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Diabetes is a prevalent chronic disease that traditionally requires severe reliance

on medication for treatment. Oral medication and exogenous insulin can only

temporarily maintain blood glucose levels and do not cure the disease. Most

patients need life-long injections of exogenous insulin. In recent years, advances

in islet transplantation have significantly advanced the treatment of diabetes,

a l lowing pat ients to d iscont inue exogenous insu l in and avoid

complications.Long-term follow-up results from recent reports on islet

transplantation suggest that they provide significant therapeutic benefit

although patients still require immunotherapy, suggesting the importance of

future transplantation strategies. Although organ shortage remains the primary

obstacle for the development of islet transplantation, new sources of islet cells,

such as stem cells and porcine islet cells, have been proposed, and are gradually

being incorporated into clinical research. Further research on new

transplantation sites, such as the subcutaneous space and mesenteric fat, may

eventually replace the traditional portal vein intra-islet cell infusion. Additionally,

the immunological rejection reaction in islet transplantation will be resolved

through the combined application of immunosuppressant agents, islet

encapsulation technology, and the most promising mesenchymal stem cells/

regulatory T cell and islet cell combined transplantation cell therapy. This review

summarizes the progress achieved in islet transplantation, and discusses the

research progress and potential solutions to the challenges faced.
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1 Introduction

Type 1 diabetes (T1D) is a chronic progressive metabolic disorder

characterized by hyperglycemia due to destruction of pancreatic b-
cells leading to severe insulin deficiency (1). In the early stages, blood

sugar levels can be controlled within the normal range using oral

hypoglycemic drugs or insulin injections. However, for some patients

with advanced diabetes, these interventions are limited in

effectiveness and cannot prevent complications, such as metabolic

disorders, vascular diseases, and nerve damage. Severe cases can lead

to limb necrosis, blindness, kidney failure, and life-threatening

conditions (2–4). Although significant progress has been made in

diabetes treatment in recent years with new technologies and

medications, such as insulin pumps and continuous glucose

monitoring devices, the treatment of diabetes remains a significant

burden for patients because of the need for dynamic blood sugar

monitoring and adjustment. Therefore, searching for new treatment

methods is a major issue in the field of diabetes.

Pancreatic islet transplantation (IT) is a procedure that involves the

purification of pancreatic islet cells from a donor pancreas, whether it is

xenogeneic and their infusion into the patient’s body, mainly through

the portal vein. This establishes an endogenous glucose-dependent

insulin secretion system, restoring physiological insulin secretion

patterns and achieving real-time, accurate blood glucose control. In

the long term, it can improve diabetic complications and enable insulin

independence, ultimately aiming to cure diabetes. It is considered an

ideal solution for diabetes (5). IT has garnered widespread attention as

an effective treatment for diabetes. However, many difficulties and

challenges have hindered its development (6).

Organ shortage is a global issue and hampers the development

of pancreatic IT. Approximately 8,000 organ donations occur

annually, but less than one-third of the pancreatic organs are

usable for IT (7, 8). The long-term clinical prognosis of patients

undergoing traditional portal vein transplantation is poor. Studies

have shown that post-transplantation inflammatory and immune

rejection reactions can lead to up to 60% pancreatic islet

dysfunction or necrosis. Furthermore, complications such as

portal hypertension, bleeding, and thrombosis can occur during

the portal vein transplantation procedure (9).

In response to these issues, numerous researchers have

proposed solutions, and the main research directions to address

the shortage of pancreatic islet organs focus on stem cell-derived

and porcine-derived islet cells. In terms of selecting new transplant

sites, options such as a subcutaneous pocket and the greater

omentum have certain advantages compared to the traditional

portal vein injection method. In addition, islet encapsulation

technology and cellular therapy for combined transplantation of

MSC/Treg and islet cells are also under active development to

induce immune tolerance in transplant recipients.

We herein report an overview of the current long-term

prognosis of patients following IT. Then, we discuss and elaborate

on the challenges faced in the IT process and the recent progress of

the corresponding solutions. We hope that this information will

offer guidance and reference for further research in the field of IT.
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2 Current outcomes of pancreatic
islet transplantation

Clinical IT has been carried out since the 1970s (10), however,

for various reasons, its clinical efficacy has not been satisfactory. It

was not until 2000 that Shapiro et al. (11) proposed and established

a set of standards, including donor selection, transplantation of islet

equivalents, and postoperative immunosuppressive regimens. They

used a large number of isolated islet cells for transplantation and

implemented a new protocol after surgery using a corticosteroid-

free regimen and reduced doses of calcium channel blockers

(sirolimus, low-dose tacrolimus, and daclizumab), known as the

“Edmonton protocol” (11). Once this protocol was promoted,

clinical results showed significant improvement, marking an

important milestone in clinical IT. In 2006, a clinical islet

t ransp lan ta t ion t r i a l us ing the Edmonton pro toco l

(NCT00014911) was published, in which 36 subjects with T1D

were enrolled at nine transplant centers for islet transplantation

using the Edmonton protocol, with insulin independence and good

glycemic control as the endpoint 1 year after transplantation.

Results showed that a total of 16 subjects met the primary

endpoint, including 5 subjects who remained insulin independent

2 years after transplantation (12). This clinical trial suggests that

islet transplantation using the Edmonton protocol can restore long-

term endogenous insulin production and stabilize blood glucose

levels in T1D patients, but insulin independence may not persist. It

may be necessary to continue improving the immunosuppressive

regimen to achieve longer insulin independence after islet

transplantation. We summarize some clinical trials of

immunosuppressive regimen (Table 1) and using porcine islets in

non-human primates (Table 2).

In recent years, several research teams have published studies

on the long-term progress of IT, affirming its therapeutic effects and

providing new ideas for future treatment protocols (Figure 1). In

2016, Bernhard et al. published a phase III clinical trial for the

treatment of severe hypoglycemic complications in T1DM patients

through IT. The trial was conducted at 8 centers in North America

and included 48 T1DM patients who had been suffering for over 5

years. During the trial, each patient underwent one or more ITs.

The primary endpoints of the trial were achieving HbA1c <7.0% (53

mmol/mol) within the first year after the first transplant and

avoiding severe hypoglycemic events (SHEs) from day 28 to day

365. The results showed that 87.5% of the participants successfully

reached the primary endpoints within one year. IT enables blood

sugar control for patients with refractory SHEs and should be

considered when other treatments are ineffective (33). In 2023,

the team conducted a follow-up investigation of 398 patients with

T1DM and SHEs registered in the Collaborative Islet Transplant

Registry (CITR). They identified 4 factors that are most beneficial

for IT: patients ≥35 years old, infusion of 325,000 islet equivalents,

immunosuppression with T cell depletion or TNF-a inhibition, and

the use of rapamycin (mTOR) and calcineurin inhibitors. When

islet transplant recipients reach the milestone of 5 years after their

last islet cell infusion, approximately 95% of patients who meet
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these 4 common factors experience no SHEs and greatly benefit

from improved glycemic control (13).

In 2022, Marfil-Garza et al. from the University of Alberta,

Edmonton, Canada, published a study on the long-term results of

pancreatic islet cell transplantation over a period of 20 years. This is the
Frontiers in Immunology 03
largest cohort study to date on the long-term outcomes of IT, including

255 patients from the Edmonton Protocol. This study showed that

despite the need for chronic immunosuppression therapy, islet cell

transplantation demonstrated good long-term safety. In this study, the

median follow-up time was 7.4 years, with 90% patient survival and a

median graft survival of 5.9 years. Patients surviving post-transplant

exhibit better insulin sensitivity and more stable blood glucose control

than non-survivors (34). This study is significant for understanding the

long-term effects of islet cell transplantation and for identifying

predictive factors. However, further research is needed to validate

these results and to continue to evaluate the risks and benefits of IT for

better treatment choices for patients.

In a retrospective, multicenter, observational cohort study, 1210

patients from the Pancreatic Islet Transplantation Collaborative

Registry at 39 centers worldwide were included. The study

demonstrated a linear inverse relationship between primary graft

function (PGF) at one month post-most recent IT and the five-year

cumulative incidence of adverse outcomes. This suggests an

association between early transplantation potential and long-term

clinical significance, which has important implications for b-cell
replacement therapies. Anticipated clinical outcomes can guide

personalized decisions regarding repeat islet injections based on a

predefined islet quality threshold, informing current practice. In

future trials, PGF may serve as an early and reliable surrogate

endpoint for successful IT. These findings highlight the potential of

evaluating and optimizing early IT to improve current b-cell
replacement outcomes through an enhanced islet survival and

function post-transplant. This can enhance the effectiveness of IT

and improve patient prognoses (35).

In conclusion, the latest research and clinical data unequivocally

support the safety and efficacy of pancreatic islet cell transplantation

in T1DM treatment. Furthermore, these studies offer promising new

directions for further optimization of IT and for achieving long-

term success.
TABLE 2 Immunosuppressive protocol for transplantation of porcine
pancreatic islets into nonhuman primates.

Immunosuppressive drugs Graft
survival
time

References

Anti‐CD154 mAb, basiliximab,
belatacept, sirolimus

>140 days (23)

CD154-specific and CD25-specific mAb,
FTY720 (or tacrolimus), everolimus

and leflunomide

>100 days (24)

CD40-specific monoclonal antibody (Chi220),
basiliximab, belatacept, sirolimus

203 days (25)

Belatacept and mycophenolate, LFA-1
blockade, basiliximab, tacrolimus,

111 days (26)

Cobra venom factor (CVF), anti-CD154 mAb,
low-dose Sirolimus, anti-thymocyte globulin

(ATG),Tregs

603 days (27)

ATG, anti‐CD40 mAb, CVF, adalimumab,
sirolimus, with or without belatacept

or tacrolimus

60 days (28)
TABLE 1 Different immunosuppressive regimens in islet transplantation.

Immunosuppression
therapy

Result References

Sirolimus, tacrolimus,
and daclizumab

Achieved sustained
insulin independence
for 11.9 months

(11, 13)

Sirolimus or mycophenolate,
belatacept (BELA) or
efalizumab (EFA)

Achieving insulin
independence after one
or two islet transplants

(14)

Thymoglobulin and sirolimus,
efalizumab, mycophenolic
acid (MMF)

All patients achieved
insulin independence
and complete remission
of hypoglycemic
episodes after the last
islet transplant

(15)

Anti-CD3 mAb and sirolimus,
maintained with sirolimus and
reduced-dose tacrolimus

Four of six recipients
achieved and
maintained insulin
independence with an
increased percentage of
CD4+ T cells

(16)

Antithymocyte globulin (ATG),
daclizumab, and etanercept,
maintained with mycophenolate
mofetil, sirolimus, and no or low-
dose tacrolimus

Insulin independence
and absence of
hypoglycemia was
achieved in all
8 recipients

(17)

Daclizumab, sirolimus,
tacrolimus, etanercept, exenatide

Improves islet graft
function and
contributes to insulin
independence with
reduced islets

(18)

Thymoglobulin induction, and
doubleblockage of IL-1b and
TNF-a as well as sirolimus-
free immunosuppression

Only one islet infusion
is required, significantly
improving the efficacy
of clinical
islet transplantation

(19)

Rapamycin, ATG, steroids and
interleukin-1Ra, rapamycin,
mycophenolate mofetil treatment
as maintenance therapy

This regimen is feasible
and safe but less
efficient in maintaining
graft survival than other
regimens based on T-
cell depletion

(20)

Induction immunosuppression
with T cell depletion and/or
TNF-a inhibition; and
maintenance with both
mechanistic target of rapamycin
(mTOR) and
calcineurin inhibitors

Safe to use and exerts a
great and significant
benefit in blood
glucose control

(21)

Alemtuzumab, basiliximab,
maintained withtacrolimus,
mycophenolatemofetil,
and prednisolone

This protocol for
postrenal islet
transplantation
significantly improves
islet allograft function
and improves
glycemic control

(22)
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3 b-cell replacement options: stem
cells and porcine islets

Pancreatic IT holds great promise in the treatment of T1DM.

However, the scarcity of pancreatic islets limits the development of

this technique. Several research teams have proposed different

solutions. Currently, the main focus of pancreatic cell replacement

strategies is on stem cells, including embryonic stem cells (ESCs) and

induced pluripotent stem cells (iPSCs), as well as porcine islets.
3.1 ESCs/iPSCs differentiate into islet
b-cells

The strategy for in vitro differentiation of ESCs/iPSCs into

pancreatic cells mimics the molecular regulatory mechanisms of

pancreatic development in vivo. It involves the use of a

combination of growth factors and small molecules to activate

developmental signaling pathways and transcription factor

networks. Through staged induction, pancreatic progenitor cells

and endocrine progenitor cells eventually differentiate into mature

endocrine cells (a, b, d) cells (36–39). D’Amour et al. first attempted

to establish a protocol for generating hormone-expressing cells that

can synthesize and release multiple hormones (40). Rezania et al.

reported a seven-step differentiation protocol, in which the resulting

cells expressed key markers of mature b-cells, such as MAFA, PDX1,

NKX6.1, and INS, and exhibited similar functionality to human islets

(Figure 2) (41). Subsequently, Pagliuca et al. utilized human ESCs and

employed a stepwise induction method with the addition of various

factors in basal medium to successfully cultivate insulin-secreting b-
cells (SC-b-cells), which functioned as fully functional pancreatic b-
cells. Upon transplantation into mice, SC-b-cells showed detectable

insulin secretion within two weeks, with secretion levels changing in
Frontiers in Immunology 04
response to blood glucose levels (42, 43). Directed differentiation

protocols have also been reported for iPSCs, enabling the generation

of cells expressing insulin and other mature b-cell markers (44, 45).

Because ESCs/iPSCs have good proliferation and differentiation

ability and can produce large numbers of cells, they are ideal candidates

for differentiation into islet b-cells and have broad application

prospects for treating T1D. Therefore, how to produce SC-b-cells in
vitro in large quantities has become the focus of research. The key

transcription factors for differentiating ESCs/iPSCs into SC-b-cells in
vitro are PDX1 and NKX6.1, both of which are highly expressed in

pancreatic progenitor cells and required for producing monohormone,

glucose-reactive b-cells (46, 47). Several research teams have reported

differentiating ESCs/iPSCs into PDX1 and NKX6.1 co-expressing

pancreatic progenitor cells (48, 49) in monolayer culture, and with

improved experimental conditions, up to 90% of PDX1+/NKX6.1+ co-

positive pancreatic progenitor cells were produced. Simultaneously,

differentiating pancreatic progenitor cells into pancreatic b-cells has

also made substantial progress, and the efficiency of pancreatic

progenitor cells producing b-cells in vitro increased to about 40%

(21, 42), although these b-cells are still different from human b-cells in
other functions despite being responsive to glucose. To further improve

the function of SC-beta cells, multiple research teams provided insights,

such as Juan et al., who found that co-culturing with factors regulating

circadian rhythm could enhance SC-beta cell function (50), Leonardo

by altering the signaling pathway of SC-b-cells differentiation process

(51), while Aharon et al. modified the nutrients in the medium used for

in vitro differentiation to further enhance generating functional SC-b-
cells in vitro (52), and could also induce SC-b-cells by simulating the

3D culture system of human pancreatic development (53). In addition,

Isaura (54) and Mariana (55) et al. recently updated and detailed the

recent progress in using ESCs/iPSCs derived islet b-cells in vitro. Some

of the above protocols, although not reaching the level of the original

human islet b-cells, promoted the development of stem cells

differentiating into islet b-cells in vitro.
FIGURE 1

Main development process of clinical islet transplantation.1970S (10), 2000S (11, 12), 2010S (29, 30), 2020S (31, 32).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1391504
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1391504
With the continuous development of stem cell technology,

pancreatic b-cells products derived from ESCs/iPSCs are

gradually used in clinical trials. A clinical trial conducted in 2014

(NCT02239354) used a stem cell-derived pancreatic endoderm cell

population (PEC-01) developed by ViaCyte, Inc., which matured

into insulin-producing endocrine cells in vivo over several months

in animal models (56–58)., and in the clinical trials they have

developed an immune protective device (PEC - Encap, VC - 01) is

used to encapsulate PEC - 01, the device is a kind of biological

membranes in order to eliminate the need for immunosuppression.

The results of the trial showed that PEC-01 cell population could

differentiate into b-cells and other islet cells after implantation

under the patient’s skin, but excessive fibrosis around the device

resulted in the end of the trial due to immune rejection (29, 30). To

address this problem, the new device was modified with an opening

in the biofilm that allowed vascularization, enhanced nutrient

exchange so that host cells could also penetrate the device, and

immunosuppress ive therapy was admini s te red a f te r

transplantation, while a more mature and functional cell

population (PEC-02) was used. The results of a subsequent

clinical trial (NCT03163511), published in 2021, showed that

transplanted cells matured from pancreatic progenitor cells to

pancreatic endocrine cells six months after transplantation,

producing glucose-reactive C-peptide (59, 60) in six of the 17

patients who underwent the trial. Although the circulating

C-peptide levels observed in these studies are still low, all

demonstrate the potential of ESCs/iPSCs to differentiate into

renewable islet b-cells. Most importantly, both studies, although

in early stage clinical studies, did not identify any serious safety

issues related to the transplanted cells, including tumor formation.

ViaCyte was later acquired by Vertex. Another direction of clinical

trials is transplanting fully differentiated SC-b-cells, which have
Frontiers in Immunology 05
been successful in non-human primates (61, 62). The most

promising clinical trial to date is Vertex’s Phase I/II trial in 2021

(NCT04786262), which uses cells made of fully differentiated islet

cells derived from pluripotent stem cells (VX-880) injected into the

liver via a traditional portal route. Immunosuppressive therapy was

also used to protect the transplanted islet cells from immune

rejection. Some early results from the trial were recently

published, with significant circulating C-peptide levels detected

three months after transplantation and patients’ blood sugar

significantly controlled, And well tolerated treatment (63). VX-

880 is a novel stem cell derived product for the treatment of T1D,

and the trial is continuing in the United States and Canada to

further evaluate the safety and efficacy of the product. As the

technology develops, more clinical trials are expected.

In addition to using ESC/iPSC-based techniques to induce the

differentiation of transplantable b-cells in vitro, Zeng et al. proposed
an alternative solution. Using single-cell sequencing technology,

they discovered a previously unreported cell population in the

mouse pancreas: protein C receptor-positive (Procr+) pancreatic

cell population. These Procr+ endocrine progenitor cells can be

cultured and induced to differentiate into islet-like cells. In a

transplantation model of diabetic mice, transplanted islet-like

organs reversed the disease (36). This finding provides a new

direction for the direct extraction of target cells from the pancreas

and induction of their differentiation into islet-like organs.
3.2 Islet cells of porcine islet origin

In addition to using stem cell-derived islet beta cells to replace

donor islet cells, another potential option is xenotransplantation

using porcine islets. Compared to human islets, pig reproduction is
FIGURE 2

(A) The seven stages of differentiation of iPSCs into mature b-like cells. (B) Stem cell-derived beta cells and porcine islet-derived beta cells, which
can be modified by a number of techniques and transplanted to potential transplantation sites.
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easier and pig islets are more readily available. More importantly, pig

insulin is highly similar to human insulin, differing by only one

amino acid. Pig insulin has been used to treat diabetes for decades.

Pigs have organs similar in size to humans, enabling production of a

sufficient number of islets for xenotransplantation. They are the most

promising donor source for xenotransplantation. Although more

porcine islet cells are required to achieve adequate insulin secretion

compared to human donor islets, porcine islets appear to outperform

human islets in studies. Porcine islet cell xenotransplantation has

achieved insulin function in non-human primates, suggesting

feasibility in clinical settings. Shin et al. reported long-term survival

of adult porcine islets transplanted into five rhesus monkeys for over

20 months. These early trials suggest pig islets have great potential to

address donor islet shortages for T1D patients.

However, there are still some urgent problems to be solved in

the use of porcine islet xenotransplantation, the first of which is

graft rejection. For example, infusion of porcine islets into the portal

vein leads to activation of complement and clotting pathways,

resulting in platelet aggregation and thrombosis at the transplant

site and hyperacute rejection (64). This is followed by human

responses to porcine islet antigens (Galactose a1,3-galactose and

N-Glycolylneuraminic acid), as well as zoonotic infections caused

by endogenous retroviruses.

In the meantime, solutions are being tried. One strategy is

encapsulating islet cells without immunosuppression to solve the

immune rejection problem in porcine islet xenotransplantation.

Various natural or synthetic biomaterials are used for

encapsulation, such as polyethylene glycol diacrylate (PEG-DA)

(65), agarose (66), and other biological materials like alginate (67).

Coating islet cells with alginate films containing polyethylene glycol

acrylate has allowed survival up to 6 months without

immunosuppression (68, 69). However, encapsulation risks hypoxia

and nutrient deficiency in islet cells, delayed glucose and insulin

diffusion affecting glucose regulation (70). One possible

immunosuppression approach is co-stimulatory blocking. Studies

in non-human primates showed anti-CD154 monoclonal

antibodies combined with stimulus-blocking and standard

immunization regimens injected through the portal vein prolonged

transplanted porcine mice survival. However, no clinically available

anti-CD154 monoclonal antibodies exist due to high thrombosis risk

(71). We summarized relevant studies using immunosuppressive

therapy to prolong porcine islet survival post-transplantation in

Table 2. Technological developments like gene editing technologies

like CRISPR/Cas9 potentially eliminate endogenous viruses in pigs,

improving porcine islet xenotransplantation safety to humans (31).

Gene editing overexpresses or knocks out multiple genes finding the

best transgenic pigs for islet transplantation, avoiding

xenotransplantation rejection (72). Recent studies showed targeted

controlled mutational events successfully generated in pig cells

through nuclease-directed homologous recombination (32).

In general, various differentiation protocols are available to

induce the transformation of ESCs/iPSCs into insulin-producing

cells. Clinical trial results have shown its safety and tolerance,

making it a hot topic in current research with broad application

prospects. However, the approach of directly selecting cells from the

pancreatic tissue to induce pancreatic-like organs should not be
Frontiers in Immunology 06
abandoned. Finally, although extensive data on pig islets are still

required from nonhuman primates for safety validation before

clinical trials, they have gained popularity among many

researchers. These different sources of b-cell replacement provide

abundant choices for future clinical applications, allowing

personalized treatment plans based on individual patient

conditions. We summarized the advantages and disadvantages of

using ESCs/iPSCs derived islet b-cells and porcine islet instead of b-
cells as shown in Table 3.
4 Ongoing challenges of islet
transplantation immunosuppression

One of the greatest challenges that currently exists with islet

transplantation is the post-transplant-induced recipient immune

rejection, which may be responsible for the progressive decline in

islet function in the years following islet transplantation as well as the

inability of some patients to completely wean themselves from

exogenous insulin therapy. These immune reactions include, but

are not limited to: blood-mediated immediate inflammatory response

(IBMIR) (73), recurrent autoimmune reactions (74, 75), and

allogeneic rejection (76–78). Therefore, there is a clinical need to

use high-quality islets from multiple donors or multiple inputs to

counteract the substantial cell loss that occurs after transplantation

(79). Currently, in order to overcome immune rejection after islet

transplantation, in addition to the application of immunosuppressive

drug, other new options have been explored, the most promising of

which include the combined transplantation of mesenchymal stem

cells (MSCs)/regulatory T cells (Tregs) and islet cells as well as the

application of islet encapsulation techniques (Figure 3).
4.1 MSCs/Tregs were co-transplanted with
islet cells

Mesenchymal stem cells (MSC),also known as stromal cells or

mesenchymal progenitor cells, are a kind of non-hematopoietic stem
TABLE 3 Comparison between SC-b-cells and porcine islets for the
imminent cure of T1D.

Type Advantages Disadvantages

SC-b-cells • The ability to proliferate and
differentiate indefinitely
• Easy to genetically engineer
• Potential for standardized
industrial production
• Encapsulation reduces
immune rejection

• Difficulty in vitro
differentiation
• Lower functional performance
of stem cell-derived islet cells
compared to primary human
islets
• Use of different pluripotent
stem cell lines and protocols

Porcine
islets

• Easy access to islet donors
• Functionally similar to
human pancreatic islets
• Successful trials in non-
human primates
• Encapsulation to render long-
term function

• Immune rejection due to
xenotransplantation
• Zoonotic infections caused by
endogenous retroviruses
• Porcine islet antigen
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cells derived from mesoderm, with multi-directional differentiation

potential and strong self-renewal ability (80). MSC is relatively easy to

obtain, can be obtained from human and rodent peripheral blood,

placental tissue, umbilical cord blood, bone marrow cavity tissue and

adipose tissue and other tissues and organs, and can be expanded and

induced to differentiate in vitro, so it has been widely concerned and

applied in the field of tissue engineering and regeneration. MSCs can

improve the efficacy of IT in animal models, especially in regulating

immune responses and protecting islet transplants (81–83). MSCs

can improve insulin resistance in peripheral tissues through potential

immunomodulatory and anti-inflammatory effects and promote

pancreatic b-cell regeneration and protection (84, 85). Multiple

studies have shown that, when co-cultured or co-transplanted with

islet cells, MSCs can protect islet cells from apoptosis due to hypoxia

and inflammatory cytokines through their secretory function, thus

improving the survival of islet grafts in vivo and promoting the early

recovery of the islet function (86, 87). In 2021, Kenyon et al. reported

that islet cells and MSCs could be co-transplanted in non-human

primate IT experiments. The results showed that the rejection-free

survival and overall survival of treated islet grafts were significantly

extended (88). Wang et al. used engineered MSCs as helper cells for

islet co-transplantation and obtained similar results in diabetic mice.

MSCs can induce local immune regulation and are potentially

suitable for IT (89). Another study in patients with chronic

pancreatitis showed that co-transplantation of autologous MSCs

and islets is a safe and potential strategy for improving the islet

function after transplantation (90). Generally speaking, co-

transplantation with islet cells, it was found that mesenchymal stem

cells had the functions of nutrition, support and protection to islet b-
cells, as well as anti-inflammatory and immune regulation.

Regulatory T cells constitute a subset of T cells characterized by the

presence of typical biological markers such as CD4+CD25+FoxP3+.

These cells wield potent immunomodulatory functions and are pivotal
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in regulating immune homeostasis, upholding self-tolerance, and

preventing excessive activation of the immune system (91). Tregs are

considered a promising alternative to pharmacological agents that

promote the engraftment and survival of transplanted organs/tissues

(92–94). Tregs mainly produce self-tolerance, tolerance to alloantigens,

and transplantation tolerance by inhibiting the activation and function

of reactive effector T-cells (94). Currently, Treg therapy can be applied in

two situations in IT: to promote the survival of islets during the initial

transplantation and to induce peripheral tolerance to eliminate

immunosuppression. The addition of Tregs at the time of islet

infusion has been explored as a method to reduce the initial islet graft

loss and improve islet engraftment (95–97). It has been reported that, in

clinical models, Treg expansion in vitro and subsequent reinjection into

patients can induce long-term remission of T1DM (98, 99). Although

there are few relevant reports, a large amount of preclinical evidence

shows that Treg-based treatment has benefits (100–102). Zielinski et al.

recently reported a two-year study using a combined infusion of Tregs

and rituximab to treat pediatric patients with T1DM. The study results

show that combination therapy can delay disease progression compared

with Treg or rituximab alone, and patients who received combination

therapy were able to maintain higher insulin sensitivity and fasting C-

peptide levels than patients in the single-treatment and control groups.

Furthermore, patients who received Tregs alone had higher C-peptide

levels than those in the untreated control group. Another ongoing

clinical trial (NCT03182426) is observing the benefits of T cell depletion

and dual anti-inflammatory treatment. If successful, it will provide new

benefits to islet transplant patients.

With the development of IT, most traditional immunosuppressive

drugs require continuous medication and cannot completely solve the

problem of immune rejection in islet transplants. Cell therapy co-

transplanted with MSCs/Tregs and islets has shown great advantages,

although it is still in the experimental stage, and its application

scenarios are broad.
FIGURE 3

Different protocols for dealing with immune rejection after islet transplantation.
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4.2 Islet encapsulation

Islet encapsulation represents a promising approach to tackle

host immune rejection, employing biomaterials to envelop islets in a

protective barrier. This allows oxygen and nutrients to permeate

islet cells while enabling secreted insulin to disseminate into the

bloodstream. Concurrently, it shields islet cells from assault by the

host immune system (103–105). This technology has developed

rapidly over the past century and can be categorized into micro and

macro-encapsulation based on different processes.

Micro-encapsulation technology encapsulates islets in a thin layer

of biomaterials, facilitating exchange of nutrients, oxygen, and

metabolites. Transplantation of these micro-encapsulated islets is also

simplified. Alginate stands out as a particularly promising biomaterial

due to its superior biocompatibility and ease of manufacture. Studies

confirm alginate reduces post-transplantation immune rejection and

enhances survival of encapsulated islet cells (105). For instance,

incorporating chemokine CXCL12 into alginate micro-encapsulation

protects islets and boosts islet cell function even without

immunosuppressants (106). This alginate-based micro-encapsulation

method has also been applied to encapsulate SC-b-cells, exhibiting no
excessive fibrosis post-transplantation sans immunosuppressive

therapy (107). It has emerged as a key biomaterial for b-cell
encapsulation studies. Recently, research teams have modified

extracellular matrix (ECM) components into alginate, simulating the

pancreatic microenvironment to safeguard coated islet cells from

immune cell and inflammatory factor impacts while promoting

insulin secretion by islet b-cells (108, 109). Nevertheless, several

challenges persist in leveraging micro-encapsulation, especially post-

implantation, presenting potential issues.

Another macro-encapsulation technique can prevent direct

graft-host immune cell contact and spread, and enable easy

removal of any post-transplantation safety issues, and evaluating

graft efficacy at any time, unavailable with micro-encapsulation

(110). Macro-encapsulation has combated host immune rejection

but is limited by inadequate oxygen and nutrient exchange before

blood vessel formation around the device (30). Adding vascular

endothelial growth factor (VEGF) and pre-vascularization

improved this (111, 112). Recently, Wang et al. developed a new

device with immunoprotective hydrogel and thermoplastic silica

gel-polycarbonate-polyurethane maintaining islet function for up to

200 days (113) in allogeneic rodent islet transplant models. Another

macro-encapsulation type encapsulated SC-b cells with amphoteric

modified alginate gel, reversing hyperglycemia for 238 days (114)

post-implantation in severe combined immunodeficiency (SCID)

mice. Many research teams are studying islet packaging, and we

summarize recent progress in Table 4.
4.3 Optimal transplant site

Currently, most clinical IT methods involve injecting islet cells

through the hepatic portal vein under ultrasound guidance. This is a

conventional, mature method (11, 121). However, portal vein IT

can cause postoperative bleeding, vascular emboli formation, portal

hypertension, and periportal fatty degeneration. In particular, the
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blood-mediated acute inflammatory response (IBMIR) caused by

portal vein transplantation can result in massive graft loss in the

very early stages of transplantation (122), suggesting that the liver is

not the most suitable site for IT. Researchers are exploring different

organs and sites (Figure 2B) to determine the best location for islet

cell transplantation (Table 5).

The omentum represents a potentially valuable transplant site,

offering avoidance of IBMIR compared to traditional portal vein

inflow. This richly vascularized tissue secretes various growth

factors (e.g. CXCR4, VEGF, and SDF-1) that promote islet

vascularization and survival (131, 132). In addition, omentum

possesses immunomodulatory capabilities and can monitor the

graft for prompt removal if adverse reactions occur. Omental

transplantation using biological scaffolds has been used for

clinical applications. A US trial (NCT02213003) transplanted

pancreatic islets into the omentum of T1DM patients (133).

Insulin independence was achieved by day 17 post-transplant but

declined approximately one year later. Another ongoing trial

(NCT02821026) has shown limited success. However, in 2023,

Deng et al. reported a method of omental allogeneic IT in

nonhuman primates using locally applied recombinant thrombin

(Recothrom) and the recipient’s autologous plasma to design a

degradable matrix for islet fixation. Normal blood sugar and insulin

independence were achieved at one week post-transplant, with

stable expression thereafter. This study provides strategies for the

clinical translation of omental transplantation.

The subcutaneous space is another ideal transplant site. It is a

relatively avascular region that is easily accessible to biomaterials or

macroscopically encapsulated islets. In 2020, Yu et al. reported

successful subcutaneous IT in various immune-competent and

immune-naïve animal models using a device-free islet survival

matrix to achieve long-term normoglycemia. This method has

been used for mice, pigs, and humans. Islet cell transplant models

have the advantages of simplicity, safety, and reproducibility (134).

With the clinical application of ESCs/iPSC-derived islet-like cells

and islet encapsulation technology, the subcutaneous cavity can be

easily monitored and removed, making it a promising transplant

method. However, the skin lacks relative blood vessels and cannot

obtain early-stage nutrients and oxygen, which limits its clinical

application. To address this, Darling et al. tested a biodegradable

temporary matrix based on a polyurethane scaffold that forms good

blood vessels within the skin. In a porcine islet transplant model,

grafts maintained normal function and survived for over three

months (128). In addition, the immune response hinders

subcutaneous transplantation. Therefore, the development of

advanced biomaterials with angiogenesis and immune modulation

capabilities may be the next step for the long-term islet survival and

function in the skin.

In addition to the two aforementioned research hotspots of

transplant sites, studies on transplanting islets into the intrapleural

(135), skeletal muscle (136), anterior chamber of the eye (ACE)

(137), and other sites have been reported (138–140). However,

research on these aspects is still in its infancy, and there is a large

gap in clinical applications. Due to the application of bioengineering

materials and macro-encapsulated islet grafts, the greater omentum

and subcutaneous space seem to be ideal sites for IT in the future.
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4.4 Immunosuppression

Although several of the above options are effective in mitigating

the immune rejection caused by islet transplantation and are the way

forward, immunosuppressive therapy is still required at this time to

ensure islet survival and function. The goal of immunosuppression is

to provide effective and sustained immune protection in the smallest

effective amount without suffering from the side effects associated

with immunosuppression. Since inflammation leads to significant

islet loss, anti-inflammatory drugs reduce damage from pro-

inflammatory factors and may improve islet cell function in the

early post-transplant period (141). Therefore, in order to attenuate

the IBMIR response that occurs after islet transplantation and

thereby reduce islet loss, several anti-inflammatory therapies have

been used in the perioperative period of islet transplantation,
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including TNF-a inhibitors (etanercept), IL-1 receptor antagonists

(anabolic acid), and a1-antitrypsin. Enalcipro, which targets TNF-a,
is a potent antitumor agent that is widely used in T1D patients with

allogeneic transplantation (17), and its use in mouse animal models

results in a reduction of inflammatory markers and has been shown

to have a sustained effect on autoimmunity (142). And in another

study in an immunodeficient mouse islet transplant model, it was

found that the percentage of mice achieving normal blood glucose

levels after transplantation with the combination of etanercept and

anabolic acid was 87.5%, compared to 45.45% with etanercept alone,

and 53.9% with anabolic acid alone, suggesting that the combined

use of etanercept and anabolic acid significantly improves the

function of islet grafts (143). However, a recent study showed that

although the use of etanercept demonstrated better islet function in

the pre-transplant period, this advantage was not found to be

sustained at the subsequent 1- or 2-year follow-up, and therefore,

different doses or prolonged use of etanercept need to be explored

to benefit patients (144). Another promising anti-inflammatory is

a1-antitrypsin, which is a serine protease inhibitor, has been shown

in several preclinical studies in animal islet transplantation models

to attenuate the IBMIR response and prevent islet cell apoptosis

while inhibiting cytokine-induced islet inflammatory responses

(145, 146).
5 Conclusion and outlook

In terms of long-term results of islet transplantation, this study

has greatly advanced research in the treatment of diabetes, and

optimized protocols for long-term efficacy of islet transplantation

have demonstrated the superiority of this approach, eliminating the

dependence on exogenous insulin in a significant proportion of

patients, thus avoiding diabetes-related complications. However

islet transplantation still faces challenges such as shortage of islet

sources and immunosuppression. To address the shortage of islet

donors, we highlight stem cell-derived pancreatic b-cells and porcine
islets as future solutions. Where stem cells are differentiated in vitro

to generate pancreatic b-cells are being investigated for more efficient

differentiation protocols, cell culture expansion methods and islet

encapsulation techniques to optimize production to provide

protection against the patient’s autoimmune response. Porcine islet

xenotransplantation is becoming a reality and if successful will

provide a constant supply of high quality islet donors, however,

xenoantigens and strong immunosuppressive responses are currently

the main challenges and gene editing using CRISPR-Cas9 is expected

to bring a brighter future for porcine islet xenotransplantation. In

addition to overcome the immunosuppression, islet encapsulation

technology is currently being developed, and various encapsulation

materials: natural or synthetic biomaterials are showing clear

advantages in several preclinical and clinical trials, and although

the ideal biocompatible material is still a matter of debate, it is

undeniable that islet encapsulation technology provides a barrier to

protect transplanted islets, and in the future it will be mainly useful in

preventing hyperfibrosis, promoting local vascularization, and

preventing the emergence of chronic immunosuppressive rejection.
TABLE 4 Different strategies and biomaterials for islet encapsulation.

Encapsulation
material

Result References

Carboxymethyl
cellulose coated

chitosan
(CS@CMC) microgels

Long-term glucose regulation for
180 days was achieved in post-

transplant diabetic mice

(115)

Methacrylated gelatin
(GelMA),

methacrylated heparin
(HepMA) and VEGF

Reversed blood sugar levels in
diabetic mice from high to normal
blood sugar for at least 90 days

(116)

Zwitterionically
modified

alginate hydrogel

Hyperglycemia was reversed in
SCID mice for 238 days

(114)

Immunoprotective
hydrogel core and

thermoplastic silicone-
polycarbonate-

urethane

In an allogeneic rodent islet
transplantation model, use of the
device was shown to maintain islet

function for up to 200 days

(113)

Polytetrafluorethylene
(PTFE)-membrane

Exhibit a rapid, vaso-independent
and glucose-stimulated insulin
response, early improvement of

hyperglycemia and reduced fibrosis

(117)

Silicon
nanopore membranes

Islets encapsulated with this device
exhibit a highly active and biphasic

insulin response to dynamic
glucose stimulation

(118)

PTFE After implantation, the patient
experienced increased fasting C-
peptide levels, increased glucose-
reactive C-peptide levels, and
mixed diet-stimulated C-

peptide secretion.

(59)

Polyethylene glycol
diacrylate (PEGDA)

The absence of
immunosuppression reverses the
signs of diabetes and leads to
insulin-independent status or

significantly reduced
insulin requirements

(119)

Polyethylenglycol
(PEG)

Reverse diabetes and maintain
normal blood sugar for more than

80 days

(120)
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MSCs/Tregs and islet cell co-transplantation shows a broader

prospect, which can minimize the use of immunosuppressant and

reduce the side effects of immunosuppressant once it is successfully

applied. Since islet grafts do not survive long term after portal vein

infusion, which suggests that this site is not the optimal site for islet

transplantation, subcutaneous lumen and greater omentum based

encapsulation device is a more attractive strategy in comparison. Not

only does it provide a physical barrier that reduces the destruction of

the transplanted islets by the body’s immune cells, thereby improving

islet survival and function. At the same time, this strategy can be

adapted as needed, such as removing the device in the event of an

adverse reaction, and this flexibility can also be applied to

individualize treatment as the patient’s specific needs evolve.

The recent advent of single-cell sequencing technology (scRNA-

seq) has ushered in a new era of molecular dissection, which is

capable of revealing differential gene expression at the level of

individual cells (147). In the field of islet transplantation, scRNA-

seq may help to reveal the characteristics of different cell types in

allogeneic islet transplants and be able to pinpoint cellular stress

responses and pathophysiological changes in different grafts, which

may further prolong islet graft survival and functional

improvement, ultimately leading to insulin independence (148).

In conclusion, with the innovative research carried out on islet

source acquisition, immunosuppression protocols, and graft site

reselection for islet transplantation, this technology will certainly be

driven to greater maturity.
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TABLE 5 Selection of transplantation sites other than the liver.

Transplantation
sites

Receptor Bio-materials Result References

Omentum Diabetic rats Hydrogels Transplanted pancreatic islets show high rates of peri-islet and intra-islet
hemotransfusion and reverse diabetes

(123)

T1D patient Biocompatible Plasma-
Thrombin Gel

Stable glycemic control over 9 months, but relapse after 1 year (124)

Lewis rats Plasma-
thrombin bioscaffold

Maintained normal blood glucose for 100 days post-transplant (125)

Intramuscular 7 years
old patient

Quality of life improves, but exogenous insulin is still needed (126)

Lewis rats Significantly lower blood sugar levels after islet transplantation (127)

Subcutaneous space Diabetic
mice

Biodegradable
temporizing matrix

Porcine islet cells survive more than 100 days after transplantation and
secrete C-peptide

(128)

Diabetic
mice

Methacrylic acid-
polyethylene glycol

Reversal of diabetes by injection of 600 rodent islet equivalents for 70 days (129)

Anterior Chamber of the
Eye (ACE)

Baboon Decreased exogenous insulin requirement, no serious adverse effects seen (130)
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