized the R software “Consensus Cluster Plus” to perform

hierarchical agglomerative clustering to subtype RA patients based

on transcriptome signatures of PBMCs (30). The Partitioning

Around Medoids algorithm, employing the Euclidean distance

and Ward-D2 linkage, was applied for clustering the data. The

core of Consensus clustering is to utilize resampling to generate

subsamples from the original sample. These subsamples are then

divided into a maximum of k groups and finally evaluated by

analyzing the results obtained from multiple resampling returns. To

ensure a robust stratification of subtypes and the consistency of the

clustering results, we repeated the procedure across 1,000 reruns for

k clusters. The number of clusters was determined using the

cumulative distribution function (CDF). Unsupervised clustering

results were also validated using PCA.
2.5 Molecular characterization by pathway
and cell subset-driven enrichment analysis

In order to determine the activity levels of specific biological

pathways within the three categorized subtypes, we employed single-

sample gene-set enrichment analysis (ssGSEA) (31). This method

utilizes an enrichment score to quantify the degree of enrichment in

each sample for a given gene set within a dataset. We utilized publicly

available resources, namely KEGG and Reactome databases, to

identify RA-associated pathways. We also employed the “xCell”

algorithm to calculate immune cell-type signature enrichment

scores and determine cellular composition for the three subtypes

(32). We utilized the Wilcoxon test to compare the enrichment

scores, which represent pathway activity and cell-type signature,

between any two of the three subtypes. Meanwhile, we employed

the Kruskal-Wallis test for the comparison of all three subtypes. A p-

value < 0.05 was considered statistically significant. Additionally,

FDR correction was also applied to control the Type 1 error rate.

Finally, the comparison of enrichment involving cell types and

signaling pathways among subtypes would be considered

significant at FDR < 0.05.
2.6 Development of an XGBoost
classification model for subtype prediction

We constructed a decision tree using the XGBoost-tree approach

in a multi-classification context with a softmax objective function to

predict subtypes based on 404 gene characteristics (33). The receiver

operating characteristic curve (ROC)’s area under the curve (AUC)

was used to assess how well the prediction models performed. To

train the classifier, 1,138 RA peripheral blood samples were divided

into training (n = 799) and testing (n = 339) sets, with a respective

ratio of 70% and 30%, utilizing the ‘caret’ R package. The subtype

labels and expression values of the up-regulated DEGs were derived

from the results of the unsupervised clustering approach. To mitigate
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overfitting, we used 10-fold cross-validation during the training

process, and the fitted model was then utilized to assign subtypes

to the testing sets using the 404-gene classifier.
2.7 SMR revealing the effects of plasma
proteome on the risk of RA

To facilitate the discovery of RA drug targets, we used

summary-data-based Mendelian randomization (SMR) and

colocalization analysis for in-depth studies. Briefly, For the

GWAS summary statistics for RA, we used the largest meta-

analysis to date, comprising 22,350 cases and 74,823 controls of

European origin (34). Quality control compared the RA GWAS

data to the 1,000 Genomes Project Phase 3 European reference for

the hg19 genome construction, excluded non-autosomal single
Frontiers in Immunology 04
nucleotide polymorphisms (SNPs), filtered out SNPs without rsID

or with duplicated rsID and only kept biallelic SNPs with minor

allele frequency (MAF) > 0.01. Summary-level statistics of genetic

associations with levels of 1,881 plasma cis-protein quantitative trait

loci (cis-pQTL) were extracted from 4,907 plasma proteins in

35,559 Icelanders (35). For each protein, we contained cis-acting

SNPs (i.e. SNPs located within ±1 Mb of the gene body of the target

gene). We used the cis-pQTLs as genetic instruments to evaluate the

causal association between plasma proteins and the risk of RA.

SMR is a Mendelian randomization method that tests for shared

causal variation between exposures and outcomes using summary-

level data (36). In addition, we assessed whether the associations were

in the presence of linkage disequilibrium using the heterogeneity in

dependent instruments (HEIDI) test and removed single-nucleotide

variants with p < 0.01. Based on the Benjamini–Hochberg method,

FDR < 0.05 was considered statistically significant.
FIGURE 1

The workflow of data processing procedures in the study. Four microarray datasets containing 1,138 RA patients and three RNA-seq datasets
including 268 RA patients were selected as training sets and test sets respectively from the public database. DEGs were filtered after the
normalization, and unsupervised clustering was performed with enrichment analysis followed. Then, the XGBoost algorithm was contrived to predict
the responses of stratified subtypes to commonly used five treatments. Finally, in search for more novel therapeutic targets of RA patients, drug
prediction was carried out by utilizing SMR and the Open Targets platform. DEGs, differentially expressed genes; SMR, Summary data-based
Mendelian randomization analysis.
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We performed further analyses using colocalization methods to

determine whether there are potential shared causal variants between

causal proteins and RA (37). A total of five posterior probabilities

(PP) for mutually exclusive hypotheses were computationally

generated (1). No genetic correlation for either trait (H0); (2) only

trait 1 has a causal genetic variant (H1); (3) only trait 2 has a causal

genetic variant (H2); (4) both traits have their own causal genetic

variant, independent and different (H3); (5) both traits have the same

shared causal genetic variation (H4). A colocalized locus was declared

when the posterior probability of H4 (PP.H4) was greater than 0.7.

Finally, we searched the plasma proteins (PP.H4 > 0.7) using the

Open Targets database to determine the potential druggability of

the identified proteins (38).
2.8 Statistical analyses

For categorical variables, two groups were compared using the

Wilcoxon test, and the Kruskal-Wallis test for comparisons involving

more than two groups. To control the overall Type 1 error rate, FDR

correction was also applied and FDR less than 0.05 was considered
Frontiers in Immunology 05
significant. As the variables for RA subtypes and clinical measures are

numerical, we used the chi-square test or Fisher’s exact test to analyze

the correlation between the two. Statistical significance was defined as

p <0.05 for a two-tailed test. All statistical analyses were performed

using R software (version 4.0.3).
3 Results

3.1 Screening and functional enrichment
analysis of DEGs

Upon comparing the gene expression profiles of peripheral blood

samples from RA patients andHCs, we identified 404 up-regulated DEGs.

These DEGs were visualized using volcanic and heatmaps (Figures 2A, B).

Functional enrichment analysis of the DEGs revealed gene ontology

biological process terms that align with the current understanding of RA

pathophysiology. Specifically, GO analysis indicated significant enrichment

of biological processes such as response to viruses and bacteria,

inflammatory response, organelle inheritance, and cellular

macromolecule biosynthetic process (Figure 2C).
A B

DC

E

FIGURE 2

Identification of differentially expressed genes (DEGs) between patients with rheumatoid arthritis (RA) and healthy controls (HCs). (A, B) The heatmap
and volcano plot of DEGs in RA patients versus HCs. (C–E) GO enrichment, KEGG and Reactome analyses of 163 up-regulated DEGs.
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Additional KEGG analysis indicated that these elevated DEGs

mostly enriched the TNF signaling, RIG-I-like receptor signaling,

and NOD-like receptor signaling pathways (Figure 2D).

Additionally, Reactome analysis demonstrated significant

enrichment of the Interferon alpha/beta signaling pathways and

Respiratory electron transport (Figure 2E).
3.2 Unsupervised cluster analysis identifies
RA peripheral blood gene expression-
driven subtypes

We employed unsupervised cluster analysis to classify RA

patients with different peripheral blood phenotypes based on the

expression patterns of DEGs. This analysis was repeated 1,000 times

to determine the optimal number of clusters, ranging from k = 2 to

6, using the CDF value and delta area as evaluation criteria. Our

results indicated that k = 3 was the optimal number of subtypes

(Figures 3A–C).
3.3 Molecular processes and biological
functions of three subtypes in RA

To elucidate the potential pathological mechanisms underlying

RA subtypes, we examined the molecular processes and their

biological functions within each subtype (Figures 3D–F). By

comparing, with HCs, the specific up-regulated DEGs signatures

in the three subtypes, we identified 161 significantly up-regulated

DEGs in subtype A, 109 in subtype B, and 166 in subtype C

(Figure 3G). Next, using the GO Biological Process (GO-BP) and

Reactome databases in Metascape, we explored the signaling

pathways and most notably dysregulated biological processes in

each subtype.

Subtype A was mainly enriched in biological processes related

to response to bacteria, neutrophil-mediated immunity, and

inflammatory response (Figure 3D). Subtype B exhibited

significant activation of pathways involved in viral processes,

including antiviral innate immune response, response to viruses,

and interferon signaling (Figure 3E). Notably, subtype C was

associated with protein synthesis processes, such as peptide chain

lengthening, cytoplasmic translation, and transcription of DNA-

templated genes (Figure 3F).
3.4 Molecular and cellular characterization
of three RA subtypes

The three clustered subtypes were labeled as subtype A (n =

399), subtype B (n = 356), and subtype C (n = 383). By comparing

the enrichment scores of cell subsets and key RA-related pathways,

we observed distinct immune-inflammatory characteristics among

the three subtypes. The enrichment scores of 12 RA-related

signaling pathways from literature, KEGG, and Reactome

databases exhibited significant differences among the three

subtypes after FDR correction (Figure 4A).
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Specifically, subtype A was characterized by neutrophil

activation, including pathways such as NOD-like receptor, Toll-

like receptor, Interleukin (IL)-17, and various Interleukins (ILs)

signaling pathways. On the other hand, subtype B exhibited

prominent enrichment in IFN activation, including IFN-a/b and

IFN-g pathways. Subtype C did not show significant molecular

characterization differences compared to the other two subtypes,

however, subtype B and subtype C demonstrated greater

significance than subtype A in the B cell receptor (BCR) and T

cell receptor (TCR) signaling pathway.

Furthermore, using the xCell software and a machine learning

framework, we estimated the enrichment of different cell types and

validated differential activation across the three subtypes (Figure 4B).

Subtype A displayed substantial infiltration of neutrophils,

macrophages M2, and eosinophils. In contrast, B-cells, plasma cells,

dendritic cells (DC), and macrophages M1 were more prominent in

subtype B. Subtype C exhibited moderate enrichment in most cell

types but had high expression of CD8+ T-cells.
3.5 Clinical implication of gene-driven
subtypes in RA

To delve deeper into the association between molecular

subtypes of RA and clinical attributes, we scrutinized the

variations across the three subtypes concerning autoantibodies

and disease activity. Autoantibodies serve as a distinctive feature

of RA, notably rheumatoid factor (RF) and ACPA. Seropositive

patients with the three subtypes of RA exhibited positivity for RF

(A: 87.0%; B: 94.0%; C: 94.6%) and ACPA (A: 88.3%; B: 88.0%; C:

80.4%) (Figure 5A).

Moreover, we discovered that the levels of C-reactive protein

(CRP) and erythrocyte sedimentation rate (ESR) in subtype A and

subtype B were typically higher than in subtype C. Notably, CRP,

commonly utilized as an indicator of systemic inflammation in RA,

was abundantly expressed in subtype A (Figure 5B). Tools such as

the Health Assessment Questionnaire (HAQ), DAS28, and

Simplified Disease Activity Index (SDAI) are widely employed to

evaluate disease activity. These tools corroborated that the disease

activity index was notably higher in the subtype A of RA. However,

these differences lacked statistical significance, possibly due to the

constrained sample size.

Subsequently, we observed an elevated expression of neutrophils

and lymphocytes in subtype A and subtype C, respectively, while the

expression of basophils and eosinophils in subtype B showed a

decrease (Figure 5C). These findings further corroborate the

variances in clinical characteristics across the three subtypes.
3.6 Verification of classification results
using RNA-seq datasets

We integrated three RNA-seq datasets from PBMCs, all

comprehensively adjusted for batch effects and biases

(Supplementary Figures S1A–D). To validate our classification

results, these datasets encompassed 288 individuals, including 268
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RA patients and 20 HCs. Using the gene expression profiles of 213

up-regulated DEGs, we segregated the patients into three subtypes:

subtype A (n = 95), subtype B (n = 95), and subtype C (n = 80)

(Supplementary Figures S2A–E).

We further examined the enrichment scores of RA-related

pathways and cell subsets across the three subtypes (Supplementary
Frontiers in Immunology 07
Figures S3A, B). The consensus from our observations indicated that

subtype A was principally enriched in neutrophil activation-related

pathways and responses to bacteria. In contrast, subtype B exhibited

an abundance of transcripts in IFN signaling and defense responses

to viruses. Meanwhile, subtype C was notably associated with CD8+

T-cells.
A

D E

G

CB

F

FIGURE 3

Identification and gene expression characterization of rheumatoid arthritis (RA) subtypes. (A) The consensus score matrix for RA samples when k = 3.
A higher consensus score between the two samples indicated they were more likely to be assigned to the same cluster in different iterations.
(B) Consensus clustering for the cumulative distribution function for k = 2–6. (C) Relative changes in the area under the cumulative distribution
function curve for k = 2–6. (D–F) Molecular pattern distribution of three subtypes of RA in different biological processes and pathways. The top 20
most significantly enriched biological processes in each subtype of GO BP database and the top 5 most important signaling pathways in the
Reactome database. (G) A Venn diagram showing up-regulated DEGs in subtype A, subtype B and subtype C compared with HCs.
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3.7 Construction of a RA gene classifier
and treatment responses of gene-
driven subtypes

We devised a 404-gene classifier using an XGBoost machine

learning algorithm to validate our RA subtyping scheme. We applied
Frontiers in Immunology 08
this classifier to a training set of 799 RA samples and a testing set of

339 RA samples. Our results attest to the practicality and robustness

of this classifier, which successfully categorized the training set with

an average area under the curve (AUC) value of 100%. Moreover,

testing set validation achieved an accuracy of 89.68%, with an average

AUC value of 90.99%. Hence, we concluded that the classifier serves
A

B

FIGURE 4

Pathway and cell subset-driven characterization in RA subtypes. (A, B) Enrichment scores for pathways and cell subsets for each RA subtype. Box
plots for the enrichment scores of pathways and cell subsets for each RA subtype. Wilcoxon test was used to analyze the differences across three
subtypes. ns, not significant; *P<0.05; **P<0.01; ***P<0.001; **** P<0.0001. FDR, false discovery rate.
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A B

D E F

G H

C

FIGURE 5

Distribution of gene-driven subtypes and multiple biologics treatments respond to the RA subtypes. (A–C) The variations across the three subtypes
concerning autoantibodies, disease activity and four immune cells. The box plots show the disease activity scores of the three subtypes and the
enrichment scores of immune cells. Responder: responded to the biologics; non-responder: did not respond to the biologics. (D) Responder/non-
responder to infliximab: 29.5%/70.5% in subtype A, 40.9%/59.1% in subtype B and 46.7%/53.3% in subtype C. (E) Responder/non-responder to
Tocilizumab: 22.2%/77.8% in subtype A, 35.3%/64.7% in subtype B and 36.4%/63.6% (0/5) in subtype C. (F) Responder/non-responder Rituximab:
59.1%/40.9% in subtype A, 63.6%/36.4% in subtype B and 72.0%/28.0% in subtype C. (G) Responder/non-responder to Abatacept 14.3%/85.7% in
subtype A, 21.4%/78.6% in subtype B and 30.0%/70.0% in subtype C. (H) Responder/non-responder MTX: 40.0%/60.0% in subtype A, 62.5%/37.5% in
subtype B and 37.5%/62.5% in subtype C. Wilcoxon test was used to analyze the differences across three subtypes. ns, not significant; *P<0.05;
**P<0.01; ***P<0.001; **** P<0.0001.
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as a viable and potent strategy for assessing RA subtypes in

clinical trials.

Assessing the response to biological agents across different RA

patients is crucial for elucidating the disease’s pathological specificity.

Next, the 404-gene classifier was applied to predict the treatment

response. We evaluated the response of Infliximab, TCZ, Rituximab,

Abatacept, and MTX across the three RA subtypes (Figures 5D–H).

Our findings indicated that subtype B (62.5%) exhibited a superior

response to MTX compared to subtype A (40%) and C (37.5%). The

three RA subtypes showed favorable responses to Rituximab, a B-

lymphocyte-depleting agent, with subtype C achieving a response rate

as high as 72%.

However, the response rates to Infliximab (a TNF inhibitor), TCZ

(a humanized IL-6 receptor-inhibiting monoclonal antibody), and

Abatacept (a T-cell co-stimulation modulator) across the different

subtypes were comparatively low. In particular, subtype C

consistently showed higher proportions of positive responses to

Infliximab (46.7%), TCZ (36.4%), and Abatacept (30.0%) compared

to subtypes A and B. In summary, the efficacy of certain targeted

biological agents is intimately linked to RA patients with

specific subtypes.
3.8 Causal proteins determined by SMR
and colocalization analysis

We performed an in-depth study of MR associations between

1,881 proteins with cis-pQTL and the risk of RA outcome using the

SMR approach. We identified 197 unique proteins (SMR p < 0.05), of

which 26 passed the HEIDI Test and FDR correction. Further

colocalization analysis identified 9 proteins that may have significant

roles in RA disease progression (PP.H4 > 0.7), including FCRL3,

IL1RN, CCN4, NMB, MAPK3, HAPLN4, CILP2, ICOSLG, and

TMEM9 (Figure 6). Among them, MAPK3 was identified as the

highest-risk protein (FDR adjusted P = 2.56 × 10–4).
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3.9 Druggability of the causal proteins

To further determine the potential new therapeutic targets of

RA patients, we investigated the druggability of nine plasma

proteins highlighted by colocalization analysis. Specifically, we

identified six drugs targeting MAPK3 and ICOSLG proteins. For

instance, AMG-557, an inducible co-stimulator (ICOS) ligand

inhibitor, attenuates inflammation by inhibiting the accumulation

of polyfunctional T helper 1 and T helper 17 cells. Ravoxertinib,

Ulixertinib and MK-8353 serve as MAP kinase ERK1 inhibitors,

and Temuterkib and KO-947, are ERK1/ERK2 inhibitors. They are

all involved in the inflammatory response and tissue destruction in

RA through mitogen-activated protein kinase (MAPK) and play a

crucial role in the pathogenesis of RA. Therefore, whether the drugs

that regulate these proteins can be reused for the treatment of RA

requires further clinical experimental research.
4 Discussion

In this study, we explored differential expression patterns,

significant pathways, and cellular components utilizing the most

comprehensive microarray and RNA-seq datasets for RA to date.

Employing an unsupervised cluster analysis, we identified three

distinct subtype clusters. Subtype A was found to be enriched in

neutrophil activation-related pathways and responses to bacteria.

Subtype B, abundant in B cells, demonstrated an increased number

of transcripts involved in IFN signaling and defense responses to

viruses. Subtype C was discovered associating with CD8+T cells.

These subtypes exhibited distinct clinical characteristics, including

RF, ACPA positivity, and clinical assessments such as DAS28 scores.

Many preceding studies employing the stratification method have

illustrated RA subtypes that can help predict potential prognoses for RA

patients. Kraan et al. conducted a large-scale expression profiling by

cDNAmicroarrays on peripheral blood, highlighting the identification of
FIGURE 6

Manhattan plot for the 9 proteins identified in RA. Each point in the plot indicates a single association test between a plasma protein and RA as the
-log10 (P) of a z-score test result which is ordered by genomic position on the x-axis and the association strength on the y-axis. The red horizontal
line represents the significant threshold for the P value of FDR less than 0.05 under Bonferroni correction.
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subtypes using complex IFN markers. They demonstrated that RA

patients had much higher levels of IFN type I-regulated gene

expression than healthy people. IFN-response genes showed increased

expression in approximately half of the patients (IFN high patients). The

IFN high group significantly varied from the IFN low group, according

to pathway analysis, showing elevated pathways related to fatty acid

metabolism, complement cascades, and coagulation (7). Our findings

showed that subtype B aligns with the IFN cluster from the previous

study. Furthermore, the enrichment of IFN signaling was also noted in

other autoimmune disorders akin to subtype B of RA. For instance,

Lanata et al. utilized an unsupervised clustering approach to stratify

patients with systemic lupus erythematosus (SLE) and identified

significant enrichment of genes associated with IFN signaling, antiviral

responses, and inflammatory pathways (39). Mi et al. also identified two

distinct IFN-1 subtypes in SLE patients. Surprisingly, they pointed out

that IFN-1 might be a critical susceptibility factor for SS, potentially

elucidating the pathogenesis of SLE patients who also develop SS (40).

These findings strongly supported that identical signaling pathways exist

in autoimmune diseases however they could also be clues for

investigating the possible mechanism of the comorbidity of

autoimmune diseases such as RA and SLE, proving the salience of

investigating the stratification of patients.

Our study unveils that subtype A is associated with the

inflammatory response, particularly the response to bacteria. The

pathway of neutrophil degranulation, likely related to innate

immunes such as the NOD-like receptor signaling pathway and ILs

signaling pathway, is enriched in subtype A. We postulate that the

delayed apoptosis, incited by NF-kB signaling activated by RA

neutrophils, could exacerbate inflammation (41). With external

pathogen irritation, the abnormal activation of the innate immune

system and NOD-like receptor signaling may promote the secretion of

ILs, which could trigger autoinflammatory and autoimmune responses.

Subtype B contrasts with type A patients by displaying an abundance of

interferon signaling, including both type-I and type-II interferon, CD

+4 T cells, and B cells (42, 43). Naive CD4+ T cells become activated

and differentiate into diverse T helper cell subsets that produce

interferons in response to antigenic stimulation and cytokine

signaling (44). IFN and IFN-related signaling pathways partly

promote the inflammatory and adaptive response in RA patients.

We also observed that both ACPA and RF show a relatively high

positivity in subtype B patients. IL-21 produced by follicular helper

CD4 T cells acts directly on B cells via their IL-21 receptors (IL21R),

leading to the production of autoantibodies, including ACPA and RF

(45–47). B cells are capable of producing both proinflammatory and

anti-inflammatory cytokines, which might make the inflammatory

state in peripheral blood for RA worse (48).

In addition to the above neutrophil activation and IFN signaling

subtypes, CD+8 T cell factors also contribute to RA development. Due to

ACPA+ RA being associated with major histocompatibility complex class

II (MHC class II) HLA-DRB1 alleles, T cell studies in RA have focused

primarily on CD4+ T cells. However, RA also exhibits genetic associations

with alleles in the MHC class I HLA-B locus, highlighting the probable

importance of CD8+ T cells (49, 50). It has been demonstrated that IL21R

signaling in CD8+ T cells controls CD8+ T cell development and affects

cellular metabolism, especially under conditions of persistent antigen

presentation (46, 51, 52). In patients with subtype C, the abundant IL-21
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produced by CD4+T cells plays a crucial role in RA development by acting

on the IL-21R of CD8+T cells. Prior research and our results suggest that

joint inflammation and destruction in RA are not exclusively antibody-

driven and that IL-21/IL21R signaling may further drive autoimmune

pathogenesis through autoreactive CD8+T cells (46).

To unravel and understand the disease heterogeneity of RA, we

researched the response of biological agents to different RA

subtypes by analyzing the notable therapeutic effect of Infliximab,

TCZ, Rituximab, Abatacept, and MTX on patients of different

subtypes. Treatment responses of gene-driven subtypes indicate

that patients with specific subtypes may benefit more from some

targeted biological agents than patients with other subtypes. Humby

et al. has compared three non-tumor necrosis factor (TNF) a
inhibitors drugs, including Rituximab, a B-lymphocyte depleter,

Abatacept, which targets T-cell co-stimulation, and TCZ, an IL-6

receptor inhibitor. It was found that among adults with refractory

rheumatoid arthritis, the results of Rituximab and TCZ were

superior to those of Abatacept two years later, which aligns with

our findings (53, 54). Furthermore, Rituximab, directed against

CD20, affects the B cell population and reduces antibody

production, therefore, demonstrating high therapeutic efficacy for

the three subtypes. Infliximab exerts therapeutic effects on RA

patients by inhibiting TNF-a binding to its target receptors and

preventing the production of other proinflammatory cytokines,

including IL and GCSF (55). Gerlach et al. observed that many

CD8+T cells upregulate CX3CR1 upon pathogen challenge (56).

Moreover, a study concluded that the CX3CL1-CX3CR1 system in

patients with active RA might be sensitive to anti-tumor necrosis

factor-alpha therapy and confirmed that CX3CL1 plays a critical

role in the pathogenesis of RA, which may validate better

therapeutic effects of Infliximab on C-type patients characterized

by CD8+T cells compared to other types (57). MTX remains a

cornerstone in treating rheumatoid arthritis and other rheumatic

diseases. Previous studies showed that T cells isolated and activated

ex vivo from RA patients treated with MTX have a diminished

capacity to produce IFNg, IL-4, IL-3, TNF, and granulocyte-

macrophage colony-stimulating factor (58, 59). Over-activation of

the interferon pathway, a characteristic pattern of mRNA

expression, has been demonstrated in RA patients, and the same

results have been observed in subtype B. Our work demonstrates

great efficacy in some patient subtypes and indicates a potentially

impor tant re su l t in e fficacy tha t i s now bur ied in

unstratified analysis.

Furthermore, our SMR analysis based on cis-pQTL identified a total

of six drugs including AMG-557, Ravoxertinib, Ulixertinib, MK-8353,

Temuterkib and KO-947. Of these, AMG-557 as a class of autoimmune

disease drugs has already completed the phase II clinical trial of Sjogren’s

syndrome (NCT02334306) and phase I clinical trial of systemic lupus

erythematosus (NCT02391259, NCT00774943 andNCT01683695) (60).

Whereas Ravoxertinib, Ulixertinib, MK-8353, Temuterkib and KO-947

are currently used primarily to treat tumors. It is notable that both

MAPK3 and ICOLSG, the protein targets of the above drugs, have now

been shown to play a vital role in rheumatoid arthritis disease

progression (61, 62). In the future, further in-depth studies are needed

on the application of these drugs in RA subtyping therapy. Therefore, for

this aspect, the pQTL analysis proposed in this study to identify drug
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targets as a more precise and personalized drug selection contributes to

the new concept of precision medicine.

This study does have some limitations. First, additional meta-

data would have been ideal, albeit this may be difficult given that

this study was carried out in several clinical settings with various

characteristics. Secondly, the Consensus clustering mainly relied on

the subsampling which could lead to a reduction in data size and

may result in potential clustering bias. Thirdly, the stability and

potential changes in the proposed subtypes over time remain

unknown due to the absence of longitudinal assessments within

the descriptions of the subtypes in this review. Finally, a critical

objective is to establish the correlation between clinically defined

subtypes and biomarkers that reflect the underlying disease biology.

5 Conclusions

This endeavor holds significant potential for guiding the advancement

of therapies tailored to specific subtypes. RA is a major medical challenge

that requires more precise treatment. It is crucial to concentrate on the use

of cutting-edge machine learning tools, as demonstrated in this study, in

order to promote a better understanding of RA at a system level. We

extensively analyzed the largest transcriptomic compendium for RA,

utilizing the most comprehensive microarray and RNA-seq dataset

available to date. These findings can serve as valuable guidance for

developing molecular diagnostic approaches and as a future reference

for tailored therapy in RA patients.
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