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Different host proteins target different HIV proteins and antagonize their

functions, depending on the stage of the HIV life cycle and the stage of

infection. Concurrently, HIV proteins also target and antagonize various

different host proteins to facilitate HIV replication within host cells. The

preceding quite specific area of knowledge in HIV pathogenesis, however,

remains insufficiently understood. We therefore propose, in this review article,

to examine and discuss the HIV proteins that counteract those host restriction

proteins which results directly in increased infectivity of HIV. We elaborate on HIV

proteins that antagonize host cellular proteins to promote HIV replication, and

thus HIV infection. We examine the functions andmechanisms via which Nef, Vif,

Vpu, Env, Vpr, and Vpx counteract host proteins such as Ser5, PSGL-1, IFITMS,

A3G, tetherin, GBP5, SAMHD1, STING, HUSH, REAF, and TET2 to increase HIV

infectivity. Nef antagonizes three host proteins, viz., Ser5, PSGL1, and IFITIMs,

while Vpx also antagonizes three host restriction factors, viz., SAMHD1, STING,

and HUSH complex; therefore, these proteins may be potential candidates for

therapeutic intervention in HIV infection. Tetherin is targeted by Vpu and Env,

PSGL1 is targeted by Nef and Vpu, while Ser5 is targeted by Nef and Env proteins.

Finally, conclusive remarks and future perspectives are also presented.
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Introduction

Human immunodeficiency virus (HIV) is a single-stranded

RNA virus, and its RNA, upon entry into the host cell, is reverse

transcribed into DNA, which subsequently integrates into host

DNA (1). Helper T-lymphocytes and monocytes are the primary

targets of HIV-1, and from the point of the attachment of HIV to

the host cell to the production of viable HIV virions, several host

restriction factors also participate in the life cycle of HIV (2, 3).

Within infected cells, a number of host proteins are expressed in

response to HIV infection, which inhibit HIV replication at various

stages of the life cycle of HIV. Since these host proteins restrict HIV

replication within cells, the host proteins are referred to as

restriction factors, and participate in host defenses against all viral

infections, including HIV infection (4, 5). Host restriction factors

inhibit infections by recognizing and interfering with specific steps

in the life cycle of the virus responsible for the infection. Certain

specific processes such as the expression of host restriction proteins

within different cell types, the rapid action of restriction proteins,

and their inducibility by interferons (IFNs) may enable host

restriction proteins to acquire an enhanced potency to inhibit

viral infections, (6).

Up until now, several restriction factors that inhibit HIV-1

infection at various stages and which target different proteins of

HIV have been described. Some of the restriction factors may target

particular HIV proteins. A few of the host restriction factors include

Serine incorporate 5 (Ser5) (7), P-selectin glycoprotein ligand 1

(PSGL-1) (8, 9), interferon-induced transmembrane (IFITM)

proteins (10), Apolipoprotein B mRNA editing enzyme, catalytic

polypeptide-like 3G (APOBEC3G) or A3G (11), Tetherin (12, 13),

Guanylate-Binding protein 2 and 5 (GBP2/5) (14), RNA-associated

early-stage antiviral factor (REAF) (15), member of ten-eleven

translocation 2 (TET2) (16), Sterile Alpha Motif and Histidine

Aspartate domain containing protein 1 (SAMHD1), stimulator of

IFN genes (STING), and human silencing hub (HUSH) restriction

to promote HIV-2 replication (17–19).

HIV has evolved and has adapted to the human host in a manner

that allows it to counteract certain host restriction factors in order to

increase the success of its infection. Several HIV proteins, such as Nef,

Virion infectivity factor (Vif), viral protein U (Vpu), Envelop protein

(Env), viral protein R (Vpr), and viral protein X (Vpx) are known to

counteract the effects of host restriction factors via different

mechanisms. Indeed, Nef interacts with and downregulates the

expression of Ser5, PSGL1, IFITM proteins (7, 9, 20), while Vif

degrades APOBEC3G (7, 9, 20, 21), Vpu antagonizes tetherin,

PSGL1, and GBP5 (8, 22–25), Env restricts tetherin and Ser5 (26–

28), Vpr antagonizes REAF and TET2; and Vpx overcomes

SAMHD1, STING, and HUSH restriction to promote HIV-2

replication (17–19). The restriction of these host factors by HIV

proteins helps HIV to propagate and sustain a productive infection

within the human host.

In order to counteract HIV/AIDS, it is fundamentally important

to understand how the human host cellular machinery is exploited

by HIV for its own benefit. HIV-1 is known to interact with host

proteins, and dissection and elucidation of the underlying
Frontiers in Immunology 02
mechanisms integral to these interactions would be of significant

importance for the development of novel strategies to control HIV.

In the present review article, we discuss how HIV proteins are able

to counteract host restriction factors in order to establish a

successful infection, and offer perspectives related to the

preceding discussion.
Nef downregulates Ser5/3, cell
surface PSGL-1, and IFITMs to
increase HIV-1 infectivity

HIV-1 Nef encodes 200 to 215 amino acid residues, is the most

abundantly transcribed gene during the early stages of HIV infection,

and is important for viral replication (29–31). The Nef protein

contains globular core residues of 58-149 and 180-206 amino acids,

an N-terminal anchor domain (amino acids 1-58), and an internal

flexible loop (amino acids 149-179) (29). The C-terminal flexible loop

contains a dileucine motif [(D/) ExxxLL,160–165] which binds

endocytic adaptor protein (AP) complexes (32, 33), and two

diacidic motifs, i.e., (E154, 155) and (E/DD174, 175), which

interact with the beta subunit of the coatomer protein (b-COP)
(34) and the vacuolar ATPase catalytic subunit (35), respectively. Nef

is a multifunctional protein that is involved in several activities within

the cell, including the downregulation of T-cell receptors, of MHC-1,

and of CD4+ T-cells, and thus tends to increase HIV infection (36).

Other functions of Nef include modulation of the activation state of

macrophages and T-cells, and perturbation of the actin cytoskeleton

(7, 37). A further function of Nef was described in 1994, i.e., its ability

to increase virion infectivity, and this function is conserved among

primate lentiviruses (38, 39). Viruses lacking Nef have been found to

have reduced infectivity, thus underlining the role of Nef during viral

infections (39). Nef is one of the earliest HIV genes, resulting in the

modification to that leads to viral replication. Nef is detectable in the

HIV-1 infected patients serum, even when plasma RNA levels of

HIV-1 are not detectable (40).

Transcriptomic analysis of low and high Nef-responsive cells

have identified Ser5 as a protein that may putatively be responsible

for regulation of the HIV-1 infectivity which correlates with Nef

responsiveness. Nef increases the infectivity of viral particles by

downregulating Ser5 (Table 1, Figure 1) (7). The Ser protein family

has five protein members (Ser1 to Ser5). Serinc proteins are

membrane proteins that flip lipids, and eventually leading into

loss of membrane asymmetry which is related with the loss of

infectivity (48). Ser3 and Ser5 are found to increase the signaling of

IFN-I and NF-kB (49). Ser5 interacts with mitochondrial

membrane antiviral signaling protein (MAVS) and TRAF6, the

important members of innate immune signaling. Serinc proteins are

not induced by IFN, and are therefore classified as non-classical

host restriction factors. Both ser3 and ser5 boost the innate immune

signaling, and therefore increases the production of IFN-I and pro-

inflammatory cytokines. These events are found not only in the

perspective of HIV-1, but also for zika virus (ZV) and vesicular

stomatitis virus (VSV) (49). Ser5 has been established as a host

restriction factor that inhibits HIV-1 replication. Among the
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various isoforms of ser5, the longest isoform (Ser5-001) is stably

expressed. Ser5-001 is the predominant antiviral isoform that is

incorporated into HIV-1 particles, and inhibits HIV replication at

early stages of the HIV life cycle (50, 51). However, it has been

observed that Nef binds and directly downregulates Ser5 at steady-

state levels via the lysosome/endosome system, to effectively

counteract the expected inhibition of HIV by Ser5.Cell surface

levels of serinc proteins are decreased by the Nef expression (52)

and specifically, Nef internalizes Ser5 via receptor-mediated

endocytosis. In the absence of Nef, Ser5 cannot be internalized.

Moreover, the polymorphisms that occur in Nef impairs its ability

to internalize Ser5; thus, mutations leading to variations in Nef

protein expression may likely contribute to observed variations in

viral pathogenesis (41). Linked genotype-phenotype dataset analysis

revealed that 18 polymorphism occurring naturally on 14 codons

were associated with differential Ser5 down regulation (41).

Future studies in this regard may enhance our understanding of

the Nef-Ser5 interface at molecular levels, and this may represent an

attractive option for the potential revelation of new antiviral

therapeutics. There is more than 17% of amino acid similarity

among the five human Ser family members; therefore, in the study

mentioned previously (7), the other Ser family members were

explored because of their involvement in anti-HIV-1 activities.

Overexpression of Ser3 results in a threefold decreased

production of Nef-defective HIV-1, suggesting the role that Ser3
Frontiers in Immunology 03
may play in HIV-1 infectivity inhibition. The infectivity inhibition

attributable to Ser3, however, occurs to a lesser degree compared to

Ser5, which is also counteracted by Nef (7).

As described above, the key role of Nef is in increasing virion

infectivity via downregulation of Ser5. However, one research group

have sought to determine whether Nef contributes significantly to

HIV-1 subtype C disease progression (53). Using a flow cytometry-

based assay, the potential of 106 Nef clones (isolated from patients

in early infection) to downregulate Ser5 in a CEM (acute

lymphoblastic leukemia T-lymphoblast) -derived CD4+ T-cell line

was evaluated in order to test their hypothesis (41).

Codon-by-codon analysis revealed that amino acids 10I, 11V,

38D, 51T, 65D, 101V, 188H, and 191H were responsible for an

increase in Ser5 downregulation, whereas amino acids 10K, 38E,

65E, 135F, 173T, 176T, and 191R were associated with decreased

downregulation. Further experiments with site directed

mutagenesis delineated that Ser5 down regulation was associated

with 173T mutation, however, 10K, 135F, and 176T mutations were

associated with non-significant reductions (53). The Nef mediated

Ser5 sequence determinants were determined which showed that 15

amino acid polymorphisms at 11 different codons were associated

with Ser5 down regulation activities. The amino acid variations at

codons 10, 11, 38, and 173 were found to be associated with more

than 30% Ser5 down regulation (53). Thus, it was inferred that Ser5

downregulation contributes to overall Nef activity and function.
TABLE 1 HIV proteins and their antagonized host restriction factors.

Viral protein Counteracting
host

restriction
factor

Mechanism Reference

Nef

Ser5

PSGL-1

IFITMS

Nef binds Ser5, internalizes, and downregulates Ser5 expression (41)

Nef downregulates PSGL-1 and may redirect PSGL-1 to intracellular compartments (8, 9)

Nef downregulates IFITMs by altering their subcellular distribution (20, 40)

Vif A3G Vif binds with A3G, and induces the poly-ubiquitination and proteasomal degradation of A3G (11, 21)

Vpu

Tetherin

PSGL-1

Vpu interacts with tetherin, and induces the ubiquitination and degradation of tetherin (22, 25, 42, 43)

Vpu interacts with PSGL-1 and triggers the ubiquitination and degradation of PSGL-1 through
SCFb-TrCP2

(8, 9)

GBP5 Vpu counteracts GBP5 indirectly (44)

Env

Tetherin

Ser5

Env interacts with tetherin and confines tetherin to the trans-Golgi network, and thus sequesters
it from virus assembly sites on the plasma membrane

(26)

Unknown mechanism (27, 28)

Vpr
REAF

TET2

Vpr interacts with and degrades REAF in primary macrophages (45)

Vpr degrades TET2 via VprBP-DDB1-CUL4-ROC1 E3 ligase (16)

Vpx

SAMHD1

STING

HUSH

Vpx interacts with SAMHD1, recruits Cullin-4 E3 ubiquitin ligase complex, destines SAMHD1
for poly -ubiquitination and proteasomal degradation

(17–19)

Vpx interacts with STING and inhibits NF-kB activation (46)

Vpx interacts with HUSH complex, and recruits DCAF1 ubiquitin ligase adopter to
degrade HUSH

(47)
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Furthermore, the potential genetic determinants of Nef activity and

function may be an important consideration for future therapeutics

and vaccine development (53).

Liu et al., infected CD4+ T-cells with HIV-1 in an attempt to

isolate new anti-HIV-1 factors. For this purpose they used isobaric

tag-based quantitative mass spectrometry (MS) technology, and

quantified approximately 14000 proteins (8). For comparison, RNA

sequencing was performed, and it was observed that expression of a

wide range of proteins was altered in response to HIV-1 infection.

Among these proteins, PSGL-1 was focused on for further study.

PSGL-1 is a 120-kDa glycoprotein that is expressed on the surface of

myeloid and lymphoid cells. PSGL-1 inhibits HIV-1 infectivity by

blocking HIV virion attachment to target cells. PSGL-1 is increased

during inflammation to regulate leukocyte tethering and thus to

promote cell migration into flamed tissues. During T cell

differentiation, the IFN-g and IL-12 promote PSGL-1 expression,

indicating that PSGL-1 could be an IFN-g-regulated factor (9).

Furthermore, to determine the domain responsible for its anti-viral

activity, the deletion mutagenesis of this protein domain was

performed. It was revealed that rigid and elongated extracellular N-

terminal domain of PSGL-1 is indispensable for its anti-HIV-1

activity. (9). Experimental results have indicated that levels of

PSGL1 proteins (but not PSGL1 mRNA levels) were downregulated
Frontiers in Immunology 04
after HIV-1 infection of cells (8). Fu et al., also determined that PSGL-

1 blocks HIV-1 attachment to cells and thus decreases HIV infectivity

(9). Nef is a broad-spectrum regulator of cell-surface receptors (54–

56). Thus, the role played by Nef in HIV-1-mediated downregulation

of PSGL-1 was explored (9). Fu et al., determined that HIV-1 Nef

downregulates surface PSGL-1 in a dose-dependent manner to enable

HIV to partially escape PSGL-1-mediated restriction (Table 1,

Figure 1); however, Nef is unable to decrease intracellular PSGL-1

levels, and may redirect intracellular PSGL-1 to intracellular

compartments (9).

Interferon-induced transmembrane (IFITM) proteins inhibit

cellular entry of various viruses including dengue virus, influenza A

H1N1 virus, and West Nile virus (57). Furthermore, it was observed

that IFITM may also inhibit HIV-1 infection by interfering with

HIV entry, as IFITM proteins are membrane-associated proteins

(10). This inhibition of HIV-1 entry by IFITM proteins is regulated

by a virus co-receptor. Notably, CCR5-tropic strains are more

sensitive to IFITM1 while CXCR4-tropic strains are more

sensitive to IFITM2 and IFITM3 (58–60). Apart from its role in

inhibiting the cellular entry of HIV-1, IFITM proteins also inhibit

viral replication, as knockdown of IFITM1 has been seen to increase

HIV-1 titers (20). Indeed, IFITM expression correlates with reduced

HIV-1 Gag levels, indicating a reduction in viral protein synthesis
FIGURE 1

Counteraction of host restriction factors by HIV proteins. Nef downregulates Ser5; Nef binds and directly downregulates Ser5 at steady-state levels
via the lysosome/endosome system Nef internalizes Ser5 via receptor-mediated endocytosis. In the absence of Nef, Ser5 cannot be internalized cell
surface PSGL-1; Nef downregulates surface PSGL-1 to enable HIV to partially escape PSGL-1-mediated restriction and IFITMs; Nef overcome the
restriction imposed by IFITM-mediated inhibition on both HIV-1 and HIV-2. Nef increases HIV-1 production during IFITM1 and IFITM2 expression to
increase HIV-1 infectivity, Vif increases HIV-1 infectivity by degrading APOBEC3G; Vif binds and counteract human APOBEC3G leading to its poly-
ubiquitination and proteasomal degradation and thus promotes viral replication Vpu antagonizes tetherin by physically interacting with it; Vpu binds
PSGL1 and induce its ubiquitination and degradation to increase HIV-1 infection. Envelop (Env) restricts tetherin; Env interacts with tetherin and
sequester it and inhibit its trafficking to plasma membrane and this redistribution correlates with tetherin antagonism and thus viral infectivity is
increased; Env antagonizes Ser5 without inhibiting Ser5 virion incorporation to increase HIV infection. Vpx overcomes SAMHD1 restriction to
promote HIV-2 replication. Vpx physically interact with SAMHD1, recruiting the Cullin-4 E3 ubiquitin ligase complex, and destines SAMHD1 for
poly-ubiquitination and proteasomal degradation to increase HIV-2 replication.
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that is independent of inhibition of virus entry (20). However, in the

preceding study, the authors also determined that Nef may

overcome the restriction imposed by IFITM-mediated inhibition

on both HIV-1 and HIV-2 (Table 1, Figure 1). They observed that

Nef increases HIV-1 production by approximately 4-fold during

IFITM1 and IFITM2 expression. Moreover, the cells producing

Nef-deleted virus in the presence of IFITM expression produced

significantly lower levels of HIV-1 Gag (p55). The restriction of

IFITM proteins may not be via degradation, as exogenous IFITM

levels are not reduced by HIV-1 Nef. Although it is not clear how

Nef counters IFITMs, a possible explanation could be re-trafficking,

wherein Nef relocates IFITMs away from their sites of action

on translation.

One recent investigation has outlined the function of Nef in

extracellular vesicles (EVs). The study performed a proteomic

analysis of T-cell-derived EVs to characterize Nef-induced

changes in proteomic content (40). Among the various

downregulated proteins, IFITIM1/2/3 were also significantly

downregulated. The levels, in EVs, of all three IFITMs were

depleted by Nef, suggesting that Nef is a modulator of EV

proteomic content, and antagonizes IFITMs by altering their

subcellular distribution (40).
Vif increases HIV-1 infectivity by
degrading A3G

Virion infectivity factor (Vif) contains 190-240 amino acid

residues, and is encoded by all lentiviruses, with the exception of the

equine infectious anemia virus (61). The Simian Immunodeficiency

Virus, SIVmac239 clone [which is deficient in Vif (deltavif)], does not

cause disease; however, SIVmac239 deltavif clone causes HIV-1 to

replicate at lower titers (62). DeltaVif HIV-1 clone does not replicate in

non-permissive cell lines; however, it does replicate in permissive cell

lines. Non-permissiveness, in this context, is due to the expression of an

inhibitory factor, APOBEC3G, also called A3G. Thus, due to the

expression of APOBEC3G, some cell lines become non-

permissive (63).

A3G, discovered in 2002, is a member of the family of RNA-

editing enzymes which induces hypermutations in HIV-1 DNA by

cytidine deaminase activity, and eventually results in the

degradation of viral DNA (11, 64). However, if the hypermutated

viral DNA integrates into the host genome, this DNA is unable to

code functional viral proteins (65, 66). HIV-1 depends on Vif to

counteract the antiviral effect of A3G. However, it has been

observed that Vif interacts only with human A3G, and not with

mouse, African green monkey (AGM), and rhesus macaque A3G

(67). Consequently, A3G from these animals are potent inhibitors

of viral replication, as A3G from these animals are unable to form

complexes with Vif (67). HIV-1 Vif binds with A3G and recruits

A3G to the Cullin5-based E3 ubiquitin ligase complex (Table 1,

Figure 1). This recruitment results in poly-ubiquitination and

proteasomal degradation of A3G, and promotes viral replication

(11, 21). The central domain of this complex is Vif heterodimer

with core binding factor subunit b (CBF-b), which is transcription
Frontiers in Immunology 05
factor, stabilizing Vif. Since endogenous A3G protein adds to HIV-

1 restriction in THP-1 cells, HIV-1 virions lacking Vif have 50%

lower infectious rate compared to wild type HIV-1 (68). Recently,

HIV-1 Vif mutants were used to determine the effects of other A3

proteins on HIV-1 infectivity. For this purpose, A3F, A3F/A3G, and

A3A to A3G null THP-1 cells were developed. The HIV-1 lacking

Vif infectivity was robustly inhibited in A3F null THP-1 cells and

less inhibited in A3F/A3G null THP-1 cells compared to wild type

HIV-1. Moreover, the infectivity of HIV-1 lacking Vif was

comparable to wild type HIV-1 in A3A to A3G null THP-1 cells.

Therefore, it could be inferred that HIV1 Vif primarily target A3

proteins during infectious virus production from THP-1 cells (68).

Different host proteins are known to regulate Vif activity and

thus the antiviral behavior of A3G in different ways to affect HIV-1

pathogenesis. For example; On the one hand, mouse double minute

2 (MDM2) homolog, an E3 ligase, increases A3G levels by binding

Vif by promoting its ubiquitination, followed by its proteasomal

degradation (69). While, core binding factor b (CBFb), on the other

hand, stabilizes Vif and therefore inhibits the antiviral effects of

A3G (70). Similarly, apoptosis signal-regulating kinase-1 disrupts

the interaction between A3G and Vif to facilitate A3G antiviral

activity (71). Vif has a putative AKT phosphorylation motif

(RMRINT), and is phosphorylated by AKT at threonine 20,

which enhances its stability and in turn its viral infectivity by

degrading A3G. Vif becomes destabilized when threonine 20 is

replaced by alanine. Furthermore, inhibition of AKT downregulates

or decreases the stability of Vif, which increases antiviral activity by

restoring A3G levels (72). Therefore, the Vif activity is regulated by

different host proteins and thus this regulation affects the antiviral

activity of A3G and hence HIV-1 infectivity.
Vpu antagonizes tetherin, PSGL-1, and
GBP5 to increase HIV-1 infection

Vpu contains 81 amino acid residues, and is a multimeric

integral membrane phosphoprotein (13). The Vpu gene is present

in HIV-1, and is absent in HIV-2, rhesus macaque SIV (SIVmac),

and sooty mangabey SIV (SIVsmm) (73–75). Vpu is mainly present

in plasma membranes, Trans-Golgi network (TGN) and

endoplasmic reticulum (ER) (13). Vpu has several functions, that

included;, it increases the degradation of CD4 protein through the

ubiquitin-proteasomal pathway, it enhances the release of progeny

virions from infected cells by counteracting the host protein,

tetherin (76), it regulate MHC II presentation (77), modulates the

transportation of host proteins from ER to Golgi (78), increases the

stabilization of p53 (79), enhances the de-granulation of natural

killer cells (80), induction of apoptosis (81), and the lipid antigen

presentation by down regulating CD1d (82) However, the function

of Vpu in virus release differs in different cell types. The Vpu-

induced release of HIV-1 from HIV-infected HeLa cells and T cells

is increased, but is not affected in COS, CV-1, HEK293T, and Vero

cells (13, 83).

Tetherin (BST2 or CD317), is a host restriction factor that inhibits

the release of virions from HIV-infected HeLa cells, but not from
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infected HEK293T cells (12, 13). The cytoplasmic tail (which contains

21 amino acid residues), the TM domain (which contains three

cysteine residues that mediate tetherin dimerization) (84), an

extended coiled-coil (85), and a C-terminal glycophosphatidylinositol

anchor (86) are the key structural features contributing to the mode of

action of tetherin (84). Moreover, overexpression of tetherin in

HEK293T cells inhibits the secretion of virus particles in the absence

of Vpu, while knockdown of tetherin in HeLa cells results in the release

of Vpu-defective virion particles (12).

Vpu and tetherin physically interact with each other and as a

result tetherin is counteracted (Table 1, Figure 1) (22). In order to

find out the motif responsible for the interaction, mutations were

generated i.e. S52A and a double mutation-S52A and S56A (2S/A),

that are crucial for b-TrCP recruitment, followed by analyses to

whether these mutated Vpu constructs could deplete tetherin in

293T cell. Interestingly, both of these constructs were unable to

decrease the tetherin levels. However, further analysis showed that

Vpu motif-b-TrCP recruitment motif was indispensable for to

counteract tetherin. Furthermore, b-TrCP was found to be co-

immunoprecipitated with tetherin, followed by the proteosomal

degradation of tetherin in a b-TrCP dependent manner (22).

Furthermore, the amino acids were determined responsible for

interaction between Vpu and tetherin (43). The Ala14, Ala18, and

Trp22 residues in the TMD of Vpu binds with the I34, L37, L41, and

T45 residues in the TMD of tetherin, and mediates the

downregulation of tetherin (42, 43). Vpu antagonizes tetherin via

two sequential steps, i.e., 1. Cell surface down regulation of tetherin,

which is regulated by clathrin-coated vesicles by a direct binding of

AP2 with the Y6XV8 motif of tetherin (23, 87), 2. Restriction of the

recycling of internalized tetherin to the cell membrane blocks

the translocation of de novo tetherin (24, 88–90), and as a result

the levels of tetherin are reduced. Vpu degrades tetherin via

ubiquitination, and Vpu enhances its ubiquitination through

lysine/serine and threonine residues present in the Vpu

cytoplasmic tail (25). The HIV-1 VpuM group is a highly

transmissible and pathogenic group among all HIV-1 groups, and

the reason for this may be that the Vpu present in group M HIV-1

antagonizes tetherin to a much greater extent, and thus effectively

evades the host immune system (13). However, HIV-1 group P Vpu

does not antagonize tetherin cell surface expression, as the Vpu of

group P HIV-1 does not contain the AxxxAxxxW motif, which is

responsible for interaction with tetherin (42, 91). This may well be

an explanation as to why HIV-1 group P has not as yet adapted as

well to the human host as HIV-1 group M has (91).

Isobaric tag-based mass spectrometry was used to determine

novel host HIV restriction factors in human CD4+ T-cells (8).

During the preceding study, and in another study (9), PSGL-1 was

identified as a novel HIV-1 restriction factor that is induced by IFN-g,
and blocks HIV-1 reverse transcription soon after the virus enters the

cell (8). Infection of Jurkat cells with vesicular stomatitis virus G

protein-pseudotyped HIV-1 lentiviral vector encoding green

fluorescent protein (VSV-G-HIV-GFP) induces a decrease in

PSGL-1 levels; therefore, different HIV proteins, i.e., p55 Gag, Vpr,

Vif, Nef, and Vpu were analyzed to assess whether any one of these

may be responsible for the downregulation of PSGL-1. Among these
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proteins, only Vpu was observed to be responsible for this action in

Jurkat and 293T cells (8). HIV-1 infection in CD4+ T-cells also

decreases endogenous PSGL1 levels significantly (8). Similarly, Vpu-

deficient HIV (NL4-3delVpu) does not affect PSGL-1 levels (8).

Moreover, co-immunoprecipitation experiments confirmed a direct

interaction between Vpu and PSGL-1 (8). Vpu is known to hijack

SCFb-TrCP1/b-TrCP2 E3 ligase (22); therefore, the possibility of Vpu

degradation of PSGL-1 through E3 ligase was also tested. It was

observed that, indeed, Vpu does induce PSGL-1 ubiquitination and

degradation via SCFb-TrCP2, and furthermore, siRNA knockdown of

b-TrCP2 reverses this Vpu-induced PSGL-1 degradation (8).

Similarly, Vpu mutants (S52/56N or S52N/S56N) that are defective

for b-TrCP1/2 binding do not promote PSGL1 ubiquitination and

degradation (8). These results suggest that PSGL-1 is a potent HIV-1

host restriction factor that is antagonized by HIV-1 Vpu by its

interaction with Vpu, and triggers the ubiquitination and

degradation of PSGL-1 through SCFb-TrCP2.

Guanylate-Binding Protein-5 (GBP5) is a member of the IFN-

inducible guanosine triphosphatase (GTPase) superfamily that

plays a role in intrinsic immunity against bacteria, protozoa, and

viruses. Guanylate-binding proteins (GBPs) hydrolyze guanosine

triphosphate (GTP) to guanosine diphosphate (GDP) and

guanosine monophosphate (GMP) (92). GBP5 is primarily

expressed in cytosol and endosomal membranes. However, upon

HIV-1 infection, GBP5 co-localizes with HIV-1 and reduces the

production of infectious HIV-1 particles (93). According to analysis

of the Genomic Utility for Association and Viral Analysis in HIV

(GuavaH) database, higher levels of GBP5 are expressed in HIV-1

patients (94, 95). One study has suggested that HIV-1 Tat protein

may increase GBP5 expression in human primary T-cells (96).

GBP affects the processing of HIV-1 Env in the Golgi apparatus

by interfering with its N-linked oligosaccharide glycosylation, and

this glycosylation is important for Env processing (44). This activity

increases the incorporation of unprocessed immature gp160 into

progeny virions, therefore impairing its trafficking to the cell surface

and thus decreasing virion infectivity (44). However, there exists an

indirect method of evading GBP5 inhibition which exploits

naturally occurring mutations in the start codon of the HIV-1

Vpu gene in both macrophage (M)-tropic and brain derived HIV-1

strains. The HIV-1 Env protein is translated along with Vpu from a

single bicistronic mRNA transcript (97). Thus, mutations in the

Vpu start codon lead to enhanced expression of Env protein,

countering GBP5 inhibition but consequently exposing the virus

to being susceptible to restriction by tetherin, as Vpu is known to

counteract the tetherin host restriction factor. These activities block

the release of progeny virions and increase their accumulation on

the host cell surface (44).
Envelop protein restricts tetherin and
Ser5 to increase HIV infection

Envelop protein (Env) plays an important role in the attachment of

HIV to its host cell receptor (5). Env is glycosylated, plays a crucial role
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1390650
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rashid et al. 10.3389/fimmu.2024.1390650
in the proper configurational folding of native protein, and facilitates

host immune evasion, and thus, viral infection (98). HIV-2 Env

glycoproteins have Vpu-like functions, which trigger the release of

Vpu-defective HIV-2 virions from tetherin-positive cells (99). HIV-2

Rod envelop glycoprotein (HIV-2 Rod Env) counteracts tetherin-

mediated restriction of Vpu-defective HIV-1 in a type-specific

manner, but not HIV-1 or SIVmac1A11. In HIV-1 infection, Vpu is

responsible for counteracting tetherin (26). Antagonism of tetherin by

HIV-2 Env protein is due to extracellular determinants present in HIV-

2 Env. Co-immunoprecipitation experiments conducted confirmed

binding between tetherin and Env; however, tetherin is not degraded

as a consequence of this bonding. Therefore, it could be inferred that

HIV-2 Env may sequester tetherin. When over expression of HIV-2

Env, tetherin was distributed to perinuclear compartments and

inhibiting its trafficking to plasma membrane and this redistribution

correlates with tetherin antagonism (26).Env restricts tetherin to the

trans-Golgi network, and therefore Env sequesters tetherin from virus

assembly sites on the plasma membrane (26).

HIV-1 Env also restricts Ser5 (Table 1, Figure 1), via a

mechanism that differs from Nef antagonism of Ser5 (28). The

HIV-1 strains, AD8-1 and YU-2 (however not strain NL4-3), were

found to be resistant to ectopic expression of Ser5, and interestingly,

Nef protein from these strains was unable to inhibit the activity of

Ser5 (28). The Env protein from someHIV-1 strains have been found

to resist Ser5 inhibition (7, 27). The important functional regions in

Env protein are the V1, V2 and V3 loops; however, the V3 loop was

found to be a key player within Env protein that renders viral

resistance to Ser5 (28). Furthermore, HIV-1 subtype A, C, and D

Env proteins have been observed to be far more resistant to Ser5

inhibition compared to subtype B strains, suggesting a subtype-

specific resistance of Env to Ser5 (28). However, Env proteins are

unable to prevent the incorporation of Ser5 into virions (27, 28).

These observations suggest that HIV-1 Env protein antagonizes Ser5

without inhibiting Ser5 virion incorporation. Furthermore, Ser5

disrupts the fusogenisity of Env glycoproteins. The confirmation of

Env glycoprotein is altered upon Ser5 incorporation into viral

membrane. Ser5 causes increased functional inactivation of Env

with passage of time and inhibits HIV-1 fusion at a pre-hemifusion

stage. Although it has been determined Env and Ser5 interact with

each other (100), the experimental analysis revealed by (101) did not

delineate any colocalization of these two proteins on HIV-1

pseudoviruses. It is therefore indispensable to resolve the issue

whether Env interacts directly with ser5.
Vpr interacts with and degrades
REAF and TET2 to promote
HIV-1 replication

Vpr is a 14kDa nonstructural protein of HIV-1 that is known

for its function to trigger cell cycle arrest at the G2/M phase, and is
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required for viral replication (45, 102). Vpr triggers ubiquitin/

proteasome dependent degradation of several host proteins, and

in doing this activity Vpr increases HIV-1 gene expression and

induces (G2/M) cell cycle arrest. Vpr causes the depletion of

CCDC137/cPERP-B, a chromosomal periphery protein causing

G2/M cell cycle arrest. On the contrary, the G2/M cell cycle arrest

was not occurred in the presence of CCDC137 mutants, resistant to

Vpr (103). A significant amount of Vpr is incorporated into virions

and released from major capsid protein (CA) after cell entry. The

timing of reverse transcription initiation and the release of Vpr

from CA are identical; therefore, Vpr performs its function prior to

initiation of the viral integration process (45).

A3G has been known to be encountered by Vif protein, another

group (104) has reported that Vpr interacts with A3G and counteract

its antiviral effect. An in silico method-PRISM (protein interactions by

structural matching) was used to find the interaction between Vpr and

A3G. Furthermore, the co-IP experiments proved this interaction. Vpr

suppressed A3G through VprBP mediated proteosomal degradation.

These results also suggest that there is a cross talk between different

HIV-1 host ubiquitin complex systems as A3G is counteracted by both

Vpr and Vif via proteosomal degradation (104).

RNA-associated early-stage antiviral factor (REAF) inhibits the

replication of HIV1, HIV-2, and SIV (15). HIV-1 Vpr interacts with

REAF to degrade REAF, and since REAF inhibits viral replication,

therefore the degradation of REAF efficiently restores HIV-1

replication in primary macrophages (45). The infection of HeLa-

CD4 cells and monocyte-derived macrophages (MDMs) by HIV-1

containing Vpr, decreases REAF levels in the nucleus within two

hours of infection; however, when these cells are infected with HIV-

1 that does not contain Vpr, the quantities of REAF in the nucleus

increase as early as within 30 minutes. This indicates that in the

absence of Vpr, HIV infection increases REAF levels and inhibits

viral replication; however, in the presence of Vpr, REAF is degraded

and as a result, viral replication is promoted (45).

Vpr has also been observed to degrade TET2 by VprBP-DDB1-

CUL4-ROC1 E3 ligase (16). The degradation of TET2 due to Vpr

increases HIV-1 replication, and significantly sustains interleukin-6

expression (IL-6). HIV-1 Vpr transfection into THP1 monocyte

cells results in the reduction of TET2 protein levels; however, Vpr-

deficient mutant HIV-1 does not reduce TET2 protein levels.

Furthermore, Vpr degrades TET2 through Vpr binding protein

(VprBP). Overexpression of TET2 inhibits HIV-1 replication, while

knockout of TET2 significantly increases HIV-1 replication. HIV-1

Vpr infection of TET2 knockdown cells increases HIV-1 replication

by approximately 4 to 5 fold (16).

Similarly, Vpr inhibit the nuclear translocation of IRF3 and NF-

kB to antagonize several pathogen associated molecular patterns

(PAMPS) (105). Vpr interact with karyopherins to inhibit IRF3 and

NF-Κb nuclear translocation and thus promoting HIV replication

in macrophages. This study thus demonstrates a model where Vpr

inhibit innate immune activation by interacting karyopherins and

therefore promote viral transmission (105).
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Vpx overcomes SAMHD1, STING,
and HUSH restriction to promote
HIV-2 replication

Sterile Alpha Motif and Histidine Aspartate domain containing

protein 1 (SAMHD1) is an HIV-1 restriction factor in dendritic

cells (DCs) and in non-dividing monocytes, resting CD4+ T cells

and macrophages (106). SAMHD1 is highly expressed in DCs and

macrophages where they decrease the cellular dNTP pool, and

thereby impairs HIV-1 reverse transcription (19). When CD4+ T-

cells are infected with HIV-1, HIV-1 RNA is reversed transcribed

into DNA, which is a synthesis step that consumes cellular dNTPs.

SAMHD1 hydrolyzes all four dNTPs into inorganic triphosphate

and deoxynucleotides, thereby controlling the pool of cytosolic

dNTPs. Similarly, in myeloid cells, SAMHD1 inhibits proviral

DNA formation and HIV-1 replication (17, 19, 107). SAMHD1

also exhibits RNAase activity, targeting viral RNA for degradation

before it is converted into DNA, and therefore restricts viral

replication. However, the extent to which SAMHD1 may restrict

HIV-1 replication through its RNAase activity remains speculative

(108–111). Defective HIV-2virions, e.g., SIVsm, that infect sooty

mangabey and SIVmac, that infect rhesus macaques) encode an

accessory protein, Vpx, to counteract SAMHD1 activity (Table 1,

Figure 1) (112). However, HIV-1 and simian immunodeficiency

virus ancestor infecting chimpanzees (SIVcpz) do not encode Vpx,

and therefore these viruses are exposed to the action of SAMHD1

(17). Vpx physically interacts with SAMHD1 at its C-terminal

domain, thus recruiting the Cullin-4 E3 ubiquitin ligase complex,

and destines SAMHD1 for poly-ubiquitination and proteasomal

degradation (17–19).

The potential role of SAMHD1 in innate and adaptive immune

responses have also been observed (113). SAMHD1 does contribute

HIV-1 antigen presentation via MHC-1 molecules in monocyte-

derived dendritic cells (DCs). SAMHD1 facilitates the inhibition of

HIV-1 replication while Vpx-mediated depletion of SAMHD1

increases HIV-1 antigen presentation by DCs, leading to the

activation of HIV-1 specific cytotoxic T-lymphocyte (CTL)

responses, and the subsequent killing of DCs (113).

The depletion of SAMHD1 induces IFN-1 production, which is

a HIV/SIV inhibitor (114). In the absence of SAMHD1, cyclic

GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING)

regulate the DNA-sensing pathway, leading to the activation of IFN

production. It has been found that interaction between Vpx and

STING is required for STING inhibition, and interestingly, Vpx

interacts with the domain of STING that is required for NF-kB
activation. Therefore, Vpx inhibits NF-kB activation (which is

mediated by cGAS-STING) to promote viral infection (46).

The human silencing hub (HUSH) complex is a complex of

transcription activation suppressor (TASOR), M-phase

phosphoprotein 8 (MPP8), and periphilin, and is involved in the

silencing of the transcriptional system (115). HUSH complex is a host

restriction factor; however, HUSH is suppressed by HIV-2 Vpx via the

interaction of HIV-2 Vpx with HUSH. HIV-2 Vpx recruits DCAF1

ubiquitin ligase adopter to degrade HUSH (47). Interestingly, HUSH is
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not antagonized by HIV-1 Vpx, and is only antagonized by SIVs and

HIV-2 (47).
Conclusions and future perspectives

Researchers have, in recent times, focused on the host

restriction factors that serve as natural host defenses against

HIV-1. In the present review article, we have summarized the

host restriction factors that are known to be targeted by HIV

proteins and thus to facilitate HIV pathogenesis. We have

ascertained the following: Nef inhibits the activity of Ser5, PSGL1,

and IFITIMs; Vif antagonizes APOBEC3G; Vpu antagonizes

tetherin, PSGL1 and GBP5; Env restrict tetherin and Ser5; Vpr

counteracts REAF and TET2, whereas Vpx of HIV-2 overcomes

SAMHD1, STING, and HUSH complex restriction to promote HIV

replication. Since Nef antagonizes three individual host proteins,

i.e., Ser5, PSGL1, and IFITIMs, and Vpx also antagonizes three host

restriction factors, i.e., SAMHD1, STING, and the HUSH complex,

we believe that these proteins may well be categorized as potential

candidates for future HIV therapeutics.

There are some limitations in the previous literature as well. Previous

studies have not focused on the levels of host protein antagonism byHIV

proteins. Moreover, there are HIV proteins which counteract more than

one host proteins, therefore, none of the previous studies focused on that

particular HIV protein that antagonized more than one host protein.

More robust evidences are lacking that support a direct interaction

between Env glycoprotein and Ser5.

In the future, host restriction factors might be of keen interest to

researchers, and host restriction factors and inhibitors which

specifically target their respective HIV proteins at different stages of

the HIV life cycle may well be able to be utilized to inhibit HIV-1

pathogenicity, replication, and infectivity. Furthermore, certain host

restriction factors target HIV to antagonize HIV infection; however, the

underlying mechanisms whereby HIV co-opts and counteracts those

restriction factors remain elusive, and remain to be determined. HIV-1

counteracts PSGL-1 at an early time point during reverse transcription;

however, the fundamental mechanisms underlying this process remain

unclear. Similarly, the process whereby PSGL-1 inactivates virion

infectivity remains elusive. In the future, focus should be diverted to

those HIV proteins which target a higher number of host restriction

factors, as this may be of interest for HIV therapeutic purposes. The

polymorphism that occurs with Nef impairs its ability to internalize

Ser5; therefore, the varying mutations of Nef protein may possibly

contribute to variances in viral pathogenesis. Future focused studies will

enhance our understanding of the Nef-Ser5 interface at molecular

levels, and this may well represent a potential investigational realm for

the discovery of novel antiretroviral therapeutics. HIV-1 restricts Ser5

via two means, i.e., Nef and Env; therefore, exploration of the question

as to why HIV-1 has evolved dual means to antagonize Ser5 will also be

an interesting area of study in the future. In the present review article,

we have shown that the HIV-1 protein, Nef, targets three host

restriction factors to facilitate its pathogenesis, i.e., Ser5, PSGL1, and

IFITM. We therefore believe that Nef may be a potentially productive

option to be targeted for therapeutic purposes in future studies.
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