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Lupus nephritis (LN) is a challenging condition with limited diagnostic and

treatment options. In this study, we applied 12 distinct machine learning

algorithms along with Non-negative Matrix Factorization (NMF) to analyze

single-cell datasets from kidney biopsies, aiming to provide a comprehensive

profile of LN. Through this analysis, we identified various immune cell

populations and their roles in LN progression and constructed 102 machine

learning-based immune-related gene (IRG) predictive models. The most

effective models demonstrated high predictive accuracy, evidenced by Area

Under the Curve (AUC) values, and were further validated in external cohorts.

These models highlight six hub IRGs (CD14, CYBB, IFNGR1, IL1B, MSR1, and

PLAUR) as key diagnostic markers for LN, showing remarkable diagnostic

performance in both renal and peripheral blood cohorts, thus offering a novel

approach for noninvasive LN diagnosis. Further clinical correlation analysis

revealed that expressions of IFNGR1, PLAUR, and CYBB were negatively

correlated with the glomerular filtration rate (GFR), while CYBB also positively

correlated with proteinuria and serum creatinine levels, highlighting their roles in

LN pathophysiology. Additionally, protein-protein interaction (PPI) analysis

revealed significant networks involving hub IRGs, emphasizing the importance

of the interleukin family and chemokines in LN pathogenesis. This study

highlights the potential of integrating advanced genomic tools and machine

learning algorithms to improve diagnosis and personalize management of

complex autoimmune diseases like LN.
KEYWORDS

systemic lupus erythematosus, lupus nephritis, scRNA-seq, immune-related genes,
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1 Introduction

Lupus nephritis (LN) is a complex autoimmune disease

affecting the kidneys and represents a significant health concern

due to its diverse clinical manifestations and heterogeneous nature

(1). Progress in understanding the molecular mechanism of LN has

been pivotal for advancing diagnostic and therapeutic strategies.

Recent studies highlight the critical role of renal-infiltrating

immune cells in driving LN pathogenesis (2, 3). Distinct

subpopulations of CD4+ T helper cells are strongly associated with

the immune mechanisms of LN (4). The significant accumulation of

monocytes and macrophages in the renal tissues of LN patients

emphasizes the pronounced involvement of immune cells in this

disease (5). Recent single-cell sequencing analyses have further

illuminated the relevance of monocytes as beneficial subtypes in the

immune response associated with LN, highlighting their potential to

modulate antigen presentation and interferon secretion (6). Exploring

immune-related signaling pathways in LN patients holds promise as a

novel perspective for immunotherapeutic interventions.

Single-cell RNA sequencing (scRNA-seq) technology offers an

advanced approach to exploring gene expression at the individual cell

level, providing profound insights into cellular diversity and biological

mechanisms (7, 8). This powerful technique is particularly valuable in

studying autoimmune diseases such as LN, facilitating a comprehensive

exploration of the intricate cellular landscape involved in immune-driven

inflammation (9). ScRNA-seq helps researchers to accurately measure

gene expressionwithin individual cells, enabling the understanding of cell

heterogeneity between diseased and healthy states (10).

In parallel, the application of machine learning algorithms in

biomedical research has gained significant traction (11). Machine

learning, and specifically its subfield of deep learning, has shown

immense promise in predictive modeling, pattern recognition, and

identifying important biomarkers (12). Using these algorithms can

help in the development of predictive models that have the potential

to transform the way we diagnose and manage LN.

In this study, we use a combination of single-cell sequencing

and machine learning technologies to comprehensively investigate

the transcriptional and immune profiles of LN, identifying key

immune-related genes that could serve as potential therapeutic

targets. With the help of these advancing analytical techniques,

our research aims to delineate the complex interactions and

molecular signatures of LN, to improve outcomes for patients

through more precise diagnostics and targeted therapies.
2 Materials and methods

2.1 Data processing

Single-cell RNA sequencing (scRNA-seq) data of twenty-four

patients with lupus nephritis (LN) and ten control samples were

obtained from ImmPort (13). Bulk RNA datasets were collected from

the GEO database. Four cohorts of bulk RNA datasets of LN patients

were included in this study (Supplementary Table S1) (14–17).

Immune-related genes (IRGs) were acquired from ImmPort (18).
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2.2 Single-cell data analysis of LN patients

Seurat was used for filtering and subsequent clustering (19).

Twenty-four LN patients and ten control samples from living donor

kidney biopsies were analyzed. Cells with RNA feature counts less

than 500 or greater than 5000 and mitochondrial content exceeding

25% were excluded as poor-quality cells. The T-SNE algorithm was

applied for visualization (20), and batch effect correction was

performed using the “RunHarmony” function (21). Cell subtypes

were annotated according to cell markers from the original study

(13). Differential expression analysis was performed using the

Wilcoxon method to identify genes with significant expression

differences (DEGs) between groups, setting adjusted P values to

0.05 and the absolute log2FC value to >1.
2.3 Non-negative Matrix Factorization
(NMF) and Meta-Program detection of
leukocytes in LN patients

For the analysis of leukocytes in LN samples, the consensus

Non-negative Matrix Factorization (cNMF) algorithm was utilized

(https://github.com/dylkot/cNMF) (22). The optimal number of

components (k) was determined using the diagnostic plot

approach from the provided tutorial (https://github.com/dylkot/

cNMF). To identify nonoverlapping gene modules, we used a gene

ranking algorithm. Expression program patterns were further

analyzed by employing Pearson correlations and hierarchical

clustering, resulting in the Meta-Programs.
2.4 Establishment of predictive IRG models
for LN by machine learning

To predict LN more accurately and universally, we employed a

comprehensive suite of twelve different machine learning

algorithms. These tools help us understand complex biological

data by finding patterns that humans may not easily recognize.

The algorithms we used include:
1. LASSO (Least Absolute Shrinkage and Selection Operator)

- Simplifies the analysis by reducing the number of

data variables.

2. Ridge Regression - Analyzes data by considering various

factors simultaneously to minimize errors.

3. Elastic Net (Enet) - Combines the features of LASSO and

Ridge to provide a balanced analysis of the data.

4. Stepwise Generalized Linear Models (Stepglm) - Builds a

model by adding or removing potential predictors one at a

time based on statistical criteria.

5. Support Vector Machines (SVM) - Finds the best

boundary that separates different groups of data.

6. Generalized Linear Model Boosting (GlmBoost) -

Improves prediction accuracy by combining several

simpler models into a more powerful one.
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7. Linear Discriminant Analysis (LDA) - Helps to find a

linear combination of features that characterizes or

separates two or more classes of objects or events.

8. Partial Least Squares Regression (plsRglm) - Focuses on

finding the relationship between input data and the

response variable by extracting relevant information.

9. Random Survival Forests (RF) - A method that uses

decision trees to predict the outcome over time.

10. Gradient BoostingMachines (GBMs) - Builds one tree at a time

and each new tree helps to correct errors made by previously

built trees.

11. Extreme Gradient Boosting (XGBoost) - An optimized

version of GBM that is faster and more efficient.

12. Naive Bayes - A simple but powerful algorithm based on

probabilistic logic.
2.5 Model construction

We began building our models using a combination of two large

datasets (GSE32591 and GSE113342) that contain extensive genetic

information from LN patients. This rich data helps us to train our

models effectively, aiming to predict the severity and presence of LN

by analyzing patterns in the expression of immune-related genes.
2.6 Model validation

After constructing the models, their reliability and accuracy were

thoroughly evaluated using two additional independent datasets,

GSE200306 and GSE81622. These datasets were chosen to test

whether our models can reliably work under different conditions

and with various patient groups. We assessed the performance of

each model by calculating the Area Under the Receiver Operating

Characteristic Curve (AUC), which measures the ability of the model

to correctly classify patients with and without LN.
2.7 Expression validation of hub IRGs by
six cohort.

The expression levels of six hub IRGs, identified as central to the

predictive models, were validated using six datasets (Supplementary

Table S2) (14, 23–25).
2.8 Expression validation of hub IRGs in an
in-house cohort via real-time PCR analysis

We conducted expression validation of the hub IRGs within our

in-house cohorts using quantitative real-time PCR. Blood samples

were obtained from both healthy controls and LN patients at

Shenzhen Second People’s Hospital. Participants provided written

informed consent, and the study was approved by the ethics

committee (Approval No. 20220824001).
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Total RNA was extracted from the blood samples using the

SteadyPure Quick RNA Extraction Kit (AG21025, AG, Hunan,

China). LN (n=4) and control (healthy volunteers, n=4) were

analyzed. Subsequent reverse transcription of RNA into cDNA was

performed using the Reverse Transcription Kit (RR036A, Takara,

Japan). The real-time PCR analysis was carried out with the SYBR

Green Master Mix (QPK-201, TOYOBO, Japan) on a QuantStudio™

3 Real-Time PCR System (Thermo Fisher Scientific, USA). The specific

primer sequences employed are detailed in Supplementary Table S3.
2.9 Clinical correlation

To understand the clinical significance of these hub IRGs, we

analyzed their correlation with critical clinical parameters such as the

glomerular filtration rate (GFR), proteinuria, serum creatinine levels,

and pathological stages. This analysis aimed to elucidate the biological

relevanceof these genes in the context of LNpathophysiologyand their

potential as biomarkers for disease progression and severity
2.10 Protein interaction network analysis of
hub IRGs

We conducted a comprehensive exploration of potential protein

interactions involving six hub IRGs. Using the STRING database

(https://string-db.org/), we collated and integrated information on

protein-protein interactions (PPIs). The PPI network was

subsequently analyzed, considering only interactions with

confidence scores exceeding 0.7 to ensure significance. To further

our analysis and enhance visualization, we imported the pertinent

data into Cytoscape (version 3.8.2). With Cytoscape, we used the

cytoHubba plugin to identify the top 10 nodes, which were ranked

based on the maximum clique centrality (MCC). These top nodes

represented hub genes with potential significance in the network.

Additionally, we used the BinGO plugin in Cytoscape to explore the

Gene Ontology (GO) functional annotations related to the

identified hub genes. This comprehensive approach shed light on

the protein interaction landscape associated with the selected IRGs.
2.11 Statistical analysis

All the statistical analyses of the single-cell and bulk-RNA data

were performed with R (version 4.3.1). A P value less than 0.05 was

considered to indicate statistical significance.
3 Results

3.1 Identification of immune-related genes
(IRGs) in lupus nephritis (LN) by single-
cell analysis

The workflow of this study is shown in Figure 1. Our research

can be summarized in key stages: Stage 1. Single-cell data analysis:
frontiersin.org

https://string-db.org/
https://doi.org/10.3389/fimmu.2024.1391218
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mou et al. 10.3389/fimmu.2024.1391218
We analyzed single-cell data from LN patients and healthy controls.

Different cell types were clustered, and differential gene expression

was visualized. Stage 2. Meta-Program identification: NMF revealed

transcriptional programs in LN leukocytes, yielding four Meta-

Programs with distinct gene sets. Stage 3. IRG Predictive Model

Construction: Thirty-seven IRGs from Meta-Program 1 were used

to create 102 predictive models using 12 algorithms. The top-
Frontiers in Immunology
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performing models (GBM, Stepglm with Naive Bayes) included six

hub IRGs. Stage 4. Validation and Clinical Correlations: Validation

confirmed hub IRG upregulation in LN patients, and correlations

with clinical parameters were established. Stage 5. Protein-protein

interaction analysis: The interaction network of six hub IRGs was

explored. Key genes were identified, and their molecular functions

were characterized.
FIGURE 1

The workflow of this study.
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3.2 Analysis of single-cell dataset

In the initial phase of our investigation, we acquired a single-cell

dataset including renal biopsies from 24 LN patients and 10 healthy

control participants. Following quality control, normalization, and

preliminary dimensionality reduction, we employed t-distributed

stochastic neighbor embedding (t-SNE) algorithms to effectively

distinguish cellular clusters representing the LN and

control cohorts.

Consistently, the same set of cell markers employed in the

original study was retained for our analysis to categorize the four

primary cell types (Figure 2A). These major cell types include

various leukocytes, including T/NK cells, myeloid cells, and B
Frontiers in Immunology 05
cells, in addition to epithelial cells (Figure 2A). Subsequently,

these major cell types were further partitioned into 22 distinct

subcell types (Figure 2B and Supplementary Table S4).

For a comprehensive overview, the cell markers characterizing

each cell type and their relative proportions are presented in

Figures 2C, D. Moreover, we conducted a differential gene

expression analysis, visualized in a volcano plot (Figure 2E), to

reveal the genes exhibiting significant differences between the LN

and healthy control groups. The top five upregulated genes in LN

were MX1, ISG15, IFI44L, EPSTI1, and IGHG1 (Supplementary

Table S5). The top five downregulated genes in LN were PRG4,

ZBTB16, ALDOB, PCK1, and PFKFB3 (Supplementary Table S5).

These findings collectively illuminate the cellular landscape of LN
FIGURE 2

Single-cell RNA sequencing analysis of lupus nephritis (LN) tissue. (A) T-SNE analysis of the single-cell data showing four major cell types in the
kidney samples. (B) T-SNE analysis of 22 subcell types. (C) Expression of cell markers in major cell types. (D) Proportion of major cell types. (E) A
volcano plot showing the genes whose expression was upregulated or downregulated in LN patients compared with healthy participants.
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and provide crucial insights into the underlying genetic alterations.

Notably, ISG15 is a type of interferon-stimulated gene that

primarily functions in the immune system. ISG15 can also

modulate immune responses by influencing the activities of

immune cells.
3.3 Meta-Program identification of
LN leukocytes

To reveal the transcriptional landscape of leukocytes in LN

samples, we first eliminated epithelial cells, focusing exclusively on

leukocyte-derived transcriptional signatures. Using Non-negative

Matrix Factorization (NMF), we extracted and defined specific

transcriptional programs unique to LN leukocytes in each sample.

Our method for characterizing cell states entailed the systematic

cataloging of underlying gene modules. Recent research has

recognized gene modules as pivotal features defining cell states.

This flexible approach accommodates the coexpression of various

modules within cells, leading to the diversity of potential cell states.

Our method was effective in detecting groups of genes exhibiting

coexpression patterns within individual samples. To discover

recurring gene modules across LN samples, we conducted

comparative analyses of the gene composition within the

identified modules. This approach, focusing on gene modules

rather than expression matrices, helped alleviate the impact of

technical variations among the samples.

Through correlation clustering, we organized the identified

expression programs into four Meta-Programs, each characterized

by its top-scoring genes (Figure 3A). These programs were named

Meta-Program 1 (comprising selected genes such as CD14, CYBB,

and MSR1), Meta-Program 2 (encompassing selected genes such as

CD79A, CD79B, and TCF4), Meta-Program 3 (including selected

genes such as KLRD1, GZMA, and CCL5), and Meta-Program 4

(with selected genes such as CD3D, CD4, and LEF1). For example,

we defined four Meta-Programs that vary among leukocytes of the

patient 200–0961 (Figure 3B).
3.4 Development of the IRG predictive
model of LN

To develop a predictive IRG model of LN, IRGs were identified

via intersection within Meta-Program 1. As a result, 37 genes were

identified (Figure 4A). The expression of these 37 genes in the

single-cell datasets is shown in Figure 4B. Among the different

leukocyte cell types, most of these genes were highly expressed in

myeloid cells (Figure 4B).

We used twelve diverse machine learning algorithms, including

(1) LASSO, (2) Ridge, (3) Enet, (4) Stepglm, (5) SVM, (6)

GlmBoost, (7) Linear LDA, (8) plsRglm, (9) RF, (10) GBMs, (11)

XGBoost, (12) Naive Bayes, to develop a robust IRG predictive

model. This model demonstrated superior predictive accuracy, as

evidenced by high AUC values, in both training datasets

(comprising GSE32591 and GSE113342) and validation datasets

(GSE200306 and GSE81622), shown in Supplementary Figure S1.
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In total, we constructed 102 machine learning-based predictive

models. The top-performing models were those combining GBM

and Stepwise GLM [both] with Naive Bayes, and Stepwise GLM

[backward] with Naive Bayes.

The GBM model utilized fifteen genes (CYBB, IFNGR1, MSR1,

CSF1R, CTSS, PLAUR, CD14, IL1B, PTAFR, S100A8, FCER1G,

CD74, TLR2, MARCO, and PLAU) highlighting their pivotal role

in LN diagnostics (Supplementary Figure S1). Conversely, a more

streamlined model involving six genes (CD14, CYBB, IFNGR1,

IL1B, MSR1, and PLAUR) was used for the combined Stepwise

GLM and Naive Bayes approach. This refined model achieved

AUCs of 0.906 and 0.805 in the training and validation cohorts,

respectively, reinforcing their diagnostic efficacy (Figure 4C). These

optimized models focus on six hub genes, offering a more practical

approach for clinical application due to their simplified yet effective

feature set.

Further validation using blood samples retained significant

diagnostic power, with an AUC of 0.760, emphasizing the

potential for a noninvasive diagnostic methodology suitable for

early detection and continuous monitoring of LN (Figure 4C).

To test the performance of our predictive model, we evaluated

the AUC of previously identified IRGs (Table 1), such as CTSB,

which showed lower predictive values in comparison (Figure 4D).

Other previously identified IRGs including CD74, CTSS, FCER1G,

S100A8, TLR2, MARCO, CSF1R also showed lower predictive values

compared with our model (Figure 4E). This comparative analysis

confirms the superior predictive capability of our model over

previously reported IRGs.

Figure 5 displays the expression of six hub IRGs across single-

cell datasets, with notable expression primarily in myeloid cells and

varying expression in B and T/NK cells, illustrating their significant

role in LN.
3.5 Validation and clinical correlation of
the six hub IRGs

We conducted extensive validations using six cohorts and an

additional in-house cohort to confirm the expression patterns of six

hub IRGs: CD14, CYBB, IFNGR1, IL1B, MSR1, and PLAUR.

These IRGs were found to be significantly upregulated in LN

patients compared to healthy controls, underscoring their vital

roles in the pathology of LN and affirming their robustness across

diverse populations (Figures 6A–F).

Further validation in our in-house cohort proved these findings,

demonstrating consistent upregulation of six hub IRGs: CD14,

CYBB, IFNGR1, IL1B, PLAUR, and MSR1. This consistency

across different cohorts highlights the reliability of these IRGs as

biomarkers for LN, reinforcing their potential utility in clinical

diagnostics and therapeutics (Figure 7).

These results not only validate the significant upregulation of

these hub genes in patients with LN but also emphasize the

consistency of these expression patterns across varied cohort

settings, enhancing the credibility and applicability of these IRGs

in the broader context of LN research and patient care.
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ROC curve analysis further demonstrated the strong diagnostic

potential of these IRGs, with most exhibiting AUC values greater

than 0.8, confirming their utility in accurately diagnosing LN across

diverse patient cohorts (Figures 8A–E). Only IL1B showed a

moderate diagnostic value (AUC = 0.783, Figure 8F).

We also explored the clinical relevance of these IRGs by analyzing

their correlations with key renal function indicators such as the

glomerular filtration rate (GFR), proteinuria, and serum creatinine

levels across patient cohorts. Notably, expressions of IFNGR1,

PLAUR, and CYBB negatively correlated with GFR, while CYBB

also showed a positive correlation with proteinuria and serum
Frontiers in Immunology 07
creatinine levels, indicating their potential involvement in LN

pathophysiology (Figures 9A–E). Increased expression of CD14,

CYBB, and MSR1 was identified in pathological stage Class III

compared with Class II (Figures 9F–H).
3.6 Protein-protein interaction analysis of
the six hub IRGs

Next, we analyzed the intricate landscape of potential protein

interactions among the six hub IRGs that we identified. Using the
FIGURE 3

Catalog of LN gene modules in leukocytes. (A) Heatmap of the significance of the overlap between LN gene modules in leukocytes. Four consensus
modules were identified, including Meta-Program 1, Meta-Program 2, Meta-Program 3, and Meta-Program 4. Selected genes in each Meta-Program
are shown. (B) Heatmap of the expression levels of genes in the leukocytes of LN sample 015. Genes are ordered by their module membership
(horizontal lines), and the indicated genes correspond to their consensus module annotation.
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STRINGdatabase (https://string-db.org), we curated and amalgamated

the protein-protein interaction (PPI) data. The resulting PPI

network was analyzed, with only interactions with confidence

scores exceeding 0.7 considered to ensure their biological relevance.
Frontiers in Immunology 08
To improve our understanding of the network and facilitate

interpretation, we imported the relevant data into Cytoscape

(Figure 10A). Within Cytoscape, we used the cytoHubba plugin

to pinpoint the top 10 nodes, which were ranked based on their
FIGURE 4

Construction of machine learning-derived prediction models. (A) Identification of thirty-seven genes at the intersection of Meta-Program 1 and
immune-related genes (IRGs) from the ImmPort database. (B) Expression profiling of these 37 genes across various immune cell types. (C) AUC
values for the best-performing predictive models using combined Stepglm [both] and Naive Bayes, and combined Stepglm [backward] and Naive
Bayes algorithms. The training cohort included the datasets from GSE32591 and GSE113342; validation cohort 1 comprised GSE200306; and
validation cohort 2 included GSE81622. (D) AUC values for CTSB gene in GSE32591 and GSE81622 datasets. (E) AUC values for IRGs expressed
across all four datasets (GSE32591, GSE113342, GSE200306, GSE81622) and previously reported in studies.
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maximum clique centrality (MCC). These top nodes were

subsequently identified as 10 hub genes (including IL6, TNF,

IL1B, IL10, IL1A, IFNG, TLR4, CXCL8, NFKB1, and IL18),

indicating the potential importance of the interleukin family and

chemokines within the interaction network (Figure 10B).

Furthermore, we used the capabilities of the BinGO plugins

within Cytoscape to unravel the Gene Ontology (GO) functional

annotations associated with the 10 hub genes (Figure 10C). The

results showed that the molecular functions of these genes were

mainly associated with receptor binding, protein binding,

interferon-gamma receptor binding, and growth factor receptor

binding (Figure 10C).
4 Discussion

Lupus nephritis (LN) represents a complex and challenging

aspect of systemic lupus erythematosus (SLE) and is associated with

high morbidity and mortality rates (2). Current treatment strategies

predominantly rely on immunosuppressive regimens, which often

have adverse effects and may lead to treatment resistance. The

primary objective of this study was to improve our understanding of

LN and identify potential biomarkers and therapeutic targets to

improve patient outcomes.

The advent of single-cell sequencing technology has

revolutionized our capacity to explore the intricate biological

underpinnings of LN (47). In addition to using dimensionality
Frontiers in Immunology 09
reduction techniques for cellular clusters, we carried out a more

profound exploration of the transcriptional landscape of LN

leukocytes. Building upon this foundation, our study utilized

Non-negative Matrix Factorization (NMF) to understand the

transcriptional landscape of LN leukocytes, focusing exclusively

on leukocyte-derived transcriptional signatures after eliminating

epithelial cell data. This methodological approach facilitated the

identification of specific transcriptional programs unique to LN

leukocytes, leading to the systematic cataloging of underlying gene

modules. Our analysis successfully organized these expression

programs into four Meta-Programs, each characterized by its top-

scoring genes such as CD14, CYBB, and MSR1 in Meta-Program 1,

enriching our understanding of their roles in LN pathogenesis.

Particularly noteworthy was the recognition of certain immune-

related genes (IRGs) as crucial genes within these Meta-Programs.

A previous study highlighted the local activation of B cells in LN

kidneys, which correlated with an age-associated B-cell signature

(48). This observation aligns with our work in which we identified a

cluster of B-cell-related genes (CD79A and CD79B) within Meta-

Program 2, emphasizing the potential involvement of B cells in LN

pathogenesis. The detection of a prominent interferon response

across immune cell subsets in their study aligns with our emphasis

on the impact of interferon signaling in LN. Our results also indicate

an intricate relationship between interferon-responsive genes (such as

ISG15) and LN pathogenesis, further supporting the importance of

targeting this pathway for therapeutic interventions.

The identification of CXCR4 and CX3CR1 in previous studies

highlights the crucial roles of these chemokine receptors in the

context of LN (13). Our protein-protein interaction (PPI) analysis

revealed interactions between our identified hub IRGs and other

immune genes, which raises the possibility of a connection between

these IRGs, CXCL8, and the receptors CXCR4 and CX3CR1. This

interconnectedness could indicate a complex signaling network

within LN pathogenesis, where CXCL8, CXCR4, and CX3CR1

may interact to regulate immune responses and cellular dynamics

in the kidney.

CXCL8, known for its role in inflammatory responses and

chemotaxis, may contribute to the recruitment of immune cells to

the kidney, potentially via interactions with CXCR4 and CX3CR1.

The specific roles and implications of these interactions warrant

further investigation to elucidate how they collectively impact the

development and progression of LN. Elucidating these connections

could uncover novel therapeutic targets and deepen our

understanding of the intricate mechanisms underlying this

complex autoimmune disease.

Our study uses advanced single-cell RNA sequencing and

machine learning technologies to deepen our understanding of

LN. Through comprehensive analysis, we have developed robust

predictive models that significantly advance the diagnostic

capabilities for LN. We successfully identified 37 IRGs that were

highly expressed in myeloid cells among other leukocyte types.

Utilizing a diverse array of twelve machine learning algorithms, we

constructed 102 predictive models. The high-performance models,

particularly those integrating Generalized Boosted Regression

Models (GBM) with Stepwise GLM and Naive Bayes, highlighted
TABLE 1 Description of IRGs used to construct the prediction model in
this study and reported by previous studies.

No Gene Full Name Reference

IRGs used to construct the prediction model in this study

1 CD14 CD14 Molecule (26–29)

2 CYBB Cytochrome B-245 Beta Chain (30)

3 IFNGR1 Interferon Gamma Receptor 1 (31)

4 IL1B Interleukin 1 Beta (6, 32)

5 MSR1 Macrophage Scavenger Receptor 1 (33)

6
PLAUR

Plasminogen Activator,
Urokinase Receptor NA

Other IRGs reported by previous studies

1 CTSB Cement Treated Sub-Base (28)

2 CD74 Cluster of Differentiation 74 (34)

3 CSF1R Colony Stimulating Factor 1 Receptor (35, 36)

4 CTSS Cathepsin S (37)

5 FCER1G Fc Epsilon Receptor Ig (38, 39)

6
MARCO

Macrophage Receptor With
Collagenous Structure (38)

7 S100A8 S100 Calcium Binding Protein A8 (40–43)

8 TLR2 Toll Like Receptor 2 (44–46)
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the critical role of a concise set of IRGs in LN diagnostics. These

models demonstrated superior predictive accuracy, as evidenced by

AUC values exceeding 0.8 in both training and validation cohorts.

This analysis confirms the enhanced capability of our approach over

traditional methods and previously identified IRGs, as detailed

comparisons show lower predictive values for other known IRGs.

The streamlined models that focus on six hub IRGs (CD14,

CYBB, IFNGR1, IL1B, MSR1, and PLAUR) emphasize their pivotal
Frontiers in Immunology 10
roles and potential as biomarkers for noninvasive diagnostics, making

them particularly useful for clinical applications. The success of these

models in blood sample validations, achieving an AUC of 0.760,

underscores the feasibility of using these biomarkers for early

detection and continuous monitoring of LN.

The validation of these six hub IRGs in six diverse patient cohorts

further solidified theirdiagnosticvalue,asmostexhibitedstrongdiagnostic

potentialwithAUCvaluesgreater than0.8.Thisbroadvalidation supports
FIGURE 5

The expression of six hub IRGs identified by Stepglm plus Naive Bayes algorithm in the single-cell dataset. T-SNE plot showed the expression of
CD14, CYBB, IFNGR1, IL1B, MSR1, and PLAUR.
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the robustness of our findings and their applicability across different

clinical settings. Additionally, the correlation analysis with key renal

function indicators, reveals the clinical relevance of these IRGs,

particularly their associations with glomerular filtration rate (GFR),
Frontiers in Immunology 11
proteinuria, serum creatinine levels, and pathological stages indicating

their direct involvement in the pathophysiology of LN.

This research not only identifies critical biomarkers for LN but

also sets a foundation for future studies to explore accessible,
FIGURE 6

Expression of Six Hub IRGs in Six Validation Cohorts. (A) Expression of CD14 across Berthier Lupus Glomeruli, Peterson Lupus Glomeruli, and ERCB
Lupus Glomeruli cohorts. (B) Expression of CYBB across Berthier Lupus Glomeruli, Berthier Lupus Tubulointerstitium, Peterson Lupus Glomeruli,
ERCB Lupus Tubulointerstitium, and ERCB Lupus Glomeruli cohorts. (C) Expression of IFNGR1 in the ERCB Lupus Glomeruli cohort. (D) Expression of
MSR1 in Berthier Lupus Glomeruli and ERCB Lupus Tubulointerstitium cohorts. (E) Expression of PLAUR in the Ju Glomeruli cohort. (F) Expression of
IL1B in the Ju Glomeruli cohort.
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patient-friendly diagnostic methods. The identification of these hub

IRGs and their incorporation into predictive models offer

promising avenues for timely interventions and improved patient

outcomes, aligning with the goals of precision medicine.

Intriguingly, the six hub IRGs we identified, namely, CD14,

CYBB, IFNGR1, IL1B, MSR1, and PLAUR, have been the subject of

previous research in various contexts. CD14, for instance, plays a

role in immune regulation and is associated with innate immune

responses. It has also been previously linked to systemic

autoimmune diseases, such as LN. The cytochrome B-245 beta

chain (CYBB) encodes a key component of the NADPH oxidase

complex and contributes to reactive oxygen species (ROS)

production, which is implicated in the pathogenesis of LN (30).

IFNGR1, a crucial component of the interferon-gamma signaling

pathway, is known to be associated with SLE (49). IL1B is a

proinflammatory cytokine that has been widely studied in the

context of LN and contributes to the inflammatory processes that

characterize this disease (6). MSR1, a scavenger receptor, is

expressed by macrophages and is implicated in immune

responses and autoimmunity (33). PLAUR, a receptor for

urokinase-type plasminogen activator (uPA), has been

investigated in the context of autoimmune disorders and tissue

remodeling (50).

Moreover, we employed the BinGO plugin in Cytoscape to

delve deeper into the functional relevance of the identified hub

genes. By revealing the Gene Ontology (GO) functional annotations

associated with these hub genes, we obtained valuable insights into

their potential molecular functions. Our analysis revealed that the

10 hub genes (including IL6, TNF, IL1B, IL10, IL1A, IFNG, TLR4,

CXCL8, NFKB1, and IL18) we identified are primarily associated
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with several key molecular functions. These functions included

receptor binding, protein binding, interferon-gamma receptor

binding, and growth factor receptor binding. These findings

provide a comprehensive understanding of the molecular roles

these genes play in the context of LN. Receptor binding and

protein binding functions are indicative of the role of the hub

genes in interactions with other molecules, signaling pathways, and

cellular processes. The presence of interferon-gamma receptor

binding and growth factor receptor binding functions among the

hub genes highlights their involvement in immune responses and

signaling cascades, which are pivotal in LN pathogenesis. These

results not only enhance our understanding of the hub genes

involved in LN but also suggest potential therapeutic targets.

Targeting these specific molecular functions could provide

innovative approaches for the development of novel treatments

and interventions for LN, ultimately improving patient outcomes

and prognosis.

Our protein-protein interaction analysis, utilizing the STRING

databaseandvisualized inCytoscape, has expandedourunderstanding

of the molecular interactions at play in LN. By examining the

interactions among six hub IRGs, we have elucidated a complex

network of protein interactions that underscores the interconnected

nature of immune responses in LN. This analysis, depicted in

Figure 9A, used the cytoHubba plugin to highlight the top ten hub

genes including IL6, TNF, IL1B, IL10, IL1A, IFNG, TLR4, CXCL8,

NFKB1, and IL18. These genes are predominantly associated with the

interleukin family and chemokines, suggesting their central role in

mediating inflammatory responses in LN.

The functional annotations derived from the BinGO plugin in

Cytoscape, as shown in Figure 9C, provided deeper insights into the
FIGURE 7

The mRNA expression level of six hub IRGs (CD14, CYBB, IFNGR1, IL1B, PLAUR, and MSR1) in our inhouse cohorts of LN and control was examined
by real-time PCR analysis.
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roles these hub genes play in disease pathology. These genes are

primarily involved in critical molecular functions such as receptor

binding, protein binding, interferon-gamma receptor binding, and

growth factor receptor binding. Such functions are crucial for the

modulation of immune responses and signal transduction pathways

that are pivotal in the development and progression of LN.
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The detailed analysis of these gene functions highlights how

these hub genes interact with other molecules and participate in

complex signaling cascades that drive the pathophysiology of LN.

For instance, the receptor and protein binding activities of these

genes suggest their involvement in cell-cell interactions and

immune regulation, which are essential for the coordination of an
FIGURE 8

ROC curves of six hub IRGs in six validation cohorts. (A–E) Strong diagnostic values were demonstrated for LN with AUC>0.8 for CD14, CYBB,
IFNGR1, MSR1, and PLAUR. (F) Moderate diagnostic value for IL1B with an AUC of 0.783.
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effective immune response. Moreover, the specific roles of

interferon-gamma receptor binding and growth factor receptor

binding underscore the significance of these genes in immune

modulation and tissue repair processes, respectively.

Our study has made significant advancements in understanding

LN through the identification of hub IRGs and the development of

predictive models. However, several limitations must be carefully

considered to fully appreciate the scope and application of our

findings. (1) Variable Quality of Single-Cell Sequencing Data: Single-

cell RNA sequencing is a powerful tool for dissecting cellular

heterogeneity in diseases like LN. However, its susceptibility to data

quality variability can impact the accuracy of gene expression analysis

and the subsequent predictive modeling. We have implemented

stringent quality controls and normalization procedures to mitigate

these effects, yet the inherent limitations in data consistency remain a

challenge for the reproducibility and reliability of our results. (2)
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Sensitivity of Machine Learning Algorithms: The algorithms used in

our predictive models are sensitive to the characteristics of the training

datasets. This sensitivity can affect both the accuracy and the

generalizability of our findings, necessitating cautious interpretation

and application in diverse clinical settings. Our study’s predictive

models were validated with carefully selected cohorts known for their

data quality and relevance to LN. However, these cohorts may not fully

represent the global LN patient population, potentially limiting the

generalizability of our findings. (3) Need for Extensive Validation: The

clinical translation of our identified biomarkers and predictive models

requires rigorous validation across independent cohorts and varied

populations to confirm their effectiveness and reliability in clinical

diagnostics. This process is crucial to reduce the risk of misdiagnosis or

inappropriate treatment and to ensure that ourmodels perform reliably

in real-world settings. (4) Clinical Applicability and Longitudinal

Validity: Although our models show promise, their practical
FIGURE 9

Correlation analysis of hub IRGs with renal function and pathological staging in six validation cohorts. (A–C) Negative correlation of (A) IFNGR1, (B)
PLAUR, and (C) CYBB with the glomerular filtration rate (GFR). (D, E) Positive correlation of CYBB with (D) proteinuria and (E) serum creatinine levels.
(F–H) Increased expression of (F) CD14, (G) CYBB, and (H) MSR1 in pathological stage Class III compared with Class II.
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implementation is non-trivial and demands further extensive clinical

validation. Additionally, while we have identified promising

correlations between certain hub genes and clinical outcomes, these

findings are primarily based on cross-sectional data. Longitudinal

studies are necessary to establish causality and determine the long-

term reliability of these biomarkers in predicting disease progression.

(5) Understanding Protein-Protein Interactions: Our protein-protein

interaction analyses have provided valuable insights into the potential

mechanisms linking identified IRGs with LN. However, a deeper

understanding of the functional implications of these interactions is

needed. This requires further experimental validation of predicted

interactions and their roles in LN pathophysiology, which could

inform potential therapeutic targets. (6) Potential for Enhancing

Early Detection and Personalized Medicine: Despite these challenges,
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the biomarkers identified hold significant potential for enhancing early

detection and personalizing disease management. Their integration

into clinical practice must be approached with a deep understanding of

the biological complexity of LN and a commitment to continued

research to elucidate the underlying mechanisms that govern their roles

in disease pathophysiology.

In conclusion, our study provides a valuable foundation for a

deeper understanding of the genetic basis of LN. By using complex

transcriptional programs, machine learning-based predictive

models, and protein-protein interactions within the LN, we aspire

to help clinicians and researchers make well-informed decisions

and formulate more effective treatments. These findings underscore

the clinical potential of these hub IRGs in assessing disease

progression and guiding personalized treatment decisions.
FIGURE 10

Construction of the PPI network and functional enrichment analysis of the six hub IRGs. (A) The PPI network was constructed based on 50 genes
closely related to the six hub IRGs. (B) The top ten hub genes of the PPI network. (C) Functional enrichment of the top ten hub genes of the PPI
network by BINGO.
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