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Objectives: Preeclampsia/eclampsia (PE), a critical complication during

pregnancy, has been suggested to correlate with immune cell phenotypes and

levels of circulating inflammatory proteins. Our study aimed to employ a two-

sample mendelian randomization (MR) analysis to assess the potential causal

effects of immune cell phenotypes and circulating inflammatory proteins on the

onset of PE.

Methods: We utilized summary-level data from genome-wide association

studies (GWAS). This included statistics for 371 immune cell phenotypes from

3,757 individuals in the Sardinian founder population, and data on 91 circulating

inflammatory proteins from 14,824 European ancestry participants. Additionally,

genetic associations related to PE were extracted from the FinnGen consortium,

involving 1,413 cases and 287,137 controls. We applied inverse variance

weighting (IVW) and supplementary methods like MR-Egger, weighted median,

and weighted mode to comprehensively assess potential causal links.

Results: Our analysis revealed significant causal associations of several immune

cells type and inflammatory proteins with PE. Out of the immune cell phenotypes

analyzed, six immune phenotypes emerged as significant risk factors (p <0.01),

mainly include CD4 on activated and secreting CD4 regulatory T cells, CD28 on

CD39+ CD4+ T cells, CD127- CD8+ T cell absolute cell (AC) counts, HLA DR on

HLA DR+ CD8+ T cell, CD66b on CD66b++ myeloid cells, and HLA DR on

dendritic cells. And ten were identified as protective factors (p <0.01). Such as

CD45 on CD33br HLADR+CD14-, CD33+HLA DR+ AC, CD33+HLADR+CD14-

AC, CD33+ HLA DR+ CD14dim AC, CD27 on CD24+ CD27+ B cell, CD20-

CD38- %B cell, IgD- CD24- %B cell CD80 on plasmacytoid DC, CD25 on CD4+ T

cell, and CD25 on activated & secreting CD4 regulatory T cell. Furthermore,

among the inflammatory proteins studied, five showed a significant association

with PE, with three offering protective effects mainly include that C-X-C motif

chemokine 1, tumor necrosis factor ligand superfamily member 14, and C-C

motif chemokine 19 and two exacerbating PE risk such as STAM-binding domain

and Interleukin-6 (p <0.05).
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Conclusions:Our study highlights the pivotal roles played by diverse immune cell

phenotypes and circulating inflammatory proteins in the pathophysiology of PE.

These findings illuminate the underlying genetic mechanisms, emphasizing the

criticality of immune regulation during pregnancy. Such insights could pave the

way for novel intervention strategies in managing PE, potentially enhancing

maternal and neonatal health outcomes.
KEYWORDS
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Introduction

Preeclampsia/eclampsia (PE) represent prevalent complications

during pregnancy, affecting an estimated 3–8% of pregnancies

globally, with an increasing incidence over time (1). These

disorders are not only prevalent but also contribute significantly to

maternal and neonatal morbidity and mortality. The complexities

surrounding the complications, injuries, long-term prognosis, and

sequelae for both the mother and child following pregnancy

termination underscore the unpredictability and severity of these

conditions (2, 3). PE imposes a substantial burden, extending its

impact from the affected individuals to public healthcare systems and

family units, with pronounced effects in low- and middle-income

countries. Addressing the incidence and mortality of pregnancy-

related hypertensive disorders is, therefore, a pressing global health

priority, with implications for maternal and infant well-being.

Research in recent decades has intensively investigated the

pathogenesis of preeclampsia. These studies have uncovered a

multitude of mechanisms including endothelial dysfunction,

aberrant vascular development, compromised trophoblast invasion,

and inadequate remodeling of spiral arteries (4–6). Particularly

noteworthy is the role of immune dysregulation and inflammation,

which are now understood as key contributors to placental

dysfunction, leading to the manifestation of preeclampsia (4, 7, 8).

However, aberrations in immune function may contribute to

placental ischemia, a key factor in the pathogenesis of PE (9). In

addition to immune cells, circulating inflammatory proteins derived

from the placental and maternal endothelial systems also play a role.

It has been proposed that imbalance of cytokine levels and elevated

soluble cytokine receptors in PE patients may serve as markers of

inflammation, but these findings are somewhat controversial (10–12).

However, most identified factors lack accuracy in predicting the onset

of PE. This emphasizes the need for further investigation into the

factors associated with PE and interventions aimed at prolonging

gestation and improving maternal and neonatal outcomes. However,

the diversity in research findings concerning the relationship between

immune cells, inflammatory factors, and PE points to inherent

challenges in this field. These include the alignment of PE models

with human physiological states, constraints in sample sizes, design
02
flaws in studies, and the presence of confounding variables.

Addressing these challenges, mendelian randomization (MR)

presents an innovative method, which leverages genetic variants as

instrumental variables to estimate the causal association between

exposure and disease outcome (13). These variants, determined at

conception and randomly assigned, enable two-sample MR to act as

an unbiased method for examining the impact of exposures on

disease outcomes, thus overcoming the limitations of confounding

and reverse causation (14, 15). MR has found application in

investigating causal associations between immune cells and various

diseases, encompassing immune disorders (16), cardiovascular

diseases (17) and metabolic diseases such as type 2 diabetes (18). In

our study, we apply two-sample MR analysis to deepen our

understanding of the causal implications of peripheral immunity in

the risk of PE, providing new insights into potential therapeutic

strategies and preventive measures.
Materials and methods

Study design

Our investigation rigorously examined the causal relationships

between an array of 731 immune cell phenotypes, 91 circulating

inflammatory proteins, and the incidence of preeclampsia/eclampsia

(PE). The study’s design strictly followed the STROBE-MR

(Strengthening the Reporting of Observational Studies in

Epidemiology using Mendelian Randomization) guidelines (19).

The integrity and robustness of two-step Mendel ian

Randomization (MR) outcomes hinge upon the satisfaction of

three pivotal assumptions. Firstly, the Relevance Assumption posits

that genetic variants utilized as instrumental variables must

demonstrate a significant and robust association with the exposure

under investigation. This foundational premise ensures that the

genetic instruments are effectively linked to the exposure, thereby

facilitating a valid examination of the exposure-outcome relationship.

Secondly, the Independence Assumption mandates that these genetic

variants remain uninfluenced by any confounders, underpinning the

concept that the allocation of genetic variants occurs in a manner
frontiersin.org
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akin to random assignment at conception, thus safeguarding against

confounding biases. Lastly, the Exclusion Restriction necessitates that

the influence of genetic variants on the outcome is mediated

exclusively through the exposure, precluding any alternative

pathways. This assumption is critical for attributing any observed

association directly to the exposure of interest, thereby reinforcing the

causal inference drawn from the MR analysis. Selection of genetic

instrumental variables (IVs), specifically, single-nucleotide

polymorphisms (SNPs) was meticulously based on three critical

criteria: robust association with immune phenotypes or

inflammatory proteins, absence of links to confounding factors that

might influence the exposure-outcome relationship, and a direct

influence on the outcomes through the exposures without

involvement in alternate pathways. The design and progression of

our study are encapsulated in Figure 1.
Exposure GWAS data sources

Our study utilized immunological data from a comprehensive

genome-wide association study (GWAS), cataloged with accession

numbers ranging from GCST90001391 to GCST90002121, and

comprising a diverse spectrum of 731 immunophenotypes. These

encompass 118 absolute cell (AC) counts, 389 median fluorescence

intensities (MFI), 32 morphological parameters (MP), and 192 relative

cell (RC) counts (20). Covering an extensive range of immune cells, this

dataset included B cells, dendritic cells (DCs), T cells at various

maturity stages, monocytes, myeloid cells, and TBNK (T cells, B

cells, natural killer cells) and Treg panels, with MPs specifically

focusing on DCs and TBNK panels. The initial GWAS analyzed a

dataset that included 3,757 individuals of European descent, with a

careful design to avoid any overlap between cohorts. High-density
Frontiers in Immunology 03
arrays were employed to genotype approximately 22 million SNPs, and

subsequently, imputation was performed using a reference panel based

on Sardinian sequences. Data on 91 circulating inflammatory proteins

were derived from a GWAS conducted on 14,824 participants of

European ancestry (21). This study identifiedmultiple common genetic

variants that influence the levels of circulating cytokines.
Selection of instrumental variables

The significance level for selecting IVs for each immune trait

was set at 1×10−5. The linkage disequilibrium (LD) pruning of these

SNPs, where SNPs were pruned based on an LD r2 threshold of less

than 0.001 within a 10000 kb distance. For the selection of IVs for

circulating inflammatory proteins, the significance level was set at

1×10−5, consistent with the approach for immune traits. SNPs were

pruned based on an LD r2 threshold of less than 0.001 within a

10000 kb distance. To address the issue of weak instrumental

variables, we estimated the F-statistic for each genetic variant

used as an instrument. SNPs with an F-statistic below 10 were

considered weak and subsequently excluded from our analysis,

ensuring the robustness of our findings. For the outcome PE the

significance level for IV selection was adjusted to 5×10-5.

Steiger filtering is a statistical method designed to eliminate

invalid IVs. The underlying principle of this method is that valid

IVs should explain more variance in exposure than outcome traits.

As a result, genetic variants that do not meet this criterion are

discarded. By retaining genetic variation that explains a larger

portion of the variance in exposure traits, Steiger filtering can

effectively mitigate potential reverse causality effects (22). To

circumvent the potential reverse causality of PE resulting in

retinal thinning in this study, we employed the Steiger filtering

method to exclude SNPs that explain a greater variance in PE-

related traits compared to immune trait and inflammatory proteins.
Genetic associations for outcomes

The study focused on PE. To investigate the genetic associations

linked to these conditions, data was gathered from the FinnGen

consortium (https://www.finngen.fi/en). This data was part of their

9th release of GWAS summaries, which was made available on May

11, 2023. The dataset included 1413 cases and 287137 controls.
Statistical analysis strategy

We employed a two-sample MR analysis to examine the

relationships among 731 immune cell phenotypes, 91 circulating

inflammatory proteins, and the occurrence of PE. Our primary

analysis utilized the inverse variance-weighted (IVW) method, a

well-established approach in MR studies (23). To enhance result

robustness, we conducted supplementary analyses using the MR-

Egger regression methods (24), weighted median (25) and weighted

mode (26). We assessed potential directional pleiotropy by

examining the intercept value in the MR-Egger regression (27).
FIGURE 1

The flowchart of the Mendelian randomization study that the causal
association between 731 immunophenotypes, 91 inflammatory
proteins and PE.
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Heterogeneity was evaluated using Cochran’s Q test (28). All

statistical analyses and data visualisation were performed using R

software, version 4.3.1. For mendelian randomization, we utilized

the”TwoSampleMR”,”MendelianRandomization” package in R,

which facilitated dataset harmonization and the implementation

of various MR methods.
Results

Selection of IVs

After conducting a comprehensive screening for multiple

conditions, we identified 468 single nucleotide polymorphisms (SNPs)

to serve as instrumental variables (IVs) for the exposure factors

(including immune cell traits and inflammatory proteins). The F

statistics, used to assess the validity of these IVs for both immune

cells and inflammatory proteins, consistently exceeded the threshold of

10. This suggests that the possibility of bias due to weak instruments is

low. These results are detailed in Supplementary Tables S1, S2.
Overview

In our study, we identified the causal roles of 42 immune cells in

the development of PE. Using a p-value of less than 0.01 as a

screening criterion, we pinpointed six immunophenotypes as risk

factors for PE: CD4 on activated and secreting CD4 regulatory T

cells (Treg panel), CD28 on CD39+ CD4+ T cells (Treg panel),

CD127- CD8+ T cell AC (Treg panel), HLA DR on HLA DR+ CD8
Frontiers in Immunology 04
+ T cell (TBNK panel), CD66b on CD66b++ myeloid cells (Myeloid

cell panel), and HLADR on dendritic cells (cDC panel). Conversely,

we identified ten immunophenotypes that appear to have protective

effects against PE. These include CD45 on CD33br HLA DR+

CD14- (Myeloid cell panel), CD33+ HLA DR+ AC (Myeloid cell

panel), CD33+ HLA DR+ CD14- AC (Myeloid cell panel), CD33+

HLA DR+ CD14dim AC (Myeloid cell panel), CD27 on CD24+

CD27+ B cell (B cell panel), CD20- CD38- %B cell (B cell panel),

IgD- CD24- %B cell (B cell panel), CD80 on plasmacytoid DC (cDC

panel), CD25 on CD4+ T cell (Treg panel), and CD25 on activated

& secreting CD4 regulatory T cell (Treg panel).

Furthermore, our study revealed insights into the participation

of five circulating inflammatory proteins in PE. Specifically, we

observed that heightened levels of C-X-C motif chemokine 1,

Tumor necrosis factor ligand superfamily member 14, and C-C

motif chemokine 19 act as protective factors against PE. Conversely,

elevated levels of STAM-binding protein and Interleukin-6 were

identified as risk factors (p <0.05). The results of steiger test indicate

that the 16 types of immune cells and 5 circulating inflammatory

proteins we identified as having a causal association with PE show

steiger test p-values less than 0.05. This suggests that these findings

do not have reverse causal relationships. The results are

summarized in Supplementary Tables S3, S4.
Causal associations between immune cell
traits and PE

In the attached document, Supplementary Table S5 illustrates

the causal links between 16 immune cell phenotypes and PE
B

CA

FIGURE 2

MR analysis illustrating causal links between immune cell phenotypes and PE. This figure presents the results using inverse-variance weighting (IVW),
MR Egger, Weighted median and Weighted mode method, displaying odds ratios (OR), confidence intervals (CI), and the relevant single nucleotide
polymorphisms (SNPs) associated with the study. (A) IgD-CD24- B cell %B cell, CD20-CD38- B cell %B cell, CD27 on CD24+ CD27+ B cell; (B)
CD127- CD8+ T cell Absolute Count, CD28 on CD39+ CD4+ T cell, CD25 on active & secreting CD4 regulatory T cell, CD25 on CD4+ T cell, CD4
on activated & secreting CD4 regulatory T cell, HLA DR on HLA DR+ CD8+ T cell; (C) CD33+ HLA DR+ Absolute Count, CD33+ HLA DR+ CD14-
Absolute Count, CD33+ HLA DR+ CD14dim Absolute Count, CD66b on CD66b++ myeliod cell, CD80 on plasmacytoid Dendritic Cell, CD45 on
CD33+ HLA DR+ CD14-, HLA DR on Dendritic Cell.
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selected based on a P-value less than 0.01 according to the IVW

method. This table also presents results from three additional

analytic methods: MR-Egger, weighted median, and weighted

mode. These methods serve as complementary analytical tools,

aligning broadly with the primary IVW method findings. A forest

plot (Figure 2) consolidates the Mendelian randomization analysis

results of these 16 immune phenotypes in relation to PE. And the
Frontiers in Immunology 05
robustness of our findings was further confirmed in Scatter plot

(Figures 3, 4). Additionally, we conducted three types of sensitivity

analyses to ensure the robustness of our findings: leave-one-out

analysis, Cochran’ s Q test, and MR-Egger method for horizontal

pleiotropy. The results of these analyses are presented in Figure 5

(leave-one-out plot), and Supplementary Table S6 (Cochran’ s Q

test) and Supplementary Table S7 (horizontal pleiotropy),
B C

D E F

G H I

J

A

FIGURE 3

Scatter plot demonstrating the causal association between immune cell phenotypes and decreasing incidence of PE. This visual representation
highlights the relationship and is annotated with relevant single nucleotide polymorphisms (SNPs). (A) SNP effect on IgD-CD24- B cell %B cell; (B)
SNP effect on CD20-CD38- B cell %B cell; (C) SNP effect on CD33+ HLA DR+ Absolute Count; (D) SNP effect on CD33+ HLA DR+ CD14- Absolute
Count; (E) SNP effect on CD33+ HLA DR+ CD14dim Absolute Count; (F) SNP effect on CD27 on CD24+ CD27+ B cell; (G) SNP effect on CD25 on
active & secreting CD4 regulatory T cell; (H) SNP effect on CD25 on CD4+ T cell; (I) SNP effect on CD80 on plasmacytoid Dendritic Cell; (J) SNP
effect on CD45 on CD33+ HLA DR+ CD14-.
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respectively. These analyses further confirm the reliability of

our results.
Causal associations between circulating
inflammatory proteins and PE

When we employed the same screening criterion as that used for

immune cells (p < 0.01), no significant proteins were identified.

Consequently, we adopted a more lenient criterion (p < 0.05).

Supplementary Table S8 presents findings that highlight the causal

connections between five circulating inflammatory proteins and PE.

These proteins were identified based on a significance level of p < 0.05

in the IVW method. In a manner akin to the immune cell analysis,

the table incorporates outcomes from MR-Egger, Weighted Median,

and Weighted Mode methodologies. Figure 6 (a forest plot)

succinctly outlines the Mendelian randomization analysis outcomes

concerning these five circulating inflammatory proteins and their

association with PE. The robustness of these insights is further

underscored through the depiction in a scatter plot (Figure 7). In

addition to our primary analysis, we have reinforced the validity of

our results through a comprehensive set of sensitivity analyses,

encompassing a leave-one-out approach, Cochran’s Q test, and

the MR-Egger method for detecting horizontal pleiotropy.

The corresponding results are meticulously documented in Figure 8

(leave-one-out analysis) and Supplementary Table S9 (Cochran’s Q

test) and Supplementary Table S10 (horizontal pleiotropy),

enhancing the robustness and reliability of our findings.
Frontiers in Immunology 06
Discussion

Our research reveals that 16 immunophenotypes (p <0.01) and 5

circulating inflammatory proteins (p <0.05) exhibit causal relationships

with PE by integrating extensive individual and aggregated GWAS

datasets. We conducted various sensitivity analyses to assess the

robustness of our findings and mitigate potential bias arising from

pleiotropic effects. Notably, ten immunophenotypes phenotypes are

identified as protective factors, including IgD- CD24- B cell, CD20-

CD38- B cell and CD27 on CD24+ CD27+ B cell and others.

Conversely, six immunophenotypes are recognized as risk factors

associated with the occurrence of PE, comprising CD127- CD8+ T

cell Absolute Count, CD66b on CD66b++ myeloid cell, CD28 on

CD39+ CD4+ T cell and others. Meanwhile, we extend to examining

the impact of 91 circulating inflammatory factors on PE. The results

revealed that a total of 5 inflammatory factors are associated with PE.

Among them, the levels of C-C motif chemokine 19 (CCL19), C-X-C

motif chemokine 1 (CXCL1), and TNFSF14 exhibit a negative

correlation with PE, acting as protective factors. Conversely, the

levels of Interleukin-6 (IL-6) and STAM binding protein are

identified as risk factors for the occurrence of PE. Female immune

responses undergo alterations during pregnancy to maintain protective

characteristics against diseases while facilitating fetal tolerance. Our

results analysis reveals associations with PE involving various

phenotypes of monocytes, dendritic cells, T cells and B cells. We

systematically discuss these immune cell types and inflammatory

factors to provide comprehensive insights into their roles in the

context of PE, as shown in Figure 9.
B C

D E F

A

FIGURE 4

Scatter plot show casing the causal association between immune cell phenotypes and increasing incidence of PE. This graph provides a visual
analysis of the association, annotated with pertinent single nucleotide polymorphisms (SNPs). (A) SNP effect on CD127- CD8+ T cell Absolute Count;
(B) SNP effect on CD66b on CD66b++ myeliod cell; (C) SNP effect on CD28 on CD39+ CD4+ T cell; (D) SNP effect on CD4 on activated &
secreting CD4 regulatory T cell; (E) SNP effect on HLA DR on Dendritic Cell; (F) SNP effect on HLA DR on HLA DR+ CD8+ T cell.
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Analysis between immune cell phenotypes
and PE

HLA DR expression on dendritic cells (DCs) is pivotal in

regulating the balance between Th1/Th17 and Th2/Treg

responses. Elevated decidual myeloid dendritic cell (mDC) levels

in PE patients suggest an aberrant boost in Th1-type immune

responses, implicating excessive DC maturation as a potential

pathogenic factor (29). CD33 is a 67-kDa transmembrane protein

that undergoes glycosylation, belonging to the sialoadhesin receptor

(Siglec) family, which binds to sialic acid and is found on the cells of

myeloid l ineage (30). HLA-DR is an MHC-II (Major

Histocompatibility Complex Class II) molecule composed of two

subunits, referred to as the a-subunit and b-subunit, respectively.
HLA-DR is expressed on B lymphocytes, monocytes, macrophages,
Frontiers in Immunology 07
activated T lymphocytes, activated NK lymphocytes, and human

dendritic cells (31). The decidua contains two cell subsets: CD33

(+)/HLA-DR(-) and CD33(+)/HLA-DR(+/-). Both subtypes

express arginases, iNOS, IDO, and exhibit a characteristic

cytokine profile. Notably, both subsets strongly inhibit T-cell

proliferation, suggesting a potential significant role in promoting

immune tolerance during pregnancy (32). CD33+ HLA DR+

myeloid cell mainly as antigen-presenting cell and regulate

immuneIntriguingly, our results show that CD25 expression on

activated and secreting CD4 regulatory T cells acts protectively

against preeclampsia, while CD4 expression on these cells signifies a

risk. This dichotomy underscores the importance of the activation

status and surface marker expression of CD4 regulatory T cells in

maintaining immune homeostasis, crucial for preventing overactive

immune responses and autoimmune pathologies (33). A clinical
A B D

E F G

I

H

J K L

M N

C

O P

FIGURE 5

Leave-one-out analysis of the causal association between immune cell phenotypes and PE. This figure employs a leave-one-out strategy to
reinforce the robustness of the causal inference. As shown: (A) IgD-CD24- B cell %B cell; (B) CD20-CD38- B cell %B cell; (C) CD33+ HLA DR+
Absolute Count; (D) CD33+ HLA DR+ CD14- Absolute Count; (E) CD33+ HLA DR+ CD14dim Absolute Count; (F) CD127- CD8+ T cell Absolute
Count; (G) CD27 on CD24+ CD27+ B cell; (H) CD66b on CD66b++ myeliod cell SNP effect on CD25 on CD4+ T cell; (I) CD28 on CD39+ CD4+
T cell; SNP effect on CD80 on plasmacytoid Dendritic Cell; (J) CD25 on active & secreting CD4 regulatory T cell; (K) CD25 on CD4+ T cell; (L)
CD80 on plasmacytoid Dendritic Cell; (M) CD45 on CD33+ HLA DR+ CD14-; (N) CD4 on activated & secreting CD4 regulatory T cell; (O) HLA DR
on Dendritic Cell; (P) HLA DR on HLA DR+ CD8+ T cell.
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study indicated that the frequencies of CD4+CD25+Foxp3+ and

CD8+CD25+Foxp3+ cells were significantly lower in women with

preeclampsia compared to healthy pregnant and non-pregnant

individuals (34). CD4+CD25+ regulatory T (Treg) cells exhibit

the presence of the transcription factor FoxP3, which, in

collaboration with other transcription factors, intricately governs

the development and functionality of this particular subset (35).

CD4+CD25+ regulatory T cells express the transcription factor

FoxP3, inducing the upregulation of CD25 and other molecules

associated with Treg cells, such as cytotoxic T lymphocyte-
Frontiers in Immunology 08
associated antigen 4 and the glucocorticoid-induced tumor

necrosis factor receptor. Simultaneously, they inhibit the

production of interleukin-2 (IL-2), interferon-gamma (IFN-g),
and interleukin-4 (IL-4) by effector T cells (36). Multiple studies

have indicated that the IL-2 signaling pathway through high-affinity

IL-2 receptors (IL-2R) is crucial for the homeostasis of Treg

cells (36). In normal pregnancy, CD4+ regulatory T cells interact

with other immune cells, participating in the regulation of

inflammation associated with implantation and contributing to an

anti-inflammatory protective mechanism (37–39). However, the

pro-inflammatory role of CD4 T cells, particularly in mediating

oxidative stress and elevating blood pressure, is well-documented

(40), implicating them in the pathophysiology of PE might through

their influence on immune cell metabolic processes (41). Treg cells,

expressing inhibitory markers such as CTLA-4 and CD39, exert

a significant suppressive function (42). Studies have reported lower

proportions of CD39+ CD4+ T cells in the preeclampsia group

compared to normal pregnancies (43). Despite prior associations of

this cell subtype with immune suppression in basic research (44),

our findings indicate its correlation with preeclampsia risk. CD28,

as the inaugural member of the costimulatory molecule subfamily,

is characterized by its extracellular variable immunoglobulin-like

domain. CD28 orchestrates phosphorylation, transcription signal

transduction, metabolism, and the generation of crucial cytokines,

chemokines, and survival signals, critically influencing the long-

term proliferation and differentiation of T cells. The CD28 signal,

depending on the cell type and context, not only mediates immune

suppression by inhibiting regulatory T (Treg) cells but also,

conversely, promotes Treg cells to prevent the occurrence of

autoimmune diseases (45, 46). Our analysis identifies CD28
FIGURE 6

MR analysis of causal relationships between circulating inflammatory
proteins and PE. Depicting the results with inverse-variance
weighting (IVW), MR Egger, Weighted median and Weighted mode.
This figure includes odds ratios (OR), confidence intervals (CI), and
the implicated single nucleotide polymorphisms (SNPs).
B C

D E

A

FIGURE 7

Scatter plot depicting the causal link between circulating inflammatory proteins and PE. This figure illustrates the association with a focus on the
relevant single nucleotide polymorphisms (SNPs) involved. (A) SNP effect on C-C motif chemokine 19 levels; (B) SNP effect on C-X-C motif
chemokine 1 level; (C) SNP effect on Interleukin-6 levels; (D) SNP effect on STAM binding protein levels; (E) SNP effect on Tumor necrosis factor
ligand superfamily member 14 levels.
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expression on CD39+ CD4+ T cells as a risk factor in PE, a finding

that invites further exploration given the limited research in this

area. CD127, or the alpha subunit of the IL-7 receptor, distinguishes

regulatory T cells from activated T cells, predominantly marking

mature T cells and regulating their proliferation and differentiation

(47). CD127- CD8+ T cell Absolute Count, belonging to immature
Frontiers in Immunology 09
T cells, an increased abundance of this cell type may lead to the

occurrence of PE.

According to the expression of CD45R/B220, pre-pro-B cells,

pro-B cells, and pre-B cells can be preliminarily distinguished, further

determining their differentiation based on distinct CD24 expression

patterns. CD24+ CD27+ B cells, a regulatory B cell subset, are
A B

D E

C

FIGURE 8

Leave-one-out analysis illustrating the causal relationship between circulating inflammatory proteins and PE. This figure demonstrates the stability of
the causal inference through a leave-one-out methodology. As shown: (A) C-C motif chemokine 19 levels; (B) C-X-C motif chemokine 1 level; (C)
Interleukin-6 levels; (D) STAM binding protein levels; (E) Tumor necrosis factor ligand superfamily member 14 levels.
FIGURE 9

Graphic summary diagram. The relevant pathological mechanisms of preeclampsia. The risk and protective factors associated with PE in 731 immune
shapes, and the risk and protective factors associated with PE in 91 inflammatory proteins.
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primarily involved in IL-10 production and suppressing CD4+ T cell

proliferation, thus inhibiting IFN-g/IL-17 generation (48). A clinical

study indicated a negative correlation between regulatory B cells and

the occurrence of PE (49), consistent with the observed results in our

analysis. Immature B cells, characterized by CD20- CD38-,

contributing to clone clearance and the establishment of self-

immune tolerance. Therefore, CD20- CD38- B cells are present as

a protective factor for PE.
Analysis between circulating inflammatory
proteins and PE

In the realm of PE prediction, the role of inflammatory factors is

of paramount clinical relevance. IL-6, a widely recognized

inflammatory cytokine (50), actively participates in regulating

immune and inflammatory responses across various cell types at

the maternal-fetal interface. In vitro experiments suggest that

elevated local IL-6 levels may promote trophoblast functionality

(51), positing a potential link to PE’s pathogenesis. Moving to

STAM, it is crucial for its interactions with JAK3 and JAK2 tyrosine

kinases, undergoing phosphorylation upon stimulation by

cytokines such as IL-2 and GM-CSF (52). The JAK–STAT

pathway, involving JAK3 and JAK2, has been implicated in the

mechanisms leading to PE (53), aligning with our findings. Our

study suggests CCL19 as a protective factor against PE, highlighting

its role in promoting trophoblast migration and invasion via the

CCR7-mediated pathway (54). Shifting focus to CXCL1, a member

of the G protein-coupled receptor family (55, 56), it binds

specifically to the CXC chemokine receptor 2. CXCL1 may

influence the dynamics of trophoblast and endothelial cells in

placental vascular formation, thus playing a role in normal

pregnancy progression (57). Concluding with TNFSF14, also

known as LIGHT, serving as a costimulatory molecule linked to

T lymphocyte activation (58). And it is elevated in the circulation

and placentas of PE patients (59),TNFSF14 is known to promote

epithelial-mesenchymal transition (EMT) through pathways such

as TGFb or Erk1/2 pathways (60), processes that are critical in

extra-villous trophoblast and might have relationship with PE (61).

In an in vitro experiment using a primary syncytiotrophoblast cell

model, LIGHT was found to directly induce the expression of sFlt-1

in trophoblast cells, suggesting it may be one of the pathological

mechanisms underlying early-onset preeclampsia (62). Another

animal experiment indicated that injecting TNFSF14 into

pregnant mice induced phenotypic characteristics similar to

preeclampsia (59). Our MR analysis, from a genetic perspective,

substantiates the association of TNFSF14 with PE, suggesting its

potential involvement in the pathophysiological processes. This

provides novel insights into its role in maternal and fetal health.
Advantages and limitations

Our analytical delves into the genetic correlations between these

immune components and the risk of PE, underscoring the necessity of

considering gestational age and the intricacies of the maternal-fetal
Frontiers in Immunology 10
microenvironment. Such an approach not only paves the way for

foundational research but also promises to refine disease prediction

strategies, ultimately enhancing maternal-fetal health and contributing

to societal well-being. However, there are also some limitations in our

study. In the GWAS dataset for immune phenotypes and inflammatory

factors, no gender-based stratification was performed. As our study

exclusively encompasses the female population, this introduces a

potential bias. A notable limitation is the identification of 16

immunophenotypes and 5 inflammatory proteins associated with PE,

which raises the possibility of false positives given the relatively high

number of positive results. Consequently, further clinical validation is

essential to substantiate these associations. Another concern is the

potential influence of pregnancy on the body’s immune status.

Although our analysis utilized the steiger-test method to mitigate

reverse causation, the complete elimination of such causality cannot

be definitively assured.

This highlights the need for continued vigilance in interpreting

the findings and underscores the importance of further research to

unravel the complex interactions between pregnancy, immune

system dynamics, and the development of PE. Our study

underscores the crucial contributions of various immune cell

types and circulating inflammatory proteins in the development

of PE. This understanding may open up new avenues for innovative

approaches to address PE, ultimately improving the health

outcomes for both mothers and newborns.
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