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Autoimmune diseases (AID) have emerged as prominent contributors to disability

and mortality worldwide, characterized by intricate pathogenic mechanisms

involving genetic, environmental, and autoimmune factors. In response to this

challenge, a growing body of research in recent years has delved into genetic

modifications, yielding valuable insights into AID prevention and treatment.

Sirtuins (SIRTs) constitute a class of NAD-dependent histone deacetylases that

orchestrate deacetylation processes, wielding significant regulatory influence

over cellular metabolism, oxidative stress, immune response, apoptosis, and

aging through epigenetic modifications. Resveratrol, the pioneering activator of

the SIRTs family, and its derivatives have captured global scholarly interest. In the

context of AID, these compounds hold promise for therapeutic intervention by

modulating the SIRTs pathway, impacting immune cell functionality, suppressing

the release of inflammatory mediators, and mitigating tissue damage. This review

endeavors to explore the potential of resveratrol and its derivatives in AID

treatment, elucidating their mechanisms of action and providing a

comprehensive analysis of current research advancements and obstacles.

Through a thorough examination of existing literature, our objective is to

advocate for the utilization of resveratrol and its derivatives in AID treatment

while offer ing crucial insights for the formulat ion of innovative

therapeutic approaches.
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1 Introduction

Autoimmune diseases (AID) represent a formidable threat to

human health, stemming from the immune system’s erroneous

targeting of the body’s own tissues. Recent years have witnessed a

steady rise in AID incidence, underscoring its status as a critical

global public health concern. AID presents with a spectrum of clinical

phenotypes due to the production of specific immune cells and

autoantibodies during inflammatory immune responses. These

assaults on tissues or organs vary widely in their severity (1).

Depending on the extent of tissue damage, AID is broadly

classified into two principal categories: systemic autoimmune

diseases, such as systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), systemic sclerosis (SSc), among others; and organ-

specific autoimmune diseases, exemplified by Graves disease (GD),

type 1 diabetes mellitus (T1DM), inflammatory bowel disease (IBD),

pulmonary fibrosis (PF), and others. The clinical ramifications of

AID are profound; for instance, SLE can afflict multiple organs and

bodily systems, with severe cases precipitating lupus nephritis, lupus

cerebritis, and other crises, posing life-threatening risks (2). RA is

characterized by joint degradation, resulting in significant rates of

disability (3). Severe manifestations of GD can precipitate

cardiovascular irregularities and thyroid crises (4). Individuals with

T1DM confront heightened risks of complications such as

cardiovascular ailments, retinopathy, and neuropathy (5). Overall,

AID is marked by a complex etiology, diverse clinical presentations,

and myriad sequelae, exerting considerable impact on individuals’

quality of life and productivity, and imposing substantial economic

and psychological burdens on society and families. Presently, the

treatment landscape for autoimmune diseases predominantly relies

on immunosuppressive agents and biologics; however, these

modalities often entail notable side effects, efficacy limitations,

considerable interindividual variability, and an inability to

effectuate cures. Consequently, the pursuit of precise and efficacious

treatment modalities has emerged as a paramount objective in

AID research.
2 Pathophysiological characteristics of
autoimmune diseases

In normal circumstances, the immune system can recognize

and respond to external threats, including pathogens and damaged

tissues, thereby maintaining the body’s health. However, when the

immune system receives abnormal stimuli or its regulation is

imbalanced, it can lead to excessive activation, resulting in

inappropriate immune responses. It is noteworthy that this

abnormal activation can manifest in various forms, such as the

overactivation of immune cells, attacks on self-antigens,

inflammatory reactions, and more. Additionally, genetic and

environmental factors play crucial roles in the abnormal

activation of the immune system. The primary mechanisms of

immune system abnormal activation include several aspects.

Firstly, the immune system incorrectly identifies its own tissues

or molecules as foreign pathogens, which is related to changes in the
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expression pattern of self-antigens or immune tolerance disorders.

Immune tolerance disorder refers to the disruption of immune

balance through central and peripheral immune tolerance disorders

and abnormal presentation of self-antigens, causing the immune

system to mistakenly perceive its own tissues as external threats,

resulting in damage to self-tissues (6). Secondly, the abnormal

function of immune regulatory cells (such as regulatory T cells)

fails to effectively suppress excessive immune responses, leading to

the occurrence of autoimmune diseases. Abnormalities in the number

and function of regulatory T (Treg) cells, the inhibition of Treg cells

by effector T cells, and the increase in abnormal T cell activity can all

lead to abnormal activation of the autoimmune system (7). Among

them, the balance between Treg cells and T helper 17 (Th17) cells is

crucial, as it can restrain the malignant cycle of autoimmunity and

block the pathways leading to autoimmune diseases. For instance, the

impairment of Treg cells’ stability and the abnormal proliferation of

Th17 cells can lead to the activation of other immune cells, thereby

driving acute autoimmune responses (8). Research has demonstrated

that inhibiting the activity of IL-2 inducible T-cell kinase (ITK) with

specific inhibitors can regulate the translocation of Foxo1 and

effectively modulate the balance between Th17 and Treg cells (9).

This pathway inhibits the phosphorylation process of phospholipase

C-gamma 1 (PLC-g1), mitigating autoimmune reactions and

diminishing the production of antigen-specific antibodies.

Furthermore, evidence suggests that in the presence of antigen-

presenting cells, CD4+ lymphocytes are prompted to activate

RORgt via the JAK2/STAT3 pathway, leading to their

differentiation into Th17 cells (10). Building on this, research

conducted by Wang et al. indicates that obstructing the leptin

pathway not only prevents the differentiation of Th17 cells but also

enhances the transcription of FOXP3, fostering the conversion of

CD4+ lymphocytes into Treg cells (11). Consequently, inhibiting the

leptin pathway reinstates the equilibrium between Treg and Th17

cells, thereby reducing cell death attributed to autoimmune

inflammation. Thirdly, when the immune system is abnormally

activated, inflammatory mediators are excessively released,

triggering immune inflammatory reactions. These inflammatory

mediators, while regulating and transmitting immune signals, can

also cause tissue inflammation and damage. Tumor necrosis factor-

alpha (TNF-a) is involved in the inflammatory processes of various

autoimmune diseases such as RA and Crohn’s disease (12).

Interleukin-1 (IL-1) can cause fever and promote the production of

other inflammatory mediators, and is associated with SLE (13).

Transforming growth factor-beta (TGF-b) plays a crucial role in

controlling immune cell activity and maintaining immune tolerance,

but in some cases, it may also promote disease development

(14).Fourthly, in Zhernakova’s 2009 whole-genome study, some

single nucleotide polymorphisms (SNPs) were found to share and

have unique pathological pathways in the development of

autoimmune diseases (15). Among them, the most prominent

findings were within the MHC locus, which carries multiple

signaling pathways from classical pathways of MHCI/II genes to

non-classical pathways of MHCIII genes. Within the MHCIII region,

multiple genes are involved, including genes encoding complement

factor 4 (C4A) and tumor necrosis factor (TNF) (16). In SLE, the

HLA-DR3 allele is associated with the production of anti-DNA
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antibodies (17), while in Sjogren’s syndrome, HLA-DRB1 is

associated with the production of Ro antibodies (18). Therefore,

the strong association between autoimmune diseases, specific

autoantibodies, and specific MHC alleles plays an important role in

the occurrence of autoimmune diseases. Fifthly, environmental

factors such as infections, drugs, radiation, chemicals, etc., may

trigger AID by affecting the function of the immune system or

inducing the expression of self-antigens. Smoking is an important

risk factor for diseases such as SLE, GD, idiopathic inflammatory

myopathy, and IBD (19), and it can promote disease development

through various pathways. Cigarette smoke activates innate immune

responses and contains Toll-like receptor (TLR) stimulating

compounds, directly activating TLR4 signaling and triggering the

pro-inflammatory pathway of TLR4 agonists (20, 21). Signals are

transmitted through molecules with genetic polymorphisms

associated with systemic immunity, providing a direct connection

and mechanistic basis for gene-environment interactions. Therefore,

specific risk factors will increase the disease risk of individuals with

specific genetic backgrounds. Of course, chemicals and drugs such as

thiazides, hydralazine, calcium channel blockers, proton pump

inhibitors, and interferon-alpha can also induce AID through

various mechanisms, including inhibition of central or peripheral

tolerance, changes in gene transcription in T and B cells, abnormal

cytokine or cytokine receptor function, chromatin structure

modification, and antigen modification (22).
3 The important role of SIRTs in
autoimmune diseases

In 1979, Klar discovered, through mapping studies of the

brewing yeast genome, that Sirtuins are mammalian homologs of

the yeast silent information regulator 2 (Sir2), thus ushering in the

era of research on the SIRTs family (23). Subsequent research

indicated that Sirtuins are a class III histone deacetylase

dependent on NAD+, present in both higher vertebrates and

unicellular eukaryotes within the kingdom Animalia (24). In

1999, Frye et al. identified five human sirtuins, namely SIRT1,

SIRT2, SIRT3, SIRT4, and SIRT5, using the amino acid sequence of

Sir2 from brewing yeast as a probe (25). Later, the Frye team used

human SIRT4 as a probe for similar identification and ultimately

discovered two new human sirtuins (SIRT6 and SIRT7) (26). Thus,

all seven members of the SIRTs family have been discovered,

gradually entering people’s field of vision.

In recent years, research on genetic epigenetic modifications has

continued to deepen. Zentner’s study revealed that histones can

undergo various covalent translational modifications, including

acetylation, methylation, phosphorylation, ubiquitination, and

more (27). Subsequently, proteins are recruited to specific

modified histones, serving as docking sites, to regulate all

chromatin templating processes, such as replication, transcription,

and DNA repair. This gene modification creates an open and

accessible chromatin environment at all epigenetic markers on

the genome, regulating the transcription and repair of DNA (28).

However, in this process of genetic modification, enzymes
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catalyzing the reactions are crucial. The SIRTs family, as NAD-

dependent histone deacetylases, can deacetylate lysine residues on

histones, regulating the activity of many transcription factors (29).

This leads to a silencing effect on numerous target proteins in

epigenetics, such as Forkhead box O class (FoxOs), p53, nuclear

factor-kB (NFkB), nuclear factor E2-related factor 2 (Nrf2),

hypoxia-inducible factor-1a (HIF-1a), AMP-activated protein

kinase (AMPK), b-catenin, peroxisome proliferator-activated

receptor gamma coactivator 1-alpha (PCG-1a), proliferator-

activated receptor gamma (PPARg), and others (30). Through

these regulatory mechanisms, SIRTs participate in physiological

processes such as inflammation, oxidative stress, mitochondrial

function, immune response, and cell differentiation. Particularly,

by modulating various cellular signaling pathways, SIRTs play a

crucial role in cellular metabolism and DNA repair, making them a

promising therapeutic target. Their role in immune regulation

includes modulating both innate and adaptive immunity.
3.1 The mechanism of SIRTs regulating
innate immunity

Innate immunity represents the body’s initial line of defense

against pathogens, characterized by its nonspecific, rapid, and broad

response. The innate immune system comprises a range of intrinsic

immune cells and molecules present from birth, including natural

killer (NK) cells, macrophages, monocytes, dendritic cells,

neutrophils, eosinophils, and basophils, among others. Unlike

adaptive immunity, innate immunity operates independently of

prior pathogen exposure and does not confer immune memory

against specific pathogens. It is noteworthy that the SIRTs family

can modulate the function of innate immune cells at multiple levels.

Generally, decreased sirtuin levels can precipitate various

inflammatory states in the body, including autoimmunity, cellular

senescence, and degenerative changes in tissues and organs.

3.1.1 SIRTs and macrophages
Macrophages arise from early embryonic erythro-myeloid

progenitors or from adult infiltrating monocytes. Upon antigen

stimulation, macrophages are activated and polarized into pro-

inflammatory or anti-inflammatory phenotypes, namely classical

activation (M1) macrophages and alternative activation (M2)

macrophages. M1 macrophages execute cytotoxic and tissue-

damaging pro-inflammatory functions, while M2 macrophages

play a crucial role in resolving inflammation and tissue repair

(31). Within the SIRTs family, SIRT1, SIRT2, SIRT6, and SIRT7

participate in multiple specific stimuli and downstream signaling

events of macrophage polarization, with significant implications for

balancing macrophage polarization. Several studies have shown that

deletion of the SIRT1, SIRT2, and SIRT6 genes in macrophages

results in a significant increase in acetylation levels of the p65

subunit of NF-kB, leading to increased expression of NF-kB target

genes IL-6, TNF-a, and IL-1b, inducing immune inflammation (32,

33). In other words, SIRT1, SIRT2, and SIRT6 inhibit inflammation

in macrophages by deacetylating NF-kB (34). Rothgiesser et al.
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found that SIRT2 interacts with p65 in mouse embryonic

fibroblasts, leading to deacetylation of p65 subunit of NF-kB at

Lys 310, thereby increasing the expression of p65 acetylation-

dependent target gene subsets, regulating the expression of

specific NF-kB-dependent genes, and controlling a large number

of target genes involved in immune and inflammatory responses,

cell proliferation, differentiation, and apoptosis (35). Santos-

Barriopedro et al. found that SIRT6 can bind to the histone

methyltransferase Suv39h1 specific for H3K9me3 and induce

monoubiquitination at the conserved cysteine residue in the PRE-

SET domain of Suv39h1 (36). Upon activation of the NF-kB
signaling pathway, SIRT6 upregulates the activity of the NF-kB
inhibitor (IkBa) through cysteine monoubiquitination and

chromatin eviction by Suv39h1, thus achieving inhibition of the

NF-kB pathway and attenuating the aggravation of the immune-

inflammatory response by SIRT6. In addition, the expression of

SIRT7 decreases in an age-dependent manner in leukocytes of

healthy individuals, and Phorbol-12-myristate-13-acetate(PMA)-

mediated monocyte-to-macrophage differentiation in the

monocytic THP-1 cell line increases SIRT7 expression, while

SIRT7 overexpression also increases differentiation of non-

stimulated THP-1 cells (37).

3.1.2 SIRTs and NK cells
NK cells are cytotoxic lymphocytes that play a crucial role in

innate immunity against viral infections and tumors. NK cells

secrete perforins and granzymes, inducing apoptosis in target cells

through the expression of cell death ligands on their surface.

Additionally, NK cells secrete various pro-inflammatory

cytokines, including TNF-a and interferon-beta (IFN-b), which
play important roles in maintaining and amplifying immune

responses through interactions with macrophages and dendritic

cells (38). Studies have indicated a specific increase in the

expression of SIRT2 in liver NK cells induced in mice with liver

cancer, suggesting that SIRT2 promotes the activity of liver NK cells

in response to hepatocellular carcinoma (HCC). Furthermore,

overexpression of SIRT2 enhances the secretion of pro-

inflammatory cytokines and cytotoxic granules by NK cells,

thereby exhibiting increased anti-tumor activity (39).

Additionally, SIRT2 activity is associated with increased

phosphorylation of extracellular signal-regulated kinases 1/2

(Erk1/2) and p38 mitogen-activated protein kinase (MAPK),

which are two important signaling pathways for NK cell activity

(40). Therefore, SIRT2 holds potential value in enhancing the anti-

tumor effects mediated by liver NK cells.

3.1.3 SIRTs and dendritic cells
Dendritic cells are antigen-presenting cells that, under steady-

state conditions, exhibit high phagocytic activity and continuously

present self-antigens to restrain T cell reactivity. Upon infection,

dendritic cells mature, leading to an increased expression of co-

stimulatory receptors, including CD80, CD86, and MHC-II

molecules (41). When dendritic cells show weakened responses to

pathogens but enhanced responses to self-antigens, it results in an
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increased expression of pro-inflammatory cytokines, leading to the

breakdown of immune tolerance and inflammatory responses.

Research indicates that the expression of SIRT1 in dendritic

cells increases when toll-like receptors (TLRs) are stimulated.

Conversely, the absence of SIRT1 leads to changes in T cell

polarization (42). In 2012, Alvarez et al. demonstrated that SIRT1

promotes the production of the signature cytokines IL-12 and TGF-

b1 in a hypoxia-inducible factor a (HIF1a)-dependent manner,

thereby regulating the differentiation of Th1 cells and Treg cells,

participating in the process of immune tolerance regulation (43).

Subsequently, Yang et al. found that in dendritic cells, SIRT1

interacts with interferon regulatory factor 1 (IRF1), a

transcription factor associated with the expression of interleukin

27 (IL-27), and produces a deacetylation effect. This effect reduces

the binding of IRF1 to the gene promoter of il-27p28, silencing it

and decreasing the production of IL-27, promoting the

differentiation of Th17 cells, which are a pro-inflammatory subset

of T cells (44). In summary, SIRT1 is a major regulatory factor for

cytokine production in dendritic cells and holds significant

importance for the subsequent generation of T cell subsets. Apart

from SIRT1, SIRT6 also participates in the differentiation and

maturation of dendritic cells. Studies confirm that inhibiting

SIRT6 significantly hinders the differentiation of monocytes into

dendritic cells, resulting in immature dendritic cells with

significantly reduced expression of CD86, CD80, and MHC-II

molecules. Additionally, these dendritic cells exhibit increased

phagocytic ability and a further decrease in the ability to

stimulate lymphocyte proliferation (45, 46). At the same time,

there is an increased proportion of cells producing TNF-a and

IL-6, indicating that SIRT6 regulates the production of cytokines in

these cells.
3.2 Mechanisms of SIRTs regulation in
adaptive immunity

Adaptive immunity constitutes the highly specific and memory-

driven immune response of an organism against specific pathogens.

In contrast to innate immunity, which broadly recognizes nonspecific

antigens present in pathogens and damaged host cells, the adaptive

immune system possesses high antigen recognition specificity,

immunological memory, and adaptability to diverse pathogens.

Primarily composed of T cells and B cells, the adaptive immune

system features B cell receptors (BCRs) or T cell receptors (TCRs)

expressed on their cell membranes. While tolerating self-antigens,

these cells have the capability to recognize and mount highly specific

immune responses against particular antigens.

3.2.1 SIRTs and T lymphocytes
T lymphocytes comprise helper CD4+ T cells and cytotoxic

CD8+ T cells, activated by TCR-specific antigens during cell-cell

contact. Fagnoni et al. (47) propose an association between SIRT1

and the accumulation of CD8+CD28- T cells. Effros et al. (48)

discovered that under conditions of CD28 co-stimulation
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deficiency, CD8+CD28- T cells exhibit heightened cytotoxicity,

express pro-inflammatory cytokines, and display characteristics

indicative of replicative senescence. During aging, SIRT1 undergoes

autophagy-mediated degradation in various organs, including the

spleen and thymus. Jeng and colleagues observed a notable decrease

in SIRT1 levels in human CD8+ memory T cells, particularly CD8

+CD28- T cells, without alterations in their gene expression. SIRT1, is

a deacetylase for many transcription factors, including FOXO1, and

regulates several cellular processes, such as proliferation,

differentiation, and apoptosis. SIRT1 activation triggers apoptosis

by directly inhibiting FOXO1 expression through deacetylation.

Consequently, the loss of SIRT1 amplifies proteasomal degradation

of its target FOXO1, thereby diminishing the cytotoxicity of memory

T cells by enhancing their glycolytic capacity (49). Studies indicate a

substantial decrease in SIRT2 levels in the spleens of aged rats, with

an even more precipitous decline in SIRT2 levels in the thymus.

Moreover, Sidler et al. (50) found that among the seven sirtuin genes

encoded by the mammalian genome, only the expression level of

SIRT2 decreases with age. This may be linked to the relationship

between SIRT2 and Histone H4K16, a target of SIRT2 deacetylation

in aging yeast (51). Reduced DNA methylation and H3K9me3

with age suggest the loss of heterochromatin as aging progresses.

Additionally, SIRT6 plays a role in immune aging and inflammatory

responses by regulating T cell inflammatory responses. A study of

SIRT6 in aging demonstrated that targeted deletion of SIRT6 in T

cells or the myeloid lineage recapitulated the inflammatory and

fibrotic phenotype in the liver, suggesting autonomous regulation

of inflammation by SIRT6 in immune cells (52). Importantly, SIRT1

levels are significantly upregulated in patients with GD, promoting

the deacetylation of FOXP3 and mediating the simultaneous loss of

IL-17+ T cells and Treg cells in Graves’ patients (53). Overexpression

of SIRT1 in patients with IBD induces concurrent inhibition of Th17

cell differentiation and Treg cell differentiation, exacerbating colitis

development. In conclusion, SIRTs actively participate in T cell

differentiation processes, influencing immune responses and

contributing to the occurrence of autoimmune diseases.

3.2.2 SIRTs and B lymphocytes
B lymphocytes constitute the cornerstone of adaptive

immunity. Mature B cells predominantly reside in the spleen and

lymph nodes, displaying antigen-specific immunoglobulins on their

cell membranes. Upon infection, antigen-specific B cell clones are

activated, leading to their differentiation into plasma cells that

secrete antibodies or memory B cells.

The intrinsic relationship between SIRTs and B lymphocytes is

currently under exploration. Nonetheless, it is established that

SIRTs are linked to immunoglobulin class switch recombination

(CSR), B cell homeostasis, and autoimmune suppression. Research

indicates a significant role for SIRT7 in non-homologous end

joining (NHEJ) repair. Regarding NHEJ, as one of the main DNA

double-strand break repair modes in cells. NHEJ is different from

homologous recombination in that it does not require homologous

DNA as a repair template and can repair broken DNA at all stages

of the cell cycle (54). In addition, NHEJ is involved in the

recombination of diversified antibodies and T-cell receptors.
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Reduced expression of SIRT7 during aging may partly contribute

to the diminished clonal diversity of newborn B cells, associated

with immunosenescence (55). In a study by Gan in 2020, it was

discovered that the activation of immunoglobulin CSR is mediated

by activation-induced cytidine deaminase, and its expression in

mature B cells is subject to epigenetic regulation. Enhanced activity

of SIRT1 can lead to the deacetylation of H3K9Ac/H3K14Ac in the

promoter of activation-induced cytidine deaminase, resulting in

reduced expression and impaired CSR (56). Moreover, SIRT1 is

crucial for B cell antigen presentation, as the loss of SIRT1 in B cells

leads to decreased levels of MHC-II molecules expressed, thereby

reducing their cross-presentation with CD4+ T cells (57). In

summary, the downregulation of SIRT1 with age may

compromise B cell immunity and contribute to immunosenescence.

Notably, during immunosenescence, inflammation and AID are

commonly observed. In mature B cells of SLE patients, significantly

lower levels of SIRT1 have been observed, and SIRT1 levels are

negatively correlated with the frequency of CD19+ B cells in these

patients (58). Activation of SIRT1 has a protective effect on RA

patients, partly due to a reduction in the production of

autoantibodies by B cells (59). Serum levels of SIRT1 in asthma

patients are positively correlated with IgE levels (60), while anti-

SIRT1 autoantibodies are more abundant in inflammatory diseases

such as ankylosing spondylitis (61). In summary, SIRT1, by

inhibiting the autoimmune response of B cells and reducing the

cascade of immune inflammation, plays a crucial role in preventing

severe invasion of various systems and organs in the body,

maintaining the stability of the immune environment, and

ensuring the normal functioning of the immune system.
4 The development history of
resveratrol and its derivatives

Resveratrol (RES) is a natural phytotoxin found in many plants,

produced in response to ultraviolet radiation, damage, fungal, or

bacterial infections (62). It is present in various natural foods,

including grapes, blueberries, and mulberries, with significant

variations in concentration among different foods (63). The

chemical structure of RES consists of two aromatic rings

connected by a methylene bridge, with both trans and cis isomers

naturally occurring. The primary medicinal effects of RES stem

from the trans-resveratrol, making the structure-activity

relationship crucial in determining RES bioactivity (64). However,

due to its rapid absorption and metabolism in the human body, RES

exhibits low plasma concentrations and tissue distribution (65).

Consequently, there has been widespread interest in finding

methods to enhance the bioavailability of RES.

RES is a small molecule with a molecular weight of 228.247 g/mol

and various functional groups, including phenolic hydroxyl, aromatic

rings, and double bonds (66). These functional groups provide

opportunities to modify RES into active derivatives with diversified

therapeutic effects. Therefore, designing and synthesizing novel

resveratrol derivatives to enhance the therapeutic effects of RES has

become a hotspot of interest among pharmacologists. Over the past
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few decades, research on various natural and synthetic resveratrol

derivatives, particularly methoxylation, hydroxylation, and

halogenation derivatives, has received special attention. Here, we

provide a comprehensive summary of the chemical structures,

mechanisms of action, and clinical effects of methoxylated,

hydroxylated, and halogenated derivatives of RES (Table 1).

In 2003, David Sinclair and colleagues utilized the innovative

“FluordeLys” (FdL) method and discovered the first-generation

SIRT1 activator – RES (93), also the first SIRTs activator

discovered in humans. As a pioneer of SIRTs activators, RES has

rich clinical applications and promising therapeutic prospects.

Combretastatin A-4, a cis-configured methylated resveratrol

derivative, was first isolated from Combretum caffrum in 1995.

However, it gained prominence in 2003 due to its phosphate salt,

which selectively disrupts the microtubule protein cytoskeleton of

endothelial cells (94), exhibiting potent anti-tumor and anti-

vascular effects, leading to the development of the market drug

ombrabulin (95).

In 2004, Rimando and colleagues found that Pterostilbene (96),

structurally highly similar to RES, also possesses potent anti-tumor,

anti-inflammatory, and antioxidant activities (97), serving as a

naturally occurring dimethylated resveratrol derivative from

blueberries. The dimethoxy structure of Pterostilbene enhances its

lipophilicity and cellular membrane permeability, with better

metabolic stability than RES, displaying superior pharmacokinetic

properties (98). Research indicates that Pterostilbene can more

effectively prevent azoxymethane (AOM)-induced colon cancer

by activating the antioxidant signaling pathway mediated by NF-

E2-related factor 2 (Nrf2) compared to RES (99).

Piceid, a non-glycosylated resveratrol derivative, is the most

abundant form of RES in nature (100). It is primarily found in

alcohol-free grape juice and is also a major extract component of the

traditional herbal medicine Polygonum cuspidatum, used to treat

heart diseases, including atherosclerosis and myocarditis (101). Jeong

et al. discovered in 2010 that Piceid inhibits tyrosinase in

melanocytes, thus blocking melanin production without adversely

affecting cell viability. Additionally, Piceid inhibits tyrosinase,

tyrosinase-related protein 1 (TRP1), tyrosinase-related protein 2

(TRP2) and microphthalmia-associated transcription factor

(MITF), leading to reduced melanin synthesis (102). Hence, Piceid

may be a potential candidate for a skin whitening agent. Recent

studies show that the team led by Kobayashi et al. isolated a

resveratrol glucosyltransferase gene from three grapevine species

and introduced it into kiwi plants via Agrobacterium-mediated

gene transfer, producing the glycosylated form of RES – piceid (103).

In 2011, Hsieh et al. observed in prostate cancer cells LNCaP

that resveratrol derivatives triacetyl-resveratrol and trimethoxy-

resveratrol are effective anti-CaP agents (104). Due to their

evasion of further enzymatic glucuronidation or sulfation, they

exhibit efficacy comparable to RES in chemoprevention and

treatment. Furthermore, triacetyl-resveratrol preferentially targets

the inhibition of CaP proliferation through the p53 signaling

pathway, while trimethoxy-resveratrol acts by controlling the cell

cycle and inducing apoptosis, achieving a dual anti-CaP activity

(105). As the most extensively studied and structurally simplest

resveratrol derivatives to date, tri-methylation and tri-acetylation
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resveratrol derivatives play indispensable roles in regulating the

growth and gene expression of prostate cancer cells LNCaP (106).

Pallidol is one of the most common resveratrol oligomers,

relatively easy to obtain. It effectively scavenges reactive oxygen

species (ROS) and activates the Keap1-Nrf2 pathway, upregulating

the expression of antioxidant enzymes (107). In 2015, the team led

by Matsuura B developed an efficient and scalable oxidative

dimerization method for the tert-butylated resveratrol derivative,

resulting in the unique and stable quinone methylation product

pallidol, the most effective synthesis method of pallidol to

date (108).

Duan et al. designed and synthesized a series of resveratrol

derivatives in 2016, proven to be effective lysine-specific demethylase

1 (LSD1) inhibitors (109). Among them, the compounds (Z)-3-((E)-2-

bromo-4,5-dihydroxystyryl)-N’-hydroxybenzimidamide (4e) and (Z)-

4-((E)-2-bromo-4,5-dihydroxystyryl)-N’-hydroxybenzimidamide (4m)

were identified as the most effective LSD1 inhibitors, dose-dependently

inducing an increase in dimethylation of Lys4 of histone H3 in MGC-

803 cells, while significantly increasing the mRNA levels of CD86 (an

alternative cellular biomarker of LSD1 activity) inMGC-803 cells (110),

demonstrating potent intracellular inhibition of LSD1 with potential

anticancer activity. Furthermore, inhibiting LSD1 can enhance the

binding of histone H3 lysine 4 dimethylation (H3K4me2) to its

promoter sequence, upregulating the expression of transferrin

receptor (TFRC) and acyl-CoA synthetase long-chain family member

4 (ACSL4). Subsequently, this promotes the accumulation of

intracellular iron and the synthesis of unsaturated fatty acids, leading

to ferroptosis. Ferroptosis, to some extent, can inhibit tumor growth

and metastasis. Therefore, these resveratrol derivatives may become a

novel option for cancer therapy.

In 2020, Yang et al. found that Piceatannol (111), a

hydroxylated resveratrol derivative, exhibits biological functions

similar to RES (112). In MDA-MB-231 breast cancer cells, it

inhibits cancer cell invasion, migration, adhesion, and reduces the

activity of matrix metalloproteinase-9 (MMP-9), thereby

suppressing breast cancer cell proliferation, invasion, and

metastasis (111, 113). Meanwhile, Piceatannol reduces drug

metabolism rates, increases its bioavailability, and surpasses RES

in terms of drug potency by participating in multiple steps such as

apoptosis, cell proliferation, and clonogenicity (114).

In 2022, Innets’s research found that the methoxy derivative of

RES, 4,4-(ethane-1,2-diyl) bis(2-methoxyphenol) (RD2), exhibits

high affinity between the ATP binding site and the allosteric site of

the Akt molecule (115). In other words, RD2 is a potential inhibitor

of Akt. RD2 blocks the PI3K/Akt/mTOR pathway (116), leading to

the activation of apoptosis, reduction in cell proliferation rate, and

inhibition of cancer cell metastasis, making it a potential drug for

the treatment of non-small cell lung cancer (117).

In 2023, Fragopoulou’s research showed that the methoxy

derivatives of RES have better antiplatelet effects, with the most

effective derivative being the 4’-methoxy derivative, exhibiting

approximately 2.5 orders of magnitude of antiplatelet activity

against thrombin receptor activating peptide (TRAP)-induced

platelet aggregation, indicating its potential as an antiplatelet

agent comparable to protease-activated receptor-1 (PAR1)

inhibitor vorapaxar (118).
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Here, we have retrospectively reviewed the discovery timeline

and development process of resveratrol and its derivatives,

providing a brief overview of their specific efficacy in clinical

applications (Figure 1).
5 Resveratrol and its derivatives in the
research progress of
autoimmune diseases

5.1 Systemic autoimmune diseases

5.1.1 Rheumatoid arthritis (RA)
RA is a systemic autoimmune disease characterized by erosive

joint damage and systemic inflammation, affecting multiple systems

(119). It is among the most prevalent systemic autoimmune

diseases, with increasing prevalence and disability rates annually,

particularly among middle-aged and elderly women aged 30–60, in

regions such as North America, Europe, and Asia (120). The

hazards of RA primarily involve joint damage and deformity,

alongside systemic inflammation and elevated cardiovascular risk,

significantly impacting patients’ quality of life and imposing a

substantial global economic burden (121–123).

Oxidative stress is widely recognized as a major contributor to

inflammation and arthritis. An increase in chemical reactions

within the body, damage to antioxidant defense systems, and an

imbalance between oxidants and antioxidants can lead to a sharp
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rise in ROS, culminating in the accumulation of reactive oxygen

molecules and defects in DNA, RNA, and proteins (124). Studies

have demonstrated that RES effectively scavenges radicals such as

hydroxyl and superoxide, thereby inhibiting lipid peroxidation and

DNA damage induced by excessive ROS production (125).

Consequently, RES exhibits remarkable anti-inflammatory and

antioxidant effects in RA. During oxidative stress, nuclear factor

erythroid 2-related factor 2 (Nrf2), a transcription factor with

antioxidant and anti-inflammatory properties, counteracts

mitochondrial decay by interacting with antioxidant response

elements (AREs) (126). Building upon this theoretical foundation,

Li et al. revealed that RES can prevent calcium deposition and

mitochondrial decay by activating the SIRT1/Nrf2 pathway, thereby

inhibiting the phosphorylation and acetylation of NF-kB p65 and

suppressing synovial hyperplasia and joint inflammation (127).

Given SIRT1’s capability to deacetylate various transcription

factors, including NF-kB, it can modulate downstream cellular

pathways associated with oxidative stress (128). Consequently,

activating SIRT1-mediated NF-kB deacetylation to inhibit

oxidative stress and inflammation has emerged as a potential

therapeutic strategy for RA. In 2012, Rathore identified that NF-

kB p65 directly targets the miR-29a-3p and miR-23a-3p promoters,

downregulating the transcription levels of miR-29a-3p and miR-

23a-3p, thus inducing immune inflammatory responses and

oxidative stress in the body, leading to joint synovial damage

(129, 130). Subsequently, Wang’s research in 2019 demonstrated

that RES can inhibit the acetylation and phosphorylation of NF-kB
p65, increase the transcriptional activity of miR-29a-3p and miR-
FIGURE 1

A review of the discovery and development of resveratrol and its derivatives.
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23a-3p promoters, block fibroblast-like synoviocyte (FLS)

proliferation, and mitigate oxidative stress induction mediated by

miR-29a-3p and miR-23a-3p promoters, thereby alleviating ROS-

induced damage to joints and surrounding tissues (131). In

summary, RES regulates the activation of the SIRT1/NF-kB/miR-

29a-3p/Keap1 pathway and the SIRT1/NF-kB/miR-23a-3p/cul3

pathway, subsequently activating the Nrf2-ARE signaling

pathway, effectively inhibiting oxidative stress resulting from ROS

accumulation and mitigating joint inflammation, positioning it as a

promising candidate drug for RA prevention and treatment.

Thalhamer et al.’s research highlights the pivotal role of MAPK

signaling pathways in RA, particularly emphasizing the significance

of p38 MAPK (132, 133). Essentially, ROS trigger inflammation by

activating the MAPK signaling pathway, which subsequently

induces the production of pro-inflammatory cytokines,

perpetuating a detrimental cycle of immune-driven inflammation

resulting in severe bone erosion (134). In 2018, Yang et al.

demonstrated that the functional inhibition of p38 MAPK by RES

underpins its protective effects against RA progression (135).

Specifically, RES can activate SIRT3, thereby restoring enzymatic

activities of isocitrate dehydrogenase 2 (IDH2), superoxide

dismutase 2 (SOD2), and glutathione peroxidase (GSH-Px) in

endothelial cells, and promoting the deacetylation of SOD2 and

forkhead box O3A (FoxO3A) (136, 137). Through this mechanism,

RES diminishes ROS accumulation, inflammation, and

angiogenesis in synovial tissue, inhibits p38 MAPK activation,

and consequently exerts anti-inflammatory, anti-angiogenic, cell-

inhibitory, and pro-apoptotic effects, exhibiting preventive potential

against RA both in vitro and in vivo. Therefore, targeting p38

MAPK represents a promising approach for RA treatment, and RES

emerges as a promising candidate for clinical RA therapy.

Khojah and colleagues conducted a randomized controlled

clinical trial to investigate the efficacy of RES therapy in treating

RA, wherein they found that RES effectively reduces the levels of

TNF-a, IL-1b, IL-6, monocyte chemoattractant protein 1, and

soluble receptor activator of NF-kB ligand in both serum and

joint tissues (138). Subsequent studies indicate that RES achieves

this reduction by upregulating SIRT1 expression levels, resulting in

a significant decrease in NF-kB expression and thereby mitigating

inflammation and bone degradation (139). Furthermore, RES

demonstrates regulatory effects on inflammatory arthritis in

rodents by selectively inhibiting cellular and humoral responses

associated with RA development (59). Additionally, RES induces

apoptosis in RA patients’ fibroblast-like synoviocytes (FLS) by

activating caspase-8, leading to substantial apoptotic cell death

through both mitochondrial signaling pathway convergence and

caspase-dependent pathways (140). Consequently, the emergence of

RES presents a promising, efficacious, and safe therapeutic option

for RA treatment (141).

5.1.2 Systemic lupus erythematosus (SLE)
SLE patients produce autoantibodies such as antinuclear

antibodies (ANA) that attack their own tissues and organs,

releasing large amounts of inflammatory mediators such as TNF-a
and IL-6, thereby triggering immune and inflammatory responses

(142). SLE is a globally distributed systemic autoimmune disease
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as infections, drugs, and ultraviolet light in its pathogenesis (143).

Currently, SLE is widely recognized worldwide due to its complex

clinical manifestations and severe complications. Its hazards mainly

include lupus nephritis, cardiovascular diseases, central nervous

system damage, risks of infection and bleeding, affecting female

fertility, and increasing pregnancy risks. Severe cases may lead to

systemic multi-organ damage and lupus crisis (144–148).

Research indicates a close relationship between CD4+ T cells

and B cells in SLE (149). In humoral immunity, helper T cells

interact with B lymphocytes, stimulating their proliferation and

differentiation, leading to the production of autoantibodies against

nuclear components, thereby attacking self-tissues and organs

(150), ultimately triggering systemic autoimmune diseases.

However, the SIRT1 activator, RES, inhibits activator protein-1

(AP-1) transcriptional activity by up-regulating SIRT1 expression

levels, further inhibiting T cell activation and maintaining

peripheral T cell tolerance (151). Simultaneously, RES can also

induce the deacetylation of Fas, Bcl-2, Bax, and p53 by activating

SIRT1 and SIRT3, and trigger Caspase 9-mediated cell apoptosis

(152, 153). This mechanism achieves an inhibitory effect on CD4+

T cells and B cells, leading to a reduction in the production of anti-

nuclear antibodies and the suppression of SLE immune

inflammation-mediated damage to systemic tissues (154).

In 2010, Dorrie and colleagues discovered that antigen-

presenting cells (APCs) present antigens to initial T cells to

initiate immune responses during the recognition phase of the

immune response, and some APCs present antigens to

differentiated T cells during the effector phase to trigger antigen

elimination. RES can influence the maturation of dendritic cells and

their antigen-presenting ability in vitro (155). Additionally, RES can

inhibit COX expression by suppressing NF-kB activation and

inhibit TNF-a-induced inflammation response in fibroblasts by

exciting SIRT1 (156), thereby reducing the deposition of immune

complexes in the kidneys (157). Therefore, inflammation inhibition

mediated by RES may also be beneficial in reducing the occurrence

of lupus nephritis. In their investigation of lupus nephritis, Miyake

et al. delineated the pivotal roles of Th1 and Th17 cells in the

pathogenesis of diffuse proliferative lupus nephritis, while

emphasizing the significance of Th2 cell cytokines in

membranous lupus nephritis (158). Subsequently, Wang et al.

utilized RES as a therapeutic intervention and elucidated its dose-

dependent reduction in the Th1/Th2 cell ratio, thereby ameliorating

the deleterious effects associated with diffuse proliferative lupus

nephritis (159). Moreover, this study yielded a groundbreaking

discovery, demonstrating that RES effectively mitigates proteinuria,

diminishes IgG and IgM deposition in renal tissues, and attenuates

renal histopathological lesions. These findings collectively suggest

that RES holds promise in halting the progression of

lupus nephritis.

Neuropsychiatric lupus erythematosus (NPSLE) is mainly

characterized by brain vasculitis mediated by vascular endothelial

growth factor (VEGF) (160). The polymorphism of genes encoding

VEGF is closely related to the increased incidence of

neuropsychiatric lupus (161). In 2018, Kalinowska-Lyszczarz et al.

treated lupus-prone atherosclerotic mice with RES and found a
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significant decrease in VEGF expression, indicating that RES can

reduce the occurrence of NPSLE inflammation, promote neuronal

survival, and improve memory (162). The latest research indicates

that any trends observed in RES-treated NPSLE mice are A2A

receptor-dependent (163). Moreover, in microglia, RES counteracts

the negative effects of A2A receptors by exciting SIRT1, reducing

the expression of fractalkine (CX3CL1), inhibiting inflammatory

responses, and improving cognitive function (164). In conclusion,

the anti-inflammatory properties of RES can exert strong protective

effects in NPSLE.

5.1.3 Systemic sclerosis (SSc)
SSc is a chronic autoimmune connective tissue disease

characterized by fibrosis and vascular abnormalities of the skin

and internal organs. The disease usually severely affects the skin,

oesophagus, lungs, heart, kidneys, and other organ systems, and

manifests itself in a diverse range of clinical symptoms and modes

of disease progression (165).The onset of SSc is geographically and

ethnically diverse. The incidence of SSc is notably higher in regions

such as Europe, North America, and Australia, while relatively low

rates are observed in Asia, Africa, and Latin America. Additionally,

the prevalence of SSc is lower among individuals of African descent

and Asians, whereas those of European descent and Indian

Americans exhibit higher rates. Typically, SSc affects individuals

in the young to middle-aged demographic, spanning ages 20 to 50.

Factors contributing to its onset include infections, occupational

exposures, substance use, and lifestyle choices (166). The risks

associated with SSc are multifaceted. Firstly, there’s the potential

for damage to both the skin and internal organs. SSc induces fibrosis

and dysfunction in these areas, where skin sclerosis can significantly

impact appearance and quality of life, while organ involvement may

result in compromised function, such as pulmonary fibrosis, cardiac

issues, and renal impairment. Secondly, vascular complications are

common. SSc often presents with both microangiopathy and

macrovascular lesions, potentially leading to symptoms like

Raynaud’s phenomenon and hypertension. Thirdly, there’s

immune system dysregulation to consider. SSc is characterized by

autoimmune processes, wherein aberrant immune activation can

spur the production of autoantibodies and inflammatory cytokines,

precipitating tissue inflammation and damage. Lastly, joint and

muscle involvement can occur, manifesting as arthritis, joint

swelling, and muscle weakness, which can significantly hinder

daily activities and motor function (167).

Research suggests that the decline in SIRTs levels and activity

contributes to the pathogenesis of SSc (168). Conversely, activating

SIRTs can induce anti-fibrotic effects, offering therapeutic benefits

for SSc patients. Specifically, when SIRT1 is activated, it inhibits the

TGF-b/SMAD signaling pathway, reducing collagen release by

fibroblasts and blocking tissue fibrosis (169). Notably, Zhu and

colleagues discovered that RES inhibits inflammatory factor

expression by activating the SIRT1/mTOR signaling pathway. By

downregulating mTOR, it diminishes collagen levels, alleviating

skin inflammation and fibrosis in SSc (170). Additionally, RES

enhances SIRT3 expression, increases intracellular TGF-b

deacetylation, hinders intracellular TGF-b signaling and fibrotic
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responses, and mitigates the activated phenotype of fibroblasts in

SSc (171). This leads to a substantial reduction in mitochondrial

and cytoplasmic ROS accumulation in fibroblasts, lessening

oxidative stress damage (172). In conclusion, RES improves

fibrosis by activating SIRT1 and SIRT3, thereby inhibiting TGF-

b-induced signal transduction. Moreover, RES activates SIRT1 to

obstruct the mTOR pathway, restraining collagen fiber

accumulation. Consequently, RES emerges as a potential

pharmaceutical intervention for treating SSc.
5.2 Organ-specific autoimmune diseases

5.2.1 Graves disease (GD)
GD arises from the immune system erroneously attacking

thyroid tissue, leading to hyperactivity of the thyroid gland and

excessive secretion of thyroid hormones, causing an elevated

metabolic rate. Approximately one-third of patients may also

develop eye conditions, such as protruding eyes and eyelid

swelling, known as Graves’ ophthalmopathy (GO) (173). GD, a

prevalent autoimmune disease globally, predominantly affects

women aged 20–40, with genetics and environmental factors

closely linked to its onset. Particularly, environmental factors

such as smoking, excessive iodine intake, and ionizing radiation

play significant roles (174). Hazards associated with GD encompass

thyroid dysfunction, thyroid storm, eye complications, an increased

risk of cardiovascular diseases, and osteoporosis (175–178).

Kim et al. illustrated that RES inhibits adipogenesis in orbital

fibroblasts associated with GO (179). Acting as a broad-spectrum

SIRTs activator, RES diminishes the rate of ROS generation triggered

by oxidative stress and lowers heme oxygenase-1 (HO-1) levels

through the activation of SIRT1/3. This concurrent reduction

extends to superoxide dismutase Cu/Zn-SOD (SOD1), catalase, and

thioredoxin (Trx), thereby reducing adipocyte numbers and lipid

droplet accumulation. Furthermore, RES induces adipocyte apoptosis

within fibroblasts (180, 181). Consequently, RES holds promise in

mitigating orbital lipid deposition, ameliorating ocular complications

of GO, and emerging as a significant therapeutic modality for

managing GD and its ocular sequelae. Nonetheless, the research in

this domain remains limited, necessitating further investigation into

RES’s therapeutic effects on GO via the SIRT1 signaling-

dependent pathway.

5.2.2 Type 1 diabetes mellitus (T1DM)
T1DM is a chronic metabolic disorder characterized by

insufficient or complete lack of insulin production, leading to

elevated blood sugar levels. This disease is typically caused by

autoimmune destruction of pancreatic b-cells, rendering insulin

unable to be effectively secreted (182). T1DM is more common in

children, adolescents, or young adults and is associated with factors

such as family history, viral infections, early-life environment, and

dietary factors. It is worth noting that T1DM is associated with other

autoimmune diseases (such as RA, autoimmune thyroid diseases,

etc.), suggesting the presence of common genetic or immune factors

(183). Its hazards mainly include several aspects: Firstly,
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cardiovascular diseases. Hyperglycemia increases the risk of

cardiovascular diseases, including myocardial infarction, stroke,

atherosclerosis, etc., which are among the main causes of death in

diabetic patients (184). Secondly, retinal lesions. High blood sugar

damages retinal blood vessels, leading to retinal lesions and potential

blindness (185). Thirdly, renal damage. High blood sugar harms the

kidneys, leading to diabetic nephropathy, which may require dialysis

or kidney transplantation in severe cases (186). Fourthly, neuropathy.

Hyperglycemia damages the nervous system, causing peripheral

neuropathy (such as sensory abnormalities, pain) and autonomic

neuropathy (such as gastrointestinal dysfunction, cardiovascular

dysfunction) (187). Fifthly, foot complications. Neuropathy and

vascular changes increase the risk of foot infections and ulcers,

potentially leading to amputation (188).

In 2015, Côté et al.’s study showed that compared with saline,

RES significantly increased the levels of NAD+ and its ratio to NADH

in the duodenal mucosa (189). Subsequently, by detecting the

acetylation level of liver kinase B1 (Lkb1) in cells after RES

treatment, it was further confirmed that RES significantly increased

SIRT1 activity (190–192). Specifically, RES activates AMPK, thereby

activating SIRT1 to achieve its biological effects (192). The activation

of the Glp1r-Pka dependent signaling in the duodenum is

downstream of the metformin-AMPK sensory pathway (193), so

the duodenum naturally becomes a site of action for RES. Therefore,

RES reduces hepatic glucose production (HGP) by activating the

duodenal AMPK-Sirt1→Glp1r-Pka dependent neural pathway,

exerting a hypoglycemic effect similar to metformin (194). This not

only lays the foundation for the development of intestine-specific

targeted therapy but also collaboratively reduces HGP and blood

sugar in diabetic and obese patients, becoming a new targeted

treatment for diabetes.

RES is not only one of the new therapeutic drugs for lowering

blood sugar but also has broad prospects in the prevention and

treatment of diabetes-related complications. In 2016, Park et al.

showed that RES can increase the expression of adiponectin

receptors 1/2 (AdipoR 1/2) and activate the AMPK-SIRT1-PGC-

1a axis, thereby alleviating endothelial dysfunction caused by

lipotoxicity, oxidative stress, and apoptosis, and preventing

diabetic nephropathy (195, 196). At the same time, RES can also

prevent diabetes-induced nephritis and mesangial cell proliferation

by inhibiting the Akt/NFkB pathway (197). Subsequent studies have

found that RES reduces ROS production and lowers blood sugar by

activating the AMPK pathway and inhibiting the expression of

NADPH oxidase 4 (NOX 4) in renal tubular epithelial cells (198). In

summary, RES reduces renal fibrosis and restores renal function by

regulating the AMPK/SIRT1/NOX 4/ROS signaling pathway (199),

achieving prevention and control of diabetic nephropathy, and

reducing the immune-inflammatory damage of the kidneys

caused by diabetes.

Negi et al. found that long-term high blood sugar levels can

cause oxidative stress in the body, leading to the activation of the

transcription factor NF-kB in peripheral neurons (200). However,

NF-kB can mediate the release of a large number of pro-

inflammatory cytokines such as iNOS, TNF-a, IL-6, and COX-2,

thereby driving nerve damage mediated by neuroinflammation and

causing peripheral neuropathy (201). In 2020, Huang et al. found
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that RES can reduce the inflammatory mediators in diabetic

neuropathy (202). Specifically, RES upregulates the expression of

SIRT1 and downregulates the expression of NF-kB, thereby

reducing the activity of pro-inflammatory factors (such as TNF-a,
IL-6, and iNOS) associated with neurodegeneration (203).

Furthermore, RES can also ameliorate sensory motor disturbances

associated with diabetic neuropathy by inhibiting the activity of

TNF-a and nicotinamide adenine dinucleotide phosphate oxidase

through activating SIRT1 (204, 205). Therefore, RES reduces the

release of pro-inflammatory factors in diabetic patients, prevents

oxidative stress from attacking neuronal cells, protects nerve

function, and alleviates neuropathy.

In vitro studies have shown that RES reduces the expression of

VEGF in human retinal endothelial cells and inhibits high glucose-

induced cell proliferation (206). It can also inhibit the migration of

retinal endothelial cells by activating the PI3K/Akt pathway

mediated by matrix-derived factors (207). Therefore, RES has

potential value in preventing diabetic retinal lesions.

5.2.3 Inflammatory bowel disease (IBD)
IBD is a group of chronic intestinal disorders, mainly including

Crohn’s disease (CD) and ulcerative colitis (UC). The hallmark of

these diseases is chronic inflammation of the intestinal mucosa,

often accompanied by ulcer formation (208). The incidence of IBD

varies in different regions, with higher rates in North America,

Europe, and Australia, and relatively lower rates in Asia, Africa, and

Latin America. IBD is more common in adolescents and young

adults aged 20–40 and is associated with genetic factors, lifestyle,

dietary habits, and infections. Particularly, smoking is closely

associated with an increased risk of IBD (209). Its hazards mainly

include intestinal inflammation and ulcers, malnutrition, intestinal

obstruction, intestinal fistulas, and an increased risk of colorectal

cancer (210–212).

Many in vitro and animal studies have shown that RES can

reduce the severity of intestinal inflammation in IBD. However, the

beneficial effects of RES on treating IBD are attributed to multiple

mechanisms, which ultimately lead to the inhibition of the

inflammatory cascade response (213). Ren et al. demonstrated

that RES primarily exerts its inhibitory effect on NF-kB by

activating SIRT1, thus mitigating the severity of IBD (214).

Specifically, RES suppresses the transcriptional activity of p65 and

the ubiquitination of NF-kB essential modulator (NEMO) in a

dose-dependent approach, thereby inhibiting NF-kB activation

mediated by the NF-kB kinase. Singh et al. found that RES not

only downregulates TH1 responses to reduce the secretion of

inflammatory factors such as IL-1b, IL-6, and TNF-a in colitic

mice but also reduces the percentage of CXCR3+ T cells. More

importantly, RES significantly induces the expression of

immunosuppressive CD11b+ Gr-1+ myeloid-derived suppressor

cells (MDSCs) in the colon, which helps suppress local effector T

cell responses (215). Furthermore, RES markedly diminishes the

populations of inflammatory CD4+ and CD8+ T cells, B cells, NK

cells, and myeloid-derived suppressor cells (MDSCs), underscoring

its efficacy in reversing the advancement of chronic colitis (216).

In a 2012 study on UC, it was proposed that IL-17, IL-10, and

transforming growth factor b1 (TGF-b1) participate in the
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development of TH17 through two important pathways: mTOR-HIF-

1b-TH17 and IL-6-STAT3-HIF-1b-TH17. RES precisely regulates the
balance between Treg and TH17 cells by activating the SIRT1/mTOR/

HIF-1b/TH17 signaling pathway, leading to cell cycle arrest in

intestinal smooth muscle cells, increased apoptosis, and decreased

collagen synthesis (217). Subsequently, in a study on CD, RES

effectively reduced the expression of insulin-like growth factor 1

(IGF-1) and procollagen mRNA by activating SIRT1, thereby

significantly decreasing the activity of inflammatory cytokines (IL-1b,
IL-6, and TNF-a) and the fibrosis-promoting factor (TGF-b1) (218).
This study elucidated that RES not only mitigates the inflammatory

response but also impedes the fibrotic process of the cecal wall.

Furthermore, Arslan et al. found that RES can enhance the

activity of superoxide dismutase (SOD), catalase (CAT), and

glutathione (GSH) in vivo (219). The study report by Serra

showed that RES is more effective than 5-aminosalicylic acid and

can activate two pathways, nuclear factor erythroid 2-related factor

2 (Nrf2) (220), and PPAR-g in human intestinal cells (221, 222). It is

worth noting that these two pathways are currently considered as

new therapeutic targets for IBD.

In summary, RES can inhibit ROS in the intestines and increase

the activity of antioxidant enzymes through multiple pathways,

thereby suppressing oxidative stress to maintain the balance

between oxidants and antioxidants in the body, to some extent

reducing the activity of IBD and improving the quality of life of

patients with IBD.

5.2.4 Pulmonary fibrosis (PF)
PF is a chronic progressive lung disease and a component of

connective tissue disorders. Its hallmark is the excessive

proliferation and deposition of fibrous tissue in the lung tissue,

leading to irreversible lung damage. This fibrosis can damage the

alveoli and lung interstitium, making the lungs stiff and losing

elasticity, thereby affecting respiratory function (223). PF has a

relatively low incidence but is increasing annually, occurring more

frequently in adult males over 60 years of age, and is associated with

prolonged exposure to harmful chemicals (such as silica dust,

asbestos, silicates, etc.) and inhalation of toxic gases (such as

nitrogen oxides, iron oxide dust, etc.) (224). Its hazards mainly

include the following aspects: firstly, impaired respiratory function.

PF leads to excessive fibrous tissue proliferation in the alveoli and

lung interstitium, thereby affecting lung function. Impaired lung

function can cause symptoms such as dyspnea, shortness of breath,

and in severe cases, may even require respiratory assistance from a

ventilator, severely affecting the patient’s quality of life (225).

Secondly, cardiovascular complications. PF can lead to the

occurrence of cardiovascular complications such as pulmonary

arterial hypertension and right heart failure, which can be life-

threatening in severe cases (226). Thirdly, increased risk of cancer.

Long-term chronic inflammation and tissue damage in the lungs

may increase the risk of developing lung cancer (227).

In 2016, Li et al. discovered that the SIRT1 agonist RES reduces

systemic oxidative stress by activating the Nrf2-related antioxidant

defense mechanism, thus exerting a protective effect on PF (228).

Importantly, Nrf2 can induce various downstream signaling targets,
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including NAD(P)H quinone dehydrogenase 1 (HO-1/NQO1),

NADPH oxidase 4 (NOX4), and GSH. These signaling targets

participate in the formation of multiple signaling pathways, such

as the SIRT1-Nrf2-HO-1 pathway, thereby achieving anti-fibrotic

effects both in vivo and in vitro through mechanisms such as

inhibiting immune-inflammatory responses and oxidative stress,

which significantly attenuates PF (229).The latest research indicates

that RES can alleviate PF by inhibiting TGF-b-activated kinase 1

(TAK1) (230). TAK1 is a kinase involved in TGF-b activation,

participating in fibroblast proliferation, collagen deposition, and

scar formation (231). Zhang et al. demonstrated that moderate

concentrations of RES can activate SIRT1, leading to enhanced

expression of AMPK, reducing the activity of inflammatory

cytokines such as IL-1b and macrophage inflammatory protein-

1a (mip-1a), thereby preventing nitric oxide (NO) release,

inhibiting iNOS expression, and suppressing NF-kB nuclear

translocation (232). In studies on human alveolar epithelial cells

(AEC2), RES upregulates the expression of SIRT1, thereby

improving mitochondrial membrane potential, reducing ROS

levels, decreasing cell apoptosis, ultimately reducing high oxygen-

induced cell damage (233). Additionally, the activation of the

SIRT1/p53 signaling pathway by RES can also delay the aging of

AEC2 and participate in the treatment process of PF through its

antioxidant and anti-inflammatory responses (234). Therefore, the

SIRT1 and Nrf2 pathways induced by RES are likely to become

potential therapeutic targets for PF.
6 The challenges faced in the clinical
application of resveratrol and
its derivatives

In recent years, there has been a surge in attention toward

resveratrol and its derivatives as activators of the SIRTs family,

following the discovery of their roles in metabolic regulation, cell

apoptosis, cancer prevention, and other cellular processes. These

compounds are recognized for their potential clinical benefits,

including antioxidative, anti-inflammatory, anti-cancer, and

cardiovascular protective properties. However, despite their broad

range of potential applications, the clinical development of RES is

hindered by its remarkably low bioavailability and susceptibility to

oxidative degradation in biological formulations, thereby impeding

the attainment of doses conducive to human health (106).

Consequently, there is a critical need to explore various types of

resveratrol derivatives to broaden and enhance the therapeutic

potential of compounds resembling resveratrol, representing an

urgent research imperative.
6.1 The severe inadequacy in bioavailability

The most pressing issue currently regarding the clinical

application of RES is its bioavailability. RES’s bioavailability in the

human body is affected by gradually increasing doses and repeated

administration, with an oral absorption rate of approximately 75%,
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primarily through epithelial diffusion. However, extensive

metabolism predominantly occurs in the intestines and liver,

resulting in an oral bioavailability far below 1%. Even with

gradual dose increases and repeated administration, this situation

remains largely unchanged (65). In mammals, RES is chiefly

metabolized in the intestines and liver, primarily converting to

glucuronides and sulfates (235, 236). Nonetheless, its metabolism is

exceedingly rapid, with plasma concentrations of RES diminishing

rapidly within 30–60 minutes post-administration, posing

challenges for systemic medication (237). A comparative study by

Ndiaye investigated three RES administration models—drinking

water, oral feeding, and sustained-release pellets implanted near

tumors (238). Surprisingly, RES exhibited no effect on melanoma in

the body (239), with plasma RES levels remaining very low and

rapidly converting to its metabolites such as resveratrol glucoside

and resveratrol. Similarly, RES application in various areas such as

lung cancer, intestinal tumors, and leukemia has shown markedly

low bioavailability (240, 241). Efforts to address this issue are

underway. For instance, a study by Niles and others in 2003

demonstrated that leveraging RES’s characteristics via epithelial

diffusion for skin cancer treatment not only tackled its rapid

metabolism but also significantly enhanced its bioavailability

(242). However, enhancing RES’s bioavailability remains a critical

concern in the medical community.
6.2 The poor biological stability

RES, a bioactive polyphenol, is widely present in various foods.

Despite its strong beneficial effects on human health, such as

antioxidant, anti-aging, cardioprotective, neuroprotective, and

chemopreventive properties (243), its use as a drug is still greatly

limited by its poor bioavailability, and the tendency for auto-

oxidation and photosensitivity further restricts the development

of its pharmaceutical formulations (244). The instability of RES is

attributed to its deprotonation in alkaline media and subsequent

auto-oxidation, degradation, or polymerization processes. RES

exists in cis and trans isomeric forms, with the trans isomer being

more biologically active and widely used as SIRTs activators (245).

However, the isomerization of trans-resveratrol is influenced by

various factors such as exposure time and wavelength, physical state

of the molecule, temperature, and pH (64). Research by Goldberg

et al. suggests that trans-resveratrol is unstable under light and heat;

when exposed to ultraviolet radiation for several hours, trans-

resveratrol can convert to cis-resveratrol, significantly losing its

biological stability (246). Additionally, Robinson et al. investigated

the stability of both resveratrol isomers in aqueous solutions and the

kinetic effects of this process (247). The results indicate that under

light protection, trans-resveratrol can remain stable for at least 42

hours in neutral buffer and at least 28 days in acidic medium.

Therefore, the urgent need to address the issues of RES stability in

terms of photo and water stability is crucial to maintain its

beneficial effects, prevent the formation of oxidation or photo-

oxidation products, and avoid harm from its metabolites to human

health. Recent evidence suggests that the limitations of RES stability

and bioavailability can be circumvented by developing new
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formulations or synthesizing new prodrugs (248). Studies by

Dhakar et al. found that RES formulated into nanosponge

encapsulated systems achieved higher water solubility and drug

loading than single drugs. Furthermore, nanosponges dissolve

drugs in a controlled manner, significantly prolonging the release

duration of RES. Moreover, the antioxidant activity of RES is

further enhanced in the presence of nanosponges. Most

importantly, nanosponges exhibit biocompatibility and do not

cause significant cytotoxicity to the organism. Therefore, future

research should focus on the development of new products to make

RES more soluble and delay its metabolism.
6.3 The dosage range and
safety assessment

In addition to low bioavailability, determining the appropriate

dosage range of RES and assessing the long-term safety of its use are

also important challenges. In 2010, Brown et al. reported toxicity data

from a dose-escalation study describing the intake of RES by 44

healthy volunteers (249). No serious adverse events were detected

through clinical, biochemical, or hematological parameters, with the

most common toxicity being gastrointestinal reactions. According to

the Common Terminology Criteria for Adverse Events (CTCAE)

from the National Cancer Institute, approximately 90% of reported

events were classified as mild. However, most adverse reactions

occurred in populations taking the two highest doses or individuals

ingesting more than 1 gram of RES per day. Therefore, for future

clinical development of RES, intake for one month at doses as high as

1 gram per day is safe and well tolerated (250). It is important to note

that the concentration of RES varies in different tissues and organs.

For example, there is a high concentration of RES in colonic tissue, far

exceeding the concentrations required for in vitro activity, but the

concentration in other tissues may be much lower than the

appropriate in vitro concentration (251). Therefore, the clinical

efficacy of RES likely depends to a large extent on whether its

metabolites have significant activity or can regenerate RES (252).

However, some studies have found different results, such as low

concentrations of RES exhibiting biological activity and displaying a

biphasic dose-response relationship (253). Further research is needed

to explore the relationship between RES dosage and safety.
6.4 Adverse reactions

6.4.1 Cell toxicity
Bolton et al. found that the metabolites of RES have

cytoprotective effects but can also induce cytotoxicity or

immunotoxicity (254). During the metabolism of RES,

cytochrome P450 generates quinone compounds through

hydroxylation reactions, producing the metabolite piceatannol.

Piceatannol possesses anti-inflammatory and antioxidant

properties. It not only enhances the expression of the antioxidant

enzyme heme oxygenase-1 (HO-1) in human breast epithelial cells

by inducing Nrf2 (255), but also inhibits the downregulation of the

anti-apoptotic B-cell lymphoma 2 protein (Bcl-2), thereby
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suppressing oxidative stress and apoptosis induced by hydrogen

peroxide and peroxynitrite (256). The quinone metabolites of RES

are also associated with toxic effects, involving oxidative stress and

alkylation mechanisms (257). For example, piceatannol can induce

the inhibition of P450 oxidase or alkylation of certain proteins such

as Keap1, Nrf2, I kappa B kinase (IKK), where NF-kB can lead to

severe hepatorenal toxicity (258). Moreover, quinone compounds

can deplete GSH, affect the function of nicotinamide adenine

dinucleotide phosphate oxidase (NOX), and ultimately lead to

oxidative stress reactions, damaging normal organisms (254).

Studies have shown that tyrosinase, a key enzyme involved in

melanin biosynthesis, participates in RES metabolism. RES can

serve as a substrate for tyrosinase, generating active quinone

compounds (259). The generated quinone compounds can decay

to form oligomers, which as pro-oxidants, can trigger cytotoxicity in

melanocytes, ultimately leading to the development of skin

tumors (260).

6.4.2 DNA damage
Research has shown that increasing intake of RES can better

clear ROS, thus, RES has a cellular protective effect (259). However,

under certain conditions, antioxidants may also act as pro-oxidants,

leading to accelerated lipid peroxidation or induced DNA damage

(261). In fact, whether RES exhibits pro-oxidant or antioxidant

activity depends on RES concentration, form, processing

conditions, and its redox status (262, 263). When acting as a pro-

oxidant molecule in vitro, RES can cause DNA damage, reduce

multiple DNA repair pathways, and activate cytotoxicity and

apoptosis pathways (264). Zuo et al. found that RES exhibits

preferential cytotoxicity in malignant tumor cells, leading to

higher electron transfer between RES and copper ions (265).

Therefore, RES and copper-induced DNA damage may be one of

the cytotoxic mechanisms of RES against cancer cells (266). It is

noteworthy that the pro-oxidative action of RES has pro-apoptotic

function in different types of cancer cells, and its ability to induce

DNA breaks has potential therapeutic value in combating cancer

cells (267). However, there are also reports that RES triggers p53-

dependent apoptosis by activating topoisomerase II, thereby

inducing DNA damage in colon cancer cells (268). In U2OS and

A549 cancer cells treated with RES, the proportion of DNA double-

strand breaks significantly increased. This phenomenon may also be

mediated by RES-induced pro-oxidative effects and regulation of

the CXCR2-p53 pathway (269).

6.4.3 Induction of oxidative stress
Giordo et al. found that RES severely impacts cellular redox

state (270). In this regard, low doses of RES have various beneficial

effects, such as protecting cells and tissues from the effects of

neurodegeneration, cardiovascular diseases, cancer, diabetes, and

obesity-related diseases, and prolonging organism lifespan (271).

However, there is substantial evidence indicating that RES exhibits a

biphasic concentration-dependent effect. That is, both in vivo and in

vitro, RES acts as an antioxidant at low doses and a pro-oxidant at

high doses (272). The pro-oxidative effect of RES is typically

associated with the downregulation of phosphorylated pkb/Akt,
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cell damage, and apoptosis. Meanwhile, ROS-mediated

mitochondrial damage produced by cytochrome P450 enzyme

cyp2c9 in high doses of RES-induced oxidative damage seems to

be involved as well (273). Heo et al. proposed that RES can induce

apoptosis and cell cycle arrest in malignant melanoma cells (274).

Additionally, Kim found that RES induces caspase-dependent cell

death in ovarian cancer cells through a ROS-dependent mechanism.

It is worth mentioning that in their 2022 study, Elbaz et al. found

that resveratrol also triggers the downregulation of miR-144 by

upregulating the expression level of Nrf2.Consequently, resveratrol

showed hepatorenal antioxidant, anti-inflammatory, and

antiapoptotic activities as manifested by improvement in the

antioxidant markers along with a decline in NF-kB, TNF-a, and
caspase-3 expressions. In summary, this study demonstrated that

resveratrol has potential therapeutic effects in alleviating liver and

kidney damage induced by nonsteroidal anti-inflammatory

drugs (275).

6.4.4 Drug interactions
Currently, an increasing number of studies have found indirect

interactions between RES and other drugs, leading to decreased

activity or overexpression of major cellular systems involved in

drug metabolism—drug transporters and CYP450 enzyme activity

(276). Previous studies have shown that RES can blunt the function

and expression of drug transporters, thereby increasing the

anti-proliferative activity of various drugs and reducing their

bioavailability (277). For example, RES inhibits drug transport

proteins such as P-glycoprotein, multidrug resistance-associated

protein 2 (MRP2), and organic anion transport proteins (OAT1/

OAT3), reducing the clearance of methotrexate in the kidneys and

increasing the risk of liver toxicity (278, 279). Additionally, RES can

enhance the anticoagulant activity of warfarin, increasing the risk of

bleeding (280). Interestingly, combination therapy with RES has also

been reported to attenuate the effects of other drugs. For instance,

RES can diminish the effects of human immunodeficiency virus

(HIV) protease inhibitors (281) and interact with inhibitors of 3-

hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA

reductase) (282), immunosuppressants (283), antiarrhythmic drugs

(284), antihistamines (285), and calcium channel agonists (286),

thereby reducing the bioactivity and utilization of drugs and

affecting drug efficacy.
6.5 The turning point between basic
research and clinical practice

In addition, the majority of research on RES is currently still in

the basic research stage, and transitioning it into clinical practice

promptly poses a significant challenge. The lag in clinical

application is due to RES being a natural compound with many

clinically relevant targets, which have different dose-response

curves, tissue distributions, and modifiers. Effectively addressing

these issues is currently a challenge. New paradigms and methods

need to be developed, including better molecular modeling to

predict interactions; large-scale screening for toxicity or other
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common effects; and affinity-based methods to identify drug

interactions, among others (287).
7 Conclusion and outlook

This study systematically explores the mechanism and potential

applications of resveratrol and its derivatives in the treatment of

AID. Through literature review, we found that RES, as a SIRTs

activator, has significant therapeutic potential in regulating immune

cell function and suppressing the release of inflammatory factors,

providing new insights for the treatment of AID.

Despite some encouraging progress, several challenges persist

and must be addressed. These challenges encompass the

bioavailability, stability, and safety of resveratrol and its

derivatives. Future research endeavors should focus on, but not be

restricted to, the following key areas: firstly, delving deeper into

assessing the efficacy and safety of resveratrol and its derivatives

across various types of AID. Secondly, enhancing the bioavailability,

stability, and specificity of resveratrol and its derivatives through

advancements in synthesis, drug design, and targeted delivery

systems. Thirdly, formulating personalized treatment plans

tailored to individual genetic, phenotypic, and lifestyle factors to

achieve the precision medicine goal, considering the potential

variation in the impact of resveratrol and its derivatives among

individuals. Lastly, exploring the molecular mechanisms of the

SIRTs pathway in immune regulation and devising more selective

and specific SIRTs modulators to mitigate adverse reactions and

side effects.

In conclusion, resveratrol, as a potential AID treatment, holds

expansive application prospects; however, further research and clinical

validation are imperative. Collaborative efforts within the medical

community are essential to propel the advancement of this field,

offering patients more efficacious and safer treatment alternatives.
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