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Cancer immunotherapy, such as immune checkpoint blockade (ICB), has

emerged as a groundbreaking approach for effective cancer treatment. Despite

its considerable potential, clinical studies have indicated that the current

response rate to cancer immunotherapy is suboptimal, primarily attributed to

low immunogenicity in certain types of malignant tumors. Immunogenic cell

death (ICD) represents a form of regulated cell death (RCD) capable of enhancing

tumor immunogenicity and activating tumor-specific innate and adaptive

immune responses in immunocompetent hosts. Therefore, gaining a deeper

understanding of ICD and its evolution is crucial for developing more effective

cancer therapeutic strategies. This review focuses exclusively on both historical

and recent discoveries related to ICD modes and their mechanistic insights,

particularly within the context of cancer immunotherapy. Our recent findings are

also highlighted, revealing a mode of ICD induction facilitated by atypical

interferon (IFN)-stimulated genes (ISGs), including polo-like kinase 2 (PLK2),

during hyperactive type I IFN signaling. The review concludes by discussing the

therapeutic potential of ICD, with special attention to its relevance in both

preclinical and clinical settings within the field of cancer immunotherapy.
KEYWORDS

immunogenic cell death (ICD), anti-tumor immune response, USP18 (UBP43), PLK2,
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Introduction

To improve the efficacy of anti-cancer immunotherapies, numerous studies have

concentrated on immune cells, exploring strategies to target the immunosuppressive

tumor microenvironment (TME) such as T-cell suppressors and inhibitory immune

checkpoints (1–4). Indeed, some cancer patients derive clear benefits from these T-cell-

based immunotherapies (5, 6). However, unfortunately, most solid tumors are “cold”

tumors with low immunogenicity (the ability of tumor antigen to trigger immune

response), limited immune cell infiltration, and insufficient immunological responses.
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This results in poor responses by approaches that solely enhance T-

cell function (7). Consequently, many oncologists have shifted their

focus towards developing methods to transition cold tumors into

“hot” tumors in combination with T-cell-based therapy, thereby

augmenting intratumor immunogenicity. This process is commonly

referred to as ‘inflaming the TME’ (8). To inflame the TME

favorably for anti-tumor immunity, various approaches, such as

oncolytic viruses, have been proposed (9). Among these, the

induction of immunogenic cell death (ICD) in tumors has

garnered significant interest (10–12).
Features of ICD

ICD, discovered by Guido Kroemer’s group in 2005 (13–15), is

a form of cell death that activates the immune system, initiating an

inflammatory response and facilitating the recognition of dying

cells by the immune system (Figure 1). This feature is pivotal in

contrast to non-immunogenic cell death, such as canonical

apoptosis, where the immune system remains unaffected or may

even be suppressed (e.g., by the expression of Transforming Growth

Factor-b (TGF-b)). ICD is characterized by the release or cell-

surface expression of highly immunostimulatory damage-

associated molecular patterns (DAMPs) from dying tumor cells

with ruptured cell membranes, followed by the induction of the

innate and adaptive tumor-specific immune responses. The

extracellular release of the nuclear protein high mobility group

box 1 (HMGB1) and adenosine triphosphate (ATP), both termed as

‘alarmins,’ acts as an attractant and activates antigen-presenting

cells (APCs), such as dendritic cells (DCs). Extracellular HMGB1

binds to the receptors (e.g., Toll-like receptor 2 (TLR2), TLR4, and

RAGE (receptors for advanced glycation end-products)) of

immature DCs which cause DC maturation and cytotoxic T

lymphocytes (CTLs) activation (16). Extracellular ATP acts as a

powerful chemotactic agent for APCs and their precursors by

binding to purinergic receptors P2Y2R and P2X7R to promote

interleukin 1b (IL-1b) and IFN-g expression and CD8+ T-cell

priming (17, 18). Simultaneously, the display of calreticulin

(CRT), normally residing inside the endoplasmic reticulum but

translocated to the dying cell’s surface, serves as an “eat-me” signal

for phagocytes like macrophages (17, 19–22). The immunogenicity

of CRT expressing cells could be effectively abolished by CRT

inhibition with blocking antibodies, or by CRT knockdown with

specific small interfering RNAs (21). Conversely, mRNA expression

of CRT in cancer cells affects the composition and density of

infiltrating immune cells (23). Indeed, CRT expression is mainly

linked to CTLs and DCs infiltration in various types of cancer, such

as colorectal, ovarian, and breast cancers. The membrane

expression of heat shock proteins, such as HSP70 and HSP90

during ICD, also contributes to immune stimulation (24). Both

HSP70 and HSP90 is usually located in the intracellular

compartment, however, these HSPs translocate to cell surface

during ICD. These ecto-HSP70 and HSP90 can interact with

receptors on the surface APCs (e.g., CD40 and CD91) and

enhance the immunogenicity of dying cells, results in the cross-

presentation of cancer cell antigens to major histocompatibility
Frontiers in Immunology 02
complex (MHC)-I molecules and subsequent activation of CD8+ T-

cells (16, 25, 26). Antigens from dying cancer cells are taken up and

processed by APCs, which then present these antigens through their

MHC-I molecules to T cells (27). Above mentioned DAMPs are

called constitutive DAMPs (cDAMPs) and critically important to

initiate ICD-mediated anti-tumor immunity (8). In addition to

DAMPs, pathogen-associated molecular patterns (PAMPs),

including endogenous RNA and double-stranded DNA (dsDNA)

(endogenous and exogenous if oncolytic virus-mediated ICD), can

also be released during ICD. PAMP sensors are responsible for the

release of type I IFNs and C-X-C motif chemokine ligand 10

(CXCL10) through IRF3 and NF-kB pathways (28–31). Absent in

melanoma 2 (AIM2) inflammasome can sense dsDNA released by

ICD cells, thereby inducing IL-1b secretion (32). These cytokines

have been implicated in DC maturation, T, and natural killer (NK)

cell recruitment. Type I IFNs enhance the cytotoxicity of CTLs and

NK cells and promote the cross-presentation of DCs (33, 34). These

cytokines and chemokines are transcriptionally induced therefore

called inducible DAMPs (iDAMPs) (8). As such, tumor cells

undergoing ICD act as an endogenous vaccine, attracting

activated immune cells into the tumor microenvironment or

draining lymph node.

Importantly, various tumor-associated neo-antigens derived

from cancer-specific somatic mutations or gene fusions should be

present during ICD. Tumor-specific peptides displayed by APCs

can activate T cells, particularly the activation of CTLs, which are

then licensed to engage in tumor-specific immunity. This principle

of ICD can be confirmed by a vaccination scenario known as the

‘gold standard vaccination assay,’ where inoculation of mice with

tumor cells killed by ICD induction prevents the subsequent growth

of live tumor cells (35, 36). Importantly, traditional cancer

treatment regimens, such as chemotherapy and radiation, are

related to ICD induction. While not all chemotherapeutic agents

induce ICD, some, such as anthracyclines (e.g., Doxorubicin and

mitoxantrone) and oxaliplatin, are known ICD inducers (18, 37). In

human breast and colorectal cancer patients treated with

anthracyclines or oxaliplatin, favorable clinical outcomes were

found to be associated with an increased number of cytotoxic

CD8+ T cells within the tumor (38, 39). The loss of DC function

was identified as a negative predictor of the therapeutic response to

anthracyclines or oxaliplatin in both clinical and preclinical settings

(40, 41).
Evolution of ICD in cancer

Various types of cell death, such as apoptosis, necrosis,

alkaliptosis, anoikis, autosis, autophagy, cuproptosis, disulfidptosis,

entosis, erebosis, ferroptosis, lysosomal cell death (LCD), methuosis,

mitoptosis, necroptosis, NETosis, oxeiptosis, paraptosis,

parthanatos, pyroptosis, and immunogenic cell death (ICD), have

been identified, exhibiting either caspase-dependent or -independent

characteristics. While ICD is classified as one of the cell death modes,

other modes may be considered ICD-like if their consequences align

with the features of ICD, namely, the release of damage-associated

molecular patterns (DAMPs) and the induction of the innate and
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adaptive immune responses. Notably, necroptosis, ferroptosis, and

pyroptosis have been extensively studied and are regarded as forms

of ICD, despite their distinct mechanisms (42, 43). In recent years,

growing evidence suggests that some other modalities of cancer cell

death also exhibit ICD features. In this review, we explore and

discuss several modes of cancer cell death with ICD phenotypes,

focusing particularly on recent reports within the field of cancer

immunotherapy (Figures 2, 3).
Necroptosis

Cell death is generally classified as accidental cell death (ACD)

or regulated cell death (RCD), a genetically/molecularly controlled

process. Necrotic cell death, a representative form of ACD, has long

been considered a non-programmed and uncontrolled cell death.

However, with research in over the past decade, we now understand

that morphologically necrotic-like cell death is not only accidental

but also programmed, referred to as ‘necroptosis,’ and considered

one of the modes of ICD (44). The necroptotic phenotype

(controllable necrosis) was first observed in 1996 in cowpox virus

infected LLC-PK1 pig kidney cells expressing cytokine response

modifier A (CrmA), a viral caspase 1/8 inhibitor (45). In 1998,

tumor necrosis factor-a (TNFa) was found to induce necroptosis of
L-M cells (a mouse fibroblast cell line) in the presence of a caspase 8

inhibitor, suggesting that caspase 8 negatively regulates necroptosis

(46). Today, it is well known that necroptosis can be triggered by

TNFa, TNF-related apoptosis-inducing ligand (TRAIL), and Fas
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ligand, which activate the death receptor-mediated apoptosis

pathway and lead to necroptosis when CASP8 activation is

prevented by pharmacological caspase inhibitors (e.g., Z-VAD-

FMK) or genetic depletion of fas-associated via death domain

(FADD) (47, 48). Necroptosis is also triggered by the stimulation

of pattern recognition receptors (PRRs) such as Toll-like receptors

(TLRs) 3 and 4, DNA-dependent activator of interferon-regulatory

factors (DAI), or cyclic GMP-AMP synthase (cGAS) (49–51).

Through signal transduction by PRRs, receptor-interacting

protein kinase (RIPK) 1 is activated, RIPK3 is recruited, and a

necrosome is formed (52, 53). RIPK1/RIPK3 further activates the

mixed lineage kinase domain-like pseudokinase (MLKL) (54, 55).

MLKL translocates to the plasma and cytoplasmic membranes and

promotes cell membrane rupture and cell death, with simultaneous

spilling of intracellular content containing pro-inflammatory

cytokines and DAMPs (56). The emission of intracellular

contents from necroptotic cancer cells, together with the released

cytokines and chemokines, renders necroptotic cells immunogenic

and thus able to elicit tumor-specific CD8+ T cell-mediated

responses, resulting in potent anticancer responses (43).

Preventive immunization (gold standard vaccination assay) of

mice with necroptotic cancer cells induced by ectopic RIPK3

expression can induce antitumor immunity. In a B16-OVA tumor

model and even a RIPK3-deficient CT26 tumor model, MLKL

mRNA treatment induced necroptotic cell death and subsequent

antitumor immunity (57). Additionally, AAV-induced RIPK3

expression can promote necroptosis in the TME, enhance

neoantigen presentation activity, and induce tumor-specific CD8+
FIGURE 1

Illustration of the mechanism of cancer immunogenic cell death (ICD) and the subsequent activation of the antitumor immune response. Dying
cancer cells express various constitutive damage-associated molecular patterns (cDAMPs) and inducible DAMPs, including the release of high
mobility group box 1 (HMGB1) from the nucleus, translocation and cell surface exposure of calreticulin (ecto-CRT) and heat shock proteins HSP70/
90, and extracellular secretion of ATP, cytokines (such as type I IFN), chemokines (such as CXCL10), and nucleic acids. Exposure to DAMPs serves as
a “find me” signal which recruits immature dendritic cells (DC) to tumor microenvironment (TME) and induces the maturation of DC. Ecto-CRT
provides a pro-phagocytic “eat me” signal that promotes the phagocytosis of antigens by DC. In addition, HMGB1 and HSP70/90 assist in promoting
the processing of phagocytic cargo by binding to toll-like receptors (TLRs), thereby escalating antigen engulfment, processing, and cross-
presentation to CD8+ T cells to mediate robust tumor-specific immune response and protective immunological memory. Ecto-HSP70 and HSP90
also stimulate NK cell lysis. Primed CTLs elicit direct cytotoxic response and eradicate remaining tumor cells through the generation of IFN-g,
perforin-1 and granzyme B.
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T-cell priming, resulting in secondary tumor control and improved

therapeutic efficacy of immune checkpoint blockers in various

tumor mouse models (58). Decreased RIPK3 expression has been

reported in several types of cancer patients’ samples (59–62).

In head and neck squamous cell carcinoma (HNSCC) patients,

the loss of RIPK1 and RIPK3 function caused by promoter

hypermethylation is closely related with poor prognoses (63, 64).

In hepatocellular carcinoma (HCC) patients, increased RIPK1,

RIPK3, and phosphorylated MLKL levels were positively

correlated with increases in tumor-infiltrating CD3+ and CD8+ T-

lymphocytes (65). Furthermore, it has been reported that a

combination of radiotherapy, chemotherapy, and hyperthermia

with Z-VAD-FMK, a necroptosis inducer/pan-caspase inhibitor,

can increase macrophage activation, retard tumor growth, and

induce immune cell infiltration into tumors through the release of
Frontiers in Immunology 04
DAMPs in B16 melanoma (66). These reports indicate that

necroptosis by the activation of RIPK1/RIPK3/MLKL in the TME

can induce APC maturation through the release of DAMPs and

promote strong antitumor immunity by inducing tumor-specific

CD8+ T-cells.
Ferroptosis

Ferroptosis, initially identified in 2012 by Brent Stockwell’s

group, represents an iron-dependent form of non-apoptotic cell

death that has recently been attributed with antitumor immune

effects (67, 68). Ferroptosis is driven by excessive iron accumulation

in the cell, leading to higher lipid reactive oxygen species (ROS) and

unrestricted lipid peroxidation. This ultimately results in plasma

membrane damage and rupture, leading to the emission of DAMPs.

During ferroptosis, the oxidation of antigens and DAMPs,

including HMGB1, can alter their antigenic features, thereby

enhancing the immunogenicity of ferroptosis (43, 69).

Glutathione (GSH) and GSH biosynthesis pathway proteins

such as solute carrier family 7 member 11 (SLC7A11) and

glutathione-glutathione peroxidase 4 (GPX4) can convert lipid

peroxides to lipid alcohols, which suppress intracellular iron-

induced lipid ROS (67). Therefore, conditions that inhibit

glutathione biosynthesis or GPX4 can induce ferroptosis. Indeed,

specific agents such as erastin (an SLC7A11 inhibitor) and RSL3 (a

GPX4 inhibitor) can trigger ferroptosis, selectively eliminating

cancer cells (70, 71). Radiotherapy is known to induce ICD and

recent evidence suggest that radiation may induce ferroptosis by

increasing lipid ROS accumulation (72, 73). Indeed, the depletion of

ferroptosis-related gene reduces the efficacy of radiotherapy (72).

Crucially, in preclinical models, a vaccination of ferroptotic cells

protected against re-challenge with fibrosarcoma, providing critical

evidence of ferroptosis as a form of ICD. A recent, important

finding revealed a strong increase in lipid peroxidation in the

early phase of ferroptosis, but not in the late phase. Early or late

ferroptotic MCA205 cells were assessed using the ‘gold standard
FIGURE 3

Brief mechanistic description of current ICD or ICD-like modes in cancer. Necroptosis, ferroptosis, and pyroptosis have been extensively studied and
are regarded as forms of ICD, despite their distinct mechanisms. Recent studies have started to reveal that other modes may be considered ICD-like
if their consequences align with the features of ICD, namely, the release of damage-associated molecular patterns (DAMPs) and the induction of the
innate and adaptive immune responses.
FIGURE 2

A landscape of currently discovered ICD or ICD-like modes
in cancer.
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vaccination assay’ in immunocompetent C57BL/6J mice.

Interestingly, re-challenging “vaccinated” mice with live MCA205

cells revealed that only early ferroptotic cancer cells could induce a

protective immune response against the fibrosarcoma (74).

Moreover, it was demonstrated that extracellular HMGB1 and

ATP were necessary for ICD caused by early ferroptotic cells (74).

Specifically, pharmacological blockade of the ATP receptor (P2X7)

using oxiATP reversed the tumor-protective effects of vaccination

with early ferroptotic cancer cells. Finally, sorafenib, approved by

the FDA in 2006 for late-stage renal cell carcinoma (RCC)

management and in 2007 for advanced-stage hepatocellular

carcinoma (HCC) therapy, is known to induce ferroptosis in

multiple cancer cell lines (75, 76). Sorafenib triggers ferroptosis

through either mitochondrial iron accumulation or SLC7A11

inhibition (77). While some HCC patients benefit from sorafenib

treatment, drug resistance typically develops. In recent years,

researchers have been exploring new approaches to reverse

sorafenib resistance in HCC by elucidating the mechanisms of

resistance to sorafenib (78).
Disulfidptosis

It has recently been discovered that abnormal intracellular

disulfide accumulation under glucose starvation conditions can

induce a previously uncharacterized form of regulated cell death,

referred to as ‘disulfidptosis’ (79). Surprisingly, disulfidptosis

requires glucose deprivation and high expression of SLC7A11,

which has a negative role in ferroptosis induction, as above

mentioned. This indicates that SLC7A11 plays an important role

in either ferroptosis or disulfidptosis induction, depending on

cellular conditions (80). Indeed, despite the well-established pro–

cell survival function of SLC7A11 in the context of ferroptosis

induction, other studies have uncovered an unexpected role of

SLC7A11 in promoting cell death under glucose deprivation

conditions (79, 81–83). Several cancer cells rely on SLC7A11 to

import cystine to maintain redox balance and cell survival. To

regulate this balance, cells utilize the molecule nicotinamide

adenine dinucleotide phosphate (NADPH) to rapidly convert

toxic disulfides into non-toxic molecules. Under glucose-

starvation conditions, NADPH was severely depleted in cells

overexpressing SLC7A11, and disulfides such as cystine

accumulated abnormally. The excessive accumulation of disulfide

leads to the formation of abnormal disulfide bonds between actin

backbone proteins, causing the disintegration of the cytoskeletal

protein network and subsequent cell death (79). Thus, disulfidptosis

represents a unique mode of cell death distinct from other metal-

induced cell death forms, such as cuproptosis and ferroptosis.

As the study of disulfidptosis is in its infancy, we cannot

conclusively state that disulfidptosis has ICD potential. However,

gene expression analysis during disulfidptosis shows a correlation

with the activation of gene sets for immune cell infiltration in the

TME, which is one important result of ICD (84–87). Furthermore, it

has been recently reported that a GLUT1 inhibitor (known to

induce disulfidoptosis) can induce ICD in HCC (88). Further
Frontiers in Immunology 05
studies are needed to investigate the role of disulfidptosis in

cancer immunotherapy.
Cuproptosis

Copper (Cu) is an essential element in virtually all living

organisms, and consequently, low levels of Cu in cells are harmful.

Conversely, excessive intracellular copper accumulation also triggers

cell death. Recently, a novel form of Copper (Cu)-dependent

programmed cell death, termed ‘cuproptosis,’ was reported by

Tsvetkov et al. in 2022, suggesting a new strategy for cancer

therapeutics (89, 90). The main morphological features of

cuproptosis include mitochondrial shrinkage, endoplasmic

reticulum injury, and plasma membrane rupture, which is crucial

for its ICD potential. The exact molecular mechanism underlying

cuproptosis remains unclear, but recent studies have proposed some

potential mechanisms (89, 90). The mitochondrion is a major target

of Cu-induced cell death. Intracellular Cu targets and binds to

lipoylated components in the tricarboxylic acid (TCA) cycle, and

aggregation of these Cu-bound lipoylated mitochondrial proteins,

such as dihydrolipoamide S-acetyltransferase (DLAT), a subunit of

the pyruvate dehydrogenase complex, and the subsequent reduction

in iron-sulfur (Fe–S) clusters, facilitates proteotoxic stress and

induces cuproptosis. Cu ionophores, such as elesclomol, bind

extracellular Cu and transport it to intracellular compartments,

inducing cuproptosis. A genome-wide CRISPR screen identified

mitochondrial ferredoxin 1 (FDX1) and lipoyl synthase (LIAS) as

key regulators of cuproptosis, and genetic knockout of either FDX1 or

LIAS attenuates Cu ionophore-induced cell death (89, 91). FDX1 is

known to contribute to both DLAT lipoylation and Fe-S cluster

proteins degradation. Importantly, Cu chelators, such as

tetrathiomolybdate (TTM), inhibit cuproptosis, whereas inhibitors

of ferroptosis (Ferrostatin-1), necroptosis (Necrostatin-1), and

oxidative stress (N-acetylcysteine; NAC) failed to suppress

elesclomol-induced cuproptosis, suggesting that cuproptosis is

mechanistically distinct from other forms of cell death (89, 92, 93).

Copper complexes containing polypyridine ligands have been

reported to enter the endoplasmic reticulum (ER) in situ, leading to

increased ROS levels and ER-stress-induced ICD in breast cancer

cells (94). Recent study has revealed that the combination of

elesclomol and Cucl2 combination induces cuproptosis in non-

small-cell lung cancer (NSCLC) cells and leads to the HMGB1

release (95). Interestingly, elesclomol selectively induces cuproptosis

in melanoma and leukemic cells, suggesting its potential use in

clinic (96). Furthermore, several anti-cancer effects have been

evaluated using copper-based nanomaterials (97). The discovery of

cuproptosis has prompted many researchers to explore its potential

use in hepatocellular carcinoma therapy as hepatic cells are

particularly rich in mitochondria compared to the other cell types,

indicating a distinct vulnerability to cuproptosis in HCC (98).

Conversely, several studies have found significantly upregulated Cu

levels in hepatic tumor tissue and serum of HCC cancer patients, with

elevated Cu levels in tumor cells contributing to immune escape by

enhancing PD-L1 expression (99, 100). In this context, several
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cuproptosis-related genes are currently under investigation to

understand elesclomol resistance and provide insight into the

potential use of cuproptosis induction for HCC therapy (101–103).
Paraptosis

Paraptosis, first reported by Bredesen’s group in 2000, is

characterized by the extensive vacuolization of ER components and

mitochondria swelling, while lacking apoptotic features. Paraptosis is

a type of caspase-independent programmed cell death (104). In most

cases, paraptosis is mediated by human insulin-like growth factor I

receptor (IGFIR) and induced by the downstream MAPK/ERK and

JNK/SAPK pathways following ER stress pathway activation.

Therefore, paraptosis can be rescued by specific inhibition of these

kinases. Indeed, the MAPK activator elaiophylin induces paraptosis

in ovarian cancer cells, and gene expression analysis showed that

elaiophylin activates the ER-stress pathway, suggesting that ER-stress

pathway activation is crucial for the execution of paraptosis (105). A

member of TNF receptor superfamily, TNFRSF19, promotes ER-

stress via MAPK pathway activation and induces paraptosis in triple

negative breast cancer cells (106). A recent study demonstrated that

the deletion of the pancreatic ER kinase (PKR)-like ER kinase (PERK)

in cancer cells induces paraptosis (107). During ER stress,

autophosphorylated PERK dissociates from its negative regulator

and phosphorylates several targets, including the eukaryotic

translation initiation factor 2a (eIF2a), which triggers the

expression of the activating transcription factor 4 (ATF4) that

transiently contributes to cancer cell survival. Paraptosis is

triggered by proteostasis alterations, a process heavily dependent on

the SEC61 translocon complex. Dysregulation of the SEC61 complex

by the regulatory subunit SEC61b drives paraptosis by altering the

trafficking of proteins through the ER. PERK and ATF4 serve as

upstream negative regulators of SEC61b-mediated paraptosis.

However, the mechanistic insights of the PERK, ATF4, and

SEC61b crosstalk in the regulation of anti-tumor immunity are yet

to be elucidated. Most importantly, PERK inhibition in ER-stressed

malignant cells triggers DAMPs release and activates anti-tumor T

cell immune responses, suggesting that paraptosis is ICD in cancer

cells (107). Interestingly, it has also been reported that paraptosis is

triggered by natural products, showing the ICD potential of

paraptosis. Morusin, a prenylated flavonoid isolated from the root

bark of the Morus mulberry plant, could effectively induce

paraptosis-like epithelial ovarian cancer cell death by amplifying

the oxidative stress of the ER and mitochondria (108). Another

study has found that the natural anthraquinone compound, novel

rhein derivative 4a, induces paraptosis-like cell death in ovarian

cancer cells (109). Indoleamine 2,3-dioxygenase (IDO), which is

upregulated in tumor cells, can reprogram tryptophan/kynurenine

metabolism to facilitate immune escape. IDO inhibitor can reverse

the tumor microenvironment and elicit the host immune system

(110). Therefore, a therapeutic strategy synergizing paraptosis

induction and IDO inhibition may be greatly advantageous in

activating systemic immunity. Indeed, a paraptosis inducer

prepared by the assembly of copper ions (Cu2+), morusin, and

IDO inhibitor (NLG919) through noncovalent interactions could
Frontiers in Immunology 06
induce cancer cell paraptosis through mitochondrial and ER

vacuolation. This contributes to releasing large amounts of DAMPs

to recruit DCs for activating antitumor immunity in a 4T-1 breast

cancer mouse model (111).
Parthanatos

Parthanatos is a form of RCD characterized by necrotic-like

morphology. Poly (ADP-ribose) polymerase-1 (PARP-1), a nuclear

protein that plays a crucial role in DNA repair, genomic stability,

and transcription is the key molecule in the parthanatos mechanism

(112, 113). Activation of PARP-1 by parthanatos induces the release

of immunogenic alarmins, primarily of HMGB1. Parthanatos is

triggered by the hyperactivation of PARP-1 in response to

extremely high and prolonged alkylating DNA damage induced

by ROS or alkylating agents, resulting in the depletion of cellular

energy, the mitochondrial release of apoptosis-inducing factor

(AIF), and the production of excess poly (ADP-ribose) (PAR)

polymers, followed by large-scale DNA fragmentation (114). In

2016, macrophage migration inhibitory factor (MIF) nuclease was

identified as a crucial factor in the induction of parthanatos by

forming a MIF/AIF complex (115). Several anti-cancer drugs

efficaciously induce parthanatos-dependent cancer cell death in

several types of cancers (116–118). Oxaliplatin, considered an

ICD inducer chemotherapeutic agent, has been found to induce

parthanatos in oral squamous cell carcinoma (OSCC) cells in vitro

and in vivo (119). Cytarabine/AraC is known to induce apoptosis in

several types of acute myeloid leukemia (AML) cell lines. However,

a recent study has revealed that AraC also induces parthanatos in

OCI-AML3 cells, suggesting that cell type or AraC sensitivity may

alter the consequences of AraC treatment (120).

A recent study shows that mixed lineage kinase domain-like

pseudokinase (MLKL) deficiency in hepatocellular carcinoma cells

restricts ER Mg2+ release and mitochondrial Mg2+ uptake, leading

to ER dysfunction, mitochondrial oxidative stress, and, ultimately,

metabolic-stress-induced parthanatos (121). Therefore, MLKL

deficiency in HCC cells suppresses orthotopic tumor growth,

activates the anti-tumor immune response, and enhances the

therapeutic effect of immune checkpoint blockade in syngeneic

HCC tumor mouse models. The use of a PARP-1 inhibitor to block

parthanatos could then restore tumor growth and immune evasion

in MLKL-knockout HCC tumors. Since MLKL is a critical

executioner of necroptosis, this report elucidates a new role for

MLKL in negatively regulating parthanatos in HCC.
Alkaliptosis

Alkaliptosis, a pH-dependent regulated cell death process triggered

by the small molecular compound JTC801, has recently been identified

as a novel approach for malignant tumor treatment, particularly in

pancreatic cancer through the screening of new anti-cancer drugs (122,

123). Indeed, in vivo experiments in mice showed that JTC801

selectively targets pancreatic ductal adenocarcinoma (PDAC) cells

without harming normal cells. Two major signaling pathways, the
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ATPase H+ transporting V0 subunit D1 (ATP6V0D1)-signal

transducer and activator of transcription 3 (STAT3) pathway and

the NF-kB pathway, are reported to contribute to the induction of

alkaliptosis (122, 124, 125). Blocking other cell death modes such as

apoptosis, necroptosis, and ferroptosis did not prevent JTC801-

induced cell death. Mass spectrometry identified ATP6V0D1 as a

JTC801 target (125). ATP6V0D1, a member of the vacuolar ATPase

(V-ATPase) family, regulates the acidification of intracellular

organelles. It forms a complex with STAT3 in lysosomes, leading to

lysosomal acidification and cytosolic alkalinization, thus inducing

alkaliptosis. However, inhibiting ATP6V0D1 fails to prevent

JTC801-induced lysosomal acidification, indicating the potential

involvement of a compensatory mechanism (126). Therefore, the

precise mechanism remains unclear. JTC801 activates NF-kB-
dependent carbonic anhydrase 9 (CA9) downregulation (127). CA9

regulates pH by catalyzing the reversible hydration of carbon dioxide

to carbonic acid and is overexpressed in many types of solid cancers,

including PDAC, where it promotes tumor growth by inhibiting

intracellular alkalinization. JTC801-induced alkaliptosis is capable of

activating NF-kb making it another potential means of inducing ICD.

Most importantly, JTC801-induced alkaliptosis of cancer cells can lead

to the release of HMGB1 into the cell culture supernatants. This release

of HMGB1 from the nucleus involves nuclear DNA damage signaling

and can be inhibited by the FA complementation group D2

(FANCD2)-dependent DNA repair pathways (128). It has been

reported that extracellular HMGB1 binds to its receptor, advanced

glycosylation end-product-specific receptor (AGER, also known as

RAGE), in macrophages and activates the cGAS-STING pathway-

mediated immunity (128). Another recent report revealed that acyl-

CoA synthetase short-chain family member 2 (ACSS2), responsible for

producing acetyl-CoA and leading to NF-kB acetylation, subsequently

activates the NF-kB pathway and CA9 downregulation, promoting

alkaliptosis in PDAC cells (129). Thus, alkaliptosis is potentially ICD-

like, but it is not well-characterized thus far as a cancer

immunotherapy and needs to be further examined in the future.
Autophagy and autosis

Autophagy, a well-known programmed cell death mode, plays a

paradoxical role in the anti-tumor response. Autophagy is a self-

degradative type of cell death accompanied by large-scale autophagic

vacuolization of the cytoplasm, resulting in a vacuolated appearance

in response to stressors, such as nutrient deprivation (130).

Autophagy also serves as an advanced system for the elimination

of DAMPs and PAMPs, contributing to the maintenance of immune

homeostasis (131–134). In this role, autophagy basically suppresses

inflammatory cytokine production and inflammasome activation,

reducing ICD-mediated immune activation. Autophagy also aids

tumor cells in evading immune surveillance by inhibiting antitumor

immune responses. For example, autophagy degrades the MHC-I

complex, thereby preventing immune cell recognition in a pancreatic

cancer mouse model (135, 136). In contrast, the autophagy inhibitor

chloroquine (CQ) increases MHC-I complexes and results in

enhanced antitumor immune responses (135). Overall, evidence

suggests that autophagy is immunosuppressive and linked to
Frontiers in Immunology 07
cancer survival and proliferation. However, several studies have

also revealed that autophagy also contributes to antitumor

functions depending on its level of activation or strength (137,

138). High-level autophagy and not mild autophagy, is able to

promote ICD in tumor cells by releasing DAMPs from dead cells,

which can inflame the TME and activate anti-tumor immunity.

During ICD, autophagosomes including tumor antigens and

DAMPs are released into extracellular space and taken up by

APCs (139). Mechanistically, during autophagy in response to ICD

induction, it has been reported that ATP is secreted from the plasma

membrane through lysosomes and autolysosomes (17). Most

importantly, suppression of autophagy results in diminished

release of ATP and DAMPs from dying tumor cells treated with

anthracycline chemotherapeutic agents, indicating an essential role

of autophagy in ICD (140, 141). Autophagy has also recently been

demonstrated to have a role in necroptosis. Autophagy induction by

obatoclax results in FADD/RIPK1/RIPK3 recruitment to the

autophagosomal membranes by interaction with Atg5, suggesting

that autophagy may promote necroptosis via the assembly of the

necrosome on autophagosomes (142). Thus, high-level autophagy is

capable of promoting cancer cell death and releasing DAMPs from

deceased cells. This process can remodel the TME and activate anti-

tumor immunity (138).

Recently, a novel form of autophagy gene-dependent, Na+,K+-

ATPase-regulated, non-apoptotic cell death, termed ‘autosis’, which

is induced by excessive autophagy, prolonged autophagy-inducing

peptides (HIV1-Tat fused Beclin 1, Tat-BECN1) treatment,

starvation, and hypoxia-ischemia, and characterized by the

disappearance of the endoplasmic reticulum and focal swelling of

the perinuclear space has been identified (143, 144). Autosis is

associated with plasma membrane rupture, suggesting the release of

intracellular components that can increase immunogenicity.

Indeed, it has been reported that Tat-BECN1 treatment triggered

autosis enhances immunogenicity in vivo (145).

It has also been recently reported that myxoma virus (MYXV)-

infected tumor-specific T (TMYXV) cells expressing a chimeric

antigen receptor (CAR), ‘CAR-TMXYV’, eradicate antigen-loss

tumors by inducing tumor autosis (146). Mechanistically,

cytotoxic T cell-derived IFNg synergistically activates CAR-TMXYV

mediated autophagosome formation and executes cancer cell

autosis. This method can induce both cytotoxicity and tumor

antigen MYXV to antigen-deficient (cold) tumor bed in a B16

melanoma mouse model, resulting in a boost to adaptive immunity

similar to ICD induction.

Depending on the cancer cell types and circumstances in the

TME, autophagy can be both anti-cancer and pro-cancer, which

should raise concerns when choosing autophagy modulators for

clinical studies and use (147, 148). Therefore, autosis induction,

instead of autophagy inhibition or induction, may be a more

reasonable target for consideration as an anti-cancer treatment.
Pyroptosis

The term “pyroptosis” was originally coined to indicate

proinflammatory (from the Greek “pyro” referring to fire)
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programmed cell death (“ptosis”) during bacterial infection in

macrophages. Now, it is known that pyroptosis also occurs in

cancer cells and induces anti-tumor immunity (43, 149, 150).

Pyroptosis is a programmed necrotic cell death mediated by pore-

forming gasdermin (GSDM) proteins (151). Morphological

characteristics of pyroptosis include cytoplasmic swelling, DNA

fragmentation, and pore formation, resulting in the emission of

intracellular contents and proinflammatory cytokines (e.g., IL-1b,
IL-18, IL-33, and HMGB1). Pyroptosis is executed by

inflammasome-dependent or -independent mechanisms (152).

Inflammasomes, multi-protein oligomers, are divided into NOD-

like receptors (NLRs) (e.g., NLRP1, NLRP3, and NLRC4, with

NLRP3 being the most-studied inflammasome) and non-NLRs

(e.g., AIM2; AIM2 is activated by cytosolic bacterial, viral, and

host dsDNA) (153–156). The inflammasome is activated by PAMPs

and DAMPs and triggers the activation of caspase-1, known as

canonical inflammasome activation. Active caspase-1 cleaves

gasdermin D (GSDMD) and further matures IL-1b and IL-18,

leading to pyroptosis (157–159). LPS also activates the non-

canonical inflammasome, targeting caspase-4/5/11 (human

caspase-4/5 and mouse caspase-11), followed by cleavage of

GSDMD (160–165). The cleaved N-terminal GSDMD acts as the

“executioner”, forming pores in the cell membrane (166, 167).

Gasdermin E (GSDME, also called DFNA5) was recently

identified as another pyroptotic “executioner” and suppresses

tumor growth by activating anti-tumor immunity (168). During

chemotherapy, in GSDME expressing cells, GSDME can be cleaved

and activated by caspase-3, converting cells from apoptotic to

secondary necrotic/pyroptotic (169, 170). In the TME of GSDME

expressing tumors (breast, colorectal and melanoma), the function

and number of DCs, cytotoxic lymphocytes and NK cells are

increased (168). Another study demonstrates that the

combination of a BRAF inhibitor and MEK inhibitor activates

caspase-3 GSDME-mediated pyroptosis in melanoma, leading to

increased immune response and tumor suppression in melanoma-

bearing mice (171). It has also been reported that the cyclin-

dependent kinase (CDK) -1, -2 and -9 inhibitor, Dinaciclib,

induces ICD and has confirmed anti-tumor effects in syngeneic

MC38, CT26 colon and MB49 bladder cancer mouse models (172).

Dinaciclib-mediated ICD has been further evaluated as a GSDME-

mediated pyroptosis in several triple negative breast cancer cell lines

and a 4T1 breast cancer mouse model (173). Notably, GSDME is

silenced in multiple tumors through GSDME DNA methylation,

and therefore, methyltransferase inhibitors (e.g., decitabine) can

increase GSDME expression and inhibit tumor growth (174, 175).

Indeed, decreased GSDME expression in oral squamous cell

carcinoma (OSCC) is associated with poor prognosis (176).Thus,

this evidence suggests that GSDME mediated pyroptosis plays an

essential role in tumor suppression. In addition to GSDMD- or

GSDME-mediated pyroptosis, other GSDM-mediated pyroptosis

pathways have been reported. For example, granzymes (Gzms)

secreted from CTL or NK cells can induce pyroptosis. GzmA

cleaves GSDMB and triggers pyroptosis (177). GzmB cleaves both

Caspase-3 and GSDME, amplifying GzmB-mediated pyroptosis

(168, 178, 179). Since cancer pyroptosis results in immune cell

activation and these activated cells secrete granzymes in the TME,
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induction of cancer pyroptosis may be one of the reasonable cancer

immunotherapeutic strategies. Whether there are any other

additional mechanisms of cancer pyroptosis will require

further investigation.
Atypical ISGs induced pyroptosis

In most instances, type I IFNs are crucial for subsequent immune

response activation but are not mandatory for the induction of ICD

itself. Notably, the release of type I IFNs serves as a biomarker for the

completion of ICD (Figure 1) (37). However, recent evidence

highlights that, beyond type I IFN production, the response of

tumor cells to type I IFNs represents an essential pathway for

eliciting effective antitumor responses following ICD induction.

For instance, the induction of ICD by anthracycline-based

chemotherapies and radiotherapy relies heavily on their capacity to

activate IFN-dependent gene expression programs within tumor

cells, thereby facilitating the generation of robust antitumor

immune responses (180, 181). Regarding whether modulating the

IFN response promotes ICD, it was recently shown that the IFN

inducible Z-form nucleic acid binding protein 1 (ZBP1) can trigger

ICD in Ripk1-/- cells (182). However, ZBP1 induction by IFN alone

appears insufficient to induce ICD, implying the involvement of

other unidentified factors. Moreover, although cGAS-STING or

retinoic acid inducible gene I (RIG-I) pathway activation can

induce ICD, the precise mechanisms beyond type I IFN

production remain unclear (183). While numerous studies

underscore the significance of the type I IFN response in ICD

induction and its intrinsic ability to enhance antitumor immunity,

the extent to which modulating or enhancing IFN responses directly

promotes ICD remains insufficiently characterized. Consequently, it

is hypothesized that genetic factors regulate IFN-mediated ICD, and

targeting these factors may hold therapeutic promise, particularly

considering the elevated levels of interferon production in the

tumor microenvironment.

The production and signaling of type I IFNs are tightly regulated

(184). Our recent discovery reveals that the depletion of ubiquitin-

specific protease 18 (USP18), a major negative regulator of IFN

signaling, selectively induces cancer cell ICD, specifically pyroptosis

(185, 186). We identified that nuclear USP18 diminishes binding of

IFN regulated transcription factors to their corresponding DNA

motifs in cooperation with NF-kB. Consequently, the suppression

of USP18 not only enhances the expression of canonical IFN-

stimulated genes (ISGs) but also activates a set of atypical ISGs and

NF-kB target genes that induce cancer pyroptosis. Importantly,

partial loss of Usp18 in mice does not disrupt normal

hematopoiesis, and mice and humans heterozygous for Usp18 are

healthy and normal (186–188). Our recent study further

demonstrates that USP18 depletion in the myeloid lineage exerts

an anti-cancer effect by reprogramming M2 macrophages to M1

macrophages in the tumor microenvironment (189). These findings

suggest a promising therapeutic opportunity for targeting USP18 in

clinical applications.

Additionally, we observed a clear translocation of HMGB1 from

the nucleus to the cytoplasm in Usp18+/- and Usp18-/- MC38 colon
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tumors, representing an ICD associated event in solid tumors.

Significantly, higher infiltration of CD8+ T cells was noted in

these tumors, suggesting that the depletion of Usp18 in solid

tumors can induce ICD and enhance the immune response. We

also observed higher numbers of CD8+ T and activated CD8+ T cells

in host splenocytes of recipients of Usp18+/D AML cells (186).

Finally, a significant reduction in tumor development was

observed in the group of mice vaccinated with IFN-treated

Usp18+/- cells, as assessed by the gold standard vaccination assay

in B16F10 and MC38 tumor mouse models. Importantly, this

vaccine effect is attributed to the enhancement of tumor-

infiltrating activated CD8+ T cells, a crucial component for the

ICD-induced vaccine response. Thus, ICD induced by targeting

Usp18 occurs in certain solid cancers (186).

Among the atypical ISGs in IFN treated USP18 depleted cancer

cells, we identified PLK2 as one mediator of the observed ICD (186).

Enhanced levels of PLK2 correlated with high levels of caspase-3

and GSDME cleavage, a hallmark of pyroptosis, in IFN treated

USP18-/- cancer cells. Importantly, we demonstrated that the ectopic

expression of PLK2, independent of its kinase activity, in several

types of cancer cells promoted the caspase-3 processing, GSDME

cleavage, DAMPs release, and cell death, albeit without IL-1b
secretion. Since the NLRP3 inflammasome can be formed and

activated by DAMPs, PLK2-induced DAMP release could also be

crucial for GSDMD pathway activation in the USP18-depleted

tumor environment in vivo. Notably, the suppression of PLK2

kinase activity enhances the protein level of PLK2. Consequently,

both a USP18 inhibitor and a PLK2 kinase inhibitor can induce

cancer pyroptosis and hold significant potential as cancer

therapeutic agents (186).
Lysosomal cell death

Lysosomal cell death (LCD), is a form of RCD mediated by

lysosomal damage triggered lysosomal membrane permeabilization

(LMP). Christian de Duve first identified LCD in 1983, and the term

“lysosomal cell death” was later coined in 2000 (190, 191).

Lysosomal damage can be triggered by various agents such as

chloroquine, lipid metabolites, ROS, and certain anti-cancer drugs

(e.g., sorafenib). Growing evidence suggests that mild lysosomal

damage results in cell apoptosis, while extensive damage can induce

ICD. This highlights LCD as a rational target for promising

cancer immunotherapy.

During LMP, the release of cathepsins and ROS plays a crucial

role in ICD. For example, cathepsin D mediated necroptosis,

cathepsin B- or G- mediated pyroptosis and ROS-mediated

ferroptosis have been reported (192–197). A recent study

demonstrated that the lysosomal inhibitor DC661 induces

lysosomal lipid peroxidation followed by LMP and ICD, involving

necroptosis, ferroptosis, and pyroptosis (198). Interestingly, these

forms of cell death cannot be rescued by either ICD inhibitors or

cathepsin inhibitors but can be reversed by the antioxidant N-

acetylcysteine (NAC), highlighting the uniqueness of DC661-

induced specific LCD. Importantly, mice vaccinated with DC661-
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treated cells exhibited secondary tumor rejection, a critical

indicat ion that DC661-mediated tumor cel l death is

immunogenic in nature.
Discussion

Altogether, these findings suggest that appropriate induction of

ICD can lead to successful control of multiple neoplasms through

(immuno)therapy. ICD has garnered significant attention in cancer

research, as it possesses the capability to enhance the body’s

immune response to recognize and eliminate cancer cells.

In this review, we provide a summary of both previous and

recent studies related to cancer ICD. Notably, numerous novel cell

death modalities have been discovered within the last 20 years,

cultivating a deeper understanding of which cell death modes

exhibit ICD-like characteristics (e.g., paraptosis is now recognized

as ICD). Moreover, our study revealed that hyper type I IFN

response-mediated atypical ISGs selectively induce cancer ICD. It

is increasingly evident that a single cell death mode can transition to

different types of cell death, including ICD, under specific

conditions. These immunostimulatory properties of ICD render

ICD-inducing agents attractive candidates for cancer immune-

monotherapy, with initial results from in vitro experiments and

preclinical models suggesting a promising, viable path forward.

However, numerous unknown factors still impede progress in ICD-

mediated cancer immunotherapy, particularly concerning the

development of reagents for tumor-specific ICD induction in

clinical settings, strategies for reliably inducing ICD across

different cancer types without inducing toxicity and resistance,

and understanding the mechanisms by which various ICD modes

enable protective anti-tumor immunity.

Currently, only a limited number of cytotoxic agents and

methodologies (e.g., anthracyclines, oxaliplatin, radiation therapy,

oncolytic viruses) have demonstrated the ability to induce ICD,

with approved clinical use restricted to certain cancer types due to

the genetic diversity, tissue origin, and local microenvironment of

the tumor (35). Therefore, researchers are also actively exploring

novel, clinically viable combinatorial strategies to enhance

therapeutic potential by combining ICD with other approved

regimens, including ICB (172, 199). Indeed, several combinations

of ICD inducers are currently being investigated in clinical trials for

specific types of cancer (8, 200, 201). Moreover, recent studies reveal

that certain compounds/agents (or their combinations) have ICD-

inducing abilities with different cell death modalities (202, 203). It is

also noteworthy that strategies for drug delivery, including

nanoparticles-mediated ICD induction, are under development

(97, 204–206). However, the majority of agents/methodologies for

ICD induction have only been tested through in vitro experiments

and preclinical animal models. Further investigations, including

clinical studies involving newly identified agents/methodologies

with a focus on ICD, will provide more valuable evidence for the

treatment of cancer. We anticipate that the evolution of ICD

induction from current and future studies will increasingly take

center stage in modern cancer control.
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Glossary

ICB immune checkpoint blockade

ICD immunogenic cell death

RCD regulated cell death

PLK2 polo like kinase 2

TME tumor microenvironment

TGF-b transforming growth factor-b

DAMPs damage-associated molecular patterns

cDAMPs constitutive DAMPs

iDAMPs inducible DAMPs

CXCL10 C-X-C motif chemokine ligand 10

PAMPs pathogen-associated molecular patterns

HMGB1 nuclear protein high mobility group box 1

ATP adenosine triphosphate

APC antigen-presenting cell

DC dendritic cell

TLR toll-like receptor

RAGE receptors for advanced glycation end-products

IL-1 b interleukin 1b

CTL cytotoxic T lymphocyte

CRT calreticulin

MHC major histocompatibility complex

AIM2 absent in melanoma 2

NK natural killer

LCD lysosomal cell death

ACD accidental cell death

CrmA cytokine response modifier A

TNFa tumor necrosis factor-a

TRAIL TNF-related apoptosis-inducing ligand

FADD fas-associated via death domain

PRR pattern recognition receptor

DAI DNA-dependent activator of interferon-regulatory factors

cGAS cyclic GMP-AMP synthase

RIPK receptor-interacting protein kinase

MLKL mixed lineage kinase domain-like pseudokinase

NNSCC head and neck squamous cell carcinoma

HCC hepatocellular carcinoma

ROS reactive oxygen species

GSH glutathione

SLC7A11 solute carrier family 7 member 11

GPX4 glutathione peroxidase 4

(Continued)
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RCC renal cell carcinoma

NADPH nicotinamide adenine dinucleotide phosphate

Cu Copper

TCA tricarboxylic acid

DLAT dihydrolipoamide S-acetyltransferase

FDX1 ferredoxin 1

LIAS lipoyl synthase

TTM tetrathiomolybdate

ER endoplasmic reticulum

NSCLC non-small-cell lung cancer

IGFIR insulin-like growth factor I receptor

PERK pancreatic ER kinase (PKR)-like ER kinase

eIF2a eukaryotic translation initiation factor 2a

ATF4 activating transcription factor 4

IDO indoleamine 2,3-dioxygenase

PARP1 poly (ADP-ribose) polymerase 1

AIF apoptosis-inducing factor

MIF macrophage migration inhibitory factor

OSCC oral squamous cell carcinoma

AML acute myeloid leukemia

PDAC pancreatic ductal adenocarcinoma

ATP6V0D1 ATPase H+ transporting V0 subunit D1

STAT3 signal transducer and activator of transcription 3

V-ATPase vacuolar ATPaseCA9: carbonic anhydrase 9

FANCD2 FA complementation group D2

ACSS2 acyl-CoA synthetase short-chain family member 2

CQ chloroquine

CAR chimeric antigen receptor

GSDM gasdermin

NLR NOD-like receptor

CDK cyclin-dependent kinase

OSCC oral squamous cell carcinoma

Gzm granzyme

ZBP1 Z-form nucleic acid binding protein 1

RIG-I retinoic acid inducible gene I

USP18 ubiquitin-specific protease 18

ISG IFN-stimulated gene

LMP lysosomal membrane permeabilization

NAC N-acetylcysteine
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