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Introduction: Natural killer (NK) cells play a pivotal role in immune surveillance in

the liver. We aimed to identify potential targets for NK cell-mediated immune

intervention by revealing the functional molecules on NK cells in HCC patients.

Methods: To evaluate the impact of aging on NK cell phenotypes, we examined

NK cells from healthy volunteers (HVs) of various ages. Because ILT2 expression

on CD56dim NK cells increased with increasing age, we enrolled age-matched

HCC patients and HVs. We determined the NK cell phenotypes in blood

mononuclear cells (PBMCs) and intrahepatic lymphocytes (IHLs) from

cancerous and non-cancerous tissues. We evaluated cytotoxicity and

antibody-dependent cellular cytotoxicity (ADCC) of NK cells in vitro.

Results: ILT2-positive CD56dim NK cells in PBMCs were increased in HCC

patients compared with HVs. In HCC patients, ILT2-positive CD56dim NK cells

were increased in cancerous IHLs compared with non-cancerous IHLs and

PBMCs. We examined the impact of macrophage migration inhibitory factor

(MIF) on ILT2 expression in co-cultures of HCC cells and NK cells. The enhanced

expression of ILT2 on CD56dim NK cells from HCC patients was inhibited by

masking antibodies against MIF and CXCR4. ILT2-positive CD56dim NK cells

exhibited lower capacities for cytotoxicity and ADCC than ILT2-negative cells,

which were partially restored by ILT2 blockade.
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Conclusions: In HCC patients, ILT2 is a signature molecule for cancerous

CD56dim NK cells with impaired cytolytic capacity. The MIF-CXCR4 interaction

is associated with ILT2 induction on CD56dim NK cells and ILT2 serves as a target

for functional NK cell restoration.
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GRAPHICAL ABSTRACT
Introduction

HCC is the most common form of liver cancer and was the third

most common cause of cancer death in 2020 (1, 2). Treatments for

advanced HCC have improved considerably over the last few years.

Combination therapies including immune checkpoint inhibitors

(ICIs) have become the standard treatment for patients with

unresectable HCC (3). However, the response rates to systemic

therapy remain unsatisfactory. Consequently, identification of new

therapeutic targets for immunological intervention is required to

improve the prognosis of patients with advanced HCC. Natural

killer (NK) cells play a critical role in regulating immune responses

against tumors (4, 5) and are involved in the responsiveness of

patients to ICI therapy (6). A reduction in intratumor CD56+ NK

cells was found to be correlated with poor prognosis in HCC

patients (7). Thus, a profound analysis of the phenotypes and

functions of NK cells in HCC patients may provide useful

insights into possible immunomodulatory strategies.

Human NK cells are classified into two subsets according to

their expression of CD56 and CD16 (Fc-gamma receptor IIIa

[FcgRIIIa]). CD56dimCD16+ NK cells exhibit high cytotoxic

activity, while CD56brightCD16− NK cells are potent cytokine

producers. The ratios of NK cells and their subsets are completely
02
distinct between the peripheral and inner regions of the liver, being

approximately 10% in peripheral blood mononuclear cells (PBMCs)

and 30%–50% in intrahepatic lymphocytes (IHLs) (4, 5). In healthy

individuals, CD56dimCD16+ NK cells account for 90% of the

peripheral NK cell population. In a previous study on HCC

patients, we found that CD56dim NK cells were dominant in the

liver, and that the frequency of intratumor CD56dim NK cells was

reduced compared with intrahepatic non-tumor CD56dim NK cells

(5). Therefore, it is arguably necessary to analyze intrahepatic and

intratumor NK cells in patients with HCC.

The capacity of NK cells is regulated by the balance of activating

and inhibitory receptors in the tumor microenvironment (TME).

Aging is a biological process associated with dynamic editing of the

immune system, often accompanied by gradual impairment of

immune surveillance against tumors (6). Several lines of evidence

have shown that HCC and aging have negative impacts on NK cell

functions (4, 6, 8). However, it remains unclear how aging and

presence of HCC affect the expression of function-related molecules

on NK cells.

In this study, we aimed to identify potential targets for NK cell-

mediated immune intervention. To this end, we comprehensively

examined the phenotypes and functions of NK cells in patients with

HCC, in relation to the age of the patients and the localizations of
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NK cells. We found that ILT2+NKp46−CD56dim NK cells had

impaired cytolytic and antibody-dependent cellular cytotoxicity

(ADCC) capacities in HCC patients, and that these capacities

were restored by anti-ILT2 antibody treatment. We further found

that macrophage migration inhibitory factor (MIF) was partially

involved in the induction of ILT2 on NK cells.
Materials and methods

Subjects

We enrolled 17 patients with no or mild fibrosis (fibrosis [F]

stage 0, 1, or 2; n=6) or advanced fibrosis (F stage 3 or 4; n=11) who

underwent liver resection for HCC at Kohnodai Hospital or the

Cancer Institute Hospital of the Japanese Foundation for Cancer

Research between May 2018 and December 2020 (Supplementary

Table 1). As controls, we enrolled 42 healthy volunteers (HVs) who

ranged in age from 21 to 82 years, had no apparent history of liver

diseases or malignancies, and were negative for HBsAg, HIV

antigen, anti-HIV antibodies, and anti-HCV antibodies. Written

informed consent was obtained from all subjects at enrollment. The

study conformed to the ethical guidelines of the 1975 Declaration of

Helsinki and the ethical guidelines for human clinical research

established by the Japanese Ministry of Health, Labour andWelfare.

The study protocol was approved by the ethics committees of the

National Center for Global Health and Medicine (NCGM-A-

000275-01) and the Cancer Institute Hospital of the Japanese

Foundation for Cancer Research (2017-GA-1118).
Cell lines

The K562 cell line (#JCRB0019; JCRB) was cultured in RPMI-

1640 medium (Thermo Fisher Scientific, Waltham, MA)

supplemented with 10% heat-inactivated fetal bovine serum (FBS)

(GE Healthcare, Chicago, IL). The Daudi cell line (#JCRB9071;

JCRB) was cultured in RPMI-1640 medium supplemented with

20% heat-inactivated fetal FBS. Huh7and PLC-PRF5 were kindly

gifted by Prof. Okamoto T., and HLE cells were by Prof. Kawaguchi

T. These cell lines were cultured in DMEM (043-30085; Wako,

Osaka, Japan) supplemented with 10% FBS, 1% penicillin-

streptomycin (P4333; Sigma-Aldrich, St. Louis, MO), 1% MEM

(M7145; Sigma-Aldrich), and 10 mM HEPES (Nacalai Tesque,

Kyoto, Japan). All cells were incubated at 37°C in a humidified

5% CO2 incubator. All experiments were performed with

mycoplasma-free cells.
Isolation of peripheral and intrahepatic
mononuclear cells

PBMCs were isolated by density gradient centrifugation on

Ficoll-Paque (d=1.077; Nacalai Tesque). For isolation of IHLs, HCC

tissues and adjacent normal liver tissues were promptly transported

from the hospital to the laboratory on ice in RPMI-1640 medium
Frontiers in Immunology 03
containing 2 mM L-glutamine (Thermo Fisher Scientific), 25 mM

HEPES (Nacalai Tesque), 10% fetal calf serum (FCS) (HyClone,

Cytiva, Tokyo, Japan), and 100 U/mL penicillin/streptomycin

(Nacalai Tesque) (Buffer 1). The liver tissues were washed twice

with HBSS (Gibco) containing 2% FCS and 0.6% bovine serum

albumin (Buffer 2), minced, and enzymatically digested with 50 µg/

L DNase I (Promega, Madison, WI) and 500 mg/L collagenase IV

(Nordmark Arzneimittel Gmbh & Co. KG, Uetersen, Germany) for

60 min at 37°C as reported previously (4). After the obtained cell

suspension was filtered through a 40-mm cell strainer (Greiner),

IHLs were isolated by density gradient centrifugation on Ficoll-

Paque (d=1.077; Nacalai Tesque) and CD45+ IHLs were obtained

using a MACS system (Miltenyi Biotec, Bergisch Gladbach,

Germany). PBMCs and IHLs were harvested and stored at −150°

C in Cell Banker solution (ZENOAQ Resource Co. Ltd., Fukushima,

Japan). Following the density gradient centrifugation, the residual

cells including hepatocytes and erythrocytes were resuspended with

ACK lysis buffer (1.5M NH4Cl, 100mM KHCO3, and 0.5M EDTA

adjusted to PH 7.2) to lyse the erythrocytes. After washing, the

hepatocytes were isolated by centrifugation on a Percoll (GE

Healthcare Bio-Sciences, Uppsala, Sweden) cushion (1.129 g/mL).

For NK cell isolation, NK cells were purified by negative magnetic

selection using an NK Cell Isolation Kit (Miltenyi Biotec). To obtain

ILT2+CD56dim NK cells, isolated NK cells were stained with a LIVE/

DEAD™ Fixable Aqua Dead Cell Stain Kit (L34966; Invitrogen)

and anti-CD3/CD14/CD19-APC-Cy7 (Biolegend, San Diego, CA),

anti-CD56-V450 (BD Biosciences, San Jose, CA), anti-CD16-PE

(BD Biosciences), anti-NKp46-APC (BD Biosciences), and anti-

ILT2-PE-Cy7 (Biolegend) antibodies for 30 min at 4°C. The stained

cells were sorted in a FACS Aria III cell sorter (BD Biosciences).
Mass cytometry by time-of-flight (CyTOF)

The CyTOF procedure employs metal isotope-conjugated

antibodies that are distinguishable by mass in a time-of-flight mass

spectrometer, thereby allowing simultaneous detection of a large

number of markers without the spectral overlap limitations

inherent to fluorophore-based flow cytometry. For analysis, the

cells were thawed, treated with cisplatin (Fluidigm, San Francisco,

CA) to identify live/dead cells, and incubated with metal-conjugated

antibodies against surface membrane proteins (listed in

Supplementary Table 2). The cells were fixed with 1.6%

paraformaldehyde, labeled with an iridium-containing DNA

intercalator to allow discrimination between singlets and doublets,

and analyzed using a CyTOF mass cytometer (Helios, Fluidigm). The

CyTOF signals were normalized using EQ Four Element Calibration

Beads (201078; Fluidigm) in accordance with the manufacturer’s

instructions. The data files were analyzed using Cytobank software

(Cytobank Premium, Mountain View, CA). A total of 40,000 CD45+

leukocytes were analyzed per sample. The gating strategy used to

identify NK cells (CD45+CD3−CD14−CD56+), T cells (CD45+CD3+),

and monocytes (CD45+CD3−CD14+) is shown in Figure 1A. The

data files generated from the CyTOF analysis were subjected to a

dimension reduction process based on the viSNE algorithm, which

allows multidimensional cytometry data to be presented in two
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dimensions while retaining the multidimensional data structure (9).

For the viSNE analysis, a total of 14,000 NK cells from each donor

were included and the data were clustered on the basis of the mean

signal intensity (MSI).
Flow cytometry

All cells were incubated with FcR blocking reagent (130-059-

901; Miltenyi Biotec) for 10 min at 4°C before cell surface staining.

For NK cell phenotyping, PBMCs and IHLs were stained with a

LIVE/DEAD™ Fixable Aqua Dead Cell Stain Kit (L34966;

Invitrogen) and anti-CD3/CD14/CD19-APC-Cy7 (Biolegend),

anti-CD56-BUV737 (BD Biosciences), anti-CD16-BUV395 (BD

Biosciences), anti-NKp46-BV421 (BD Biosciences), and anti-

ILT2-PE-Cy7 (Biolegend) antibodies for 30 min at 4°C. For

ILT2 ligand analysis, hepatocytes from HCC tissue (Ca) and

adjacent non-cancerous liver tissue (NCa) were incubated with

PE-HLA-G and isotype control. All samples were acquired on an

LSRFortessa (BD Biosciences) with FACSDiva software and

analyzed using FlowJo 10.8.1 software (BD Biosciences). The
Frontiers in Immunology 04
antibodies used for the flow cytometry analysis are listed in

Supplementary Table 3.
Cytotoxicity and ADCC assay

NK cell cytotoxicity and ADCC were analyzed by flow

cytometry as described previously (10). Carboxyfluorescein

succinimidyl ester (CFSE) (C34554; Invitrogen)-labeled K562

and Daudi cells were resuspended in RPMI-1640 medium

supplemented with 10% FBS and placed in 96-well V-bottomed

plates at 4×103 cells/200 mL/well. Isolated NK cells (effector cells)

were incubated in triplicate with CFSE-labeled K562 and Daudi

cells (target cells) at 5:1 and 10:1 effector/target ratios,

respectively, for 4 h at 37°C in a 5% CO2 incubator. K562 and

Daudi cells expressed HLA-G (Supplementary Figure 1). sIL-2 (50

ng/mL) (200-02; Thermo Fisher Scientific) was added before the

cytotoxicity assay. Rituximab (10 mg/mL) (HY-P9913;

MedChemExpress, Monmouth Junction, NJ) was added before

the ADCC assay. Before the functional recovery assay, isolated NK

cells were incubated with an ILT2-blocking antibody (10 mg/mL)
A

B

C

FIGURE 1

Changes in peripheral CD56dim NK cells with aging. (A) Representative dot plots showing the gating strategy for CD56dim NK cells
(CD45+CD3−CD14−CD56dim) and CD56bright NK cells (CD45+CD3−CD14−CD56bright). The arrows indicate the gating sequence. (B) Spearman’s
correlations for peripheral CD56+ NK cells, CD56dim NK cells, and CD56bright NK cells in HVs with age. (C) Representative mass cytometry plots for
CD56 and CD57 on peripheral CD56dim NK cells from a younger HV and an older HV. The remaining panels show the Spearman’s correlations
between age and the percentages of CD57, Siglec-7, CD160, NKp46, NKG2D, CXCR1, ILT2, Siglec-9, Siglec-10 and CD200R expression on
peripheral CD56dim NK cells in HVs. Black and red plots indicate data for men and women, respectively. The values of the Spearman’s correlation
coefficients are indicated.
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(333721; Biolegend) or isotype antibody (10 mg/mL) (401216;

Biolegend) for 1 h. Pre-treated NK cells (effector cells) were

incubated with CFSE-labeled K562 and Daudi cells (target cells)

at 2.5:1 effector/target ratios for 4 h at 37°C in a 5% CO2 incubator.

After 4 h of incubation, the target cells were lysed, stained with 7-

AAD (559925; BD Biosciences) for 10 min, and analyzed in the

LSRFortessa using FACSDiva software and FlowJo 10.8.1

software. Lysis was quantified by calculating the percentage of

7-AAD-positive cells among all CFSE-positive target cells. The

specific cell lysis was calculated using the following formula: %

specific lysis = (% lysis of sample cells – % lysis of control target

cells)/(100% – % lysis of control target cells). The antibodies used

f o r t h e fl o w c y t om e t r y a n a l y s i s a r e l i s t e d i n

Supplementary Table 3.
Chemokine and cytokine assays

Serum samples were prepared by centrifugation at 300×g for 15

min and stored at −80°C. A Bio-Plex Pro™ Human Chemokine

Panel (40 plex) (Bio-Rad, Hercules, CA) was used in accordance

with the manufacturer’s instructions. The complete panel screened

for expression of the following chemokines: CCL1, CCL2, CCL3,

CCL7, CCL8, CCL11, CCL13, CCL15, CCL17, CCL19, CCL20,

CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27,

CX3CL1, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CXCL9,

CXCL10, CXCL11, CXCL12, CXCL13, CXCL16, GM-CSF, IFN-g,
IL-1b, IL-2, IL-4, IL-6, IL-10, IL-16, MIF, and TNF-a.
Cell culture

Co-cultures of 5×104 Huh7, PLC-PRF5, or HLE cells and 5×104

magnetic cell-sorted NK cells from HVs were conducted with

recombinant IL-15 1 ng/mL (247-ILB-005; R&D Systems,

Minneapolis, MN) in a 24-well plate for 72 h. For co-cultures using

transwell inserts, 5×104 NK cells were cultured in the upper chamber

with a 0.4-mm pore polyethylene terephthalate (#353495; Corning,

Glendale, AZ). In other cultures, 5×104 magnetic cell-sorted NK cells

from HVs were cultured for 48 h in RPMI-1640 medium

supplemented with 10% heat-inactivated FBS and recombinant

human MIF (289-MF-01M/CF; R&D Systems) or 50% cell culture

supernatants from HCC cell lines in the presence or absence of

isotype control antibody, DMSO, blocking anti-MIF antibody

(MAB289; R&D Systems), blocking anti-CD74 antibody (555612;

BD Biosciences), CXCR2 antagonist (SB225002; MedChemExpress),

or CXCR4 antagonist (WZ811; Selleckchem.com).
Statistical analysis

Differences between two groups were evaluated by the Mann–

Whitney U-test or Wilcoxon signed-rank test. Differences between

more than two groups were evaluated by the Kruskal–Wallis test

with Dunn’s multiple comparison test. Correlations were assessed

using Spearman’s analysis. Statistical analyses and data visualization
Frontiers in Immunology 05
were performed using Prism software version 8 (Graph Pad, San

Diego, CA).
Results

Impact of age on NK cells in
healthy subjects

Aging is one of the important factors impacting the frequency

and functions of immune cells. Initially, we evaluated the

frequencies and expression levels of surface markers on peripheral

NK cells in 42 HVs. We defined CD56dim and CD56bright NK cells as

shown in Figure 1A. The frequency of CD56dim peripheral NK

(pNK) cells increased with age, while the frequency of CD56bright

NK cells decreased (Figure 1B). These tendencies did not differ by

sex. The expression levels of CD57, a maturation marker, and four

inhibitory receptors (ILT2, Siglec-9, Siglec-10, CD200R) were

positively correlated with age (Figure 1C, Supplementary

Table 4). In contrast, five activation markers (Siglec-7, CD160,

NKp46, NKG2D, CXCR1) were negatively correlated with age

(Figure 1C, Supplementary Table 4). Because CD56dim NK cells

are one of the major types of effector cells with cytolytic activity, we

focused on the CD56dim subset in the following experiments.

Representative viSNE plots of pNK cells from a younger

individual (22 years of age) and an older individual (82 years of

age) revealed that CD57highSiglec-7lowCD160lowNKp46lowCD56dim

NK cells were increased in the older individual and that the same

cell population expressed immune checkpoint molecules such as

PD-1, LAG-3, and TIGIT (Supplementary Figure 2). These results

suggest that, in accordance with aging, NK cells in healthy

individuals tended to decrease with enhanced expression of

inhibitory receptors and decreased expression of activating

receptors. These phenotypic alterations may be involved in

potential NK cell dysfunction in older individuals. Thus, the

impact of aging on NK cells requires consideration when

comparative NK cell analyses are conducted between HCC

patients and healthy subjects.
Changes in NK cells in HCC patients

To compare NK cells between HCC patients and healthy

subjects, we enrolled age and sex-matched HCC patients and

HVs (Supplementary Table 5). The frequency of CD56dim NK

cells was reduced in HCC patients compared with HVs, while the

frequencies of CD56bright NK cells were comparable (Figure 2A).

We examined the expression levels of 35 surface markers on

CD56dim NK cells in HCC patients and HVs, and expressed the

results in a heatmap (Supplementary Figure 3). The expression

levels of inhibitory receptors ILT2, NKG2A, and CD47 on CD56dim

NK cells were significantly higher in HCC patients than in HVs,

while the expression levels of activating receptors Siglec-7,

DNAM-1 (CD226), and 2B4 (CD244) were significantly lower

(Figure 2B). Of interest, although NKp46 was reported to be one

of the major activating receptors of NK cells (11), the NKp46
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expression levels were comparable between HCC patients and HVs

(Figure 2B). And also CD16 expression levels were comparable

between HCC patients and HVs (Figure 2B). The frequency of ILT2

on CD56dim NK cells was also upregulated in HCC patients

compared with HVs, while the frequencies of DNAM-1 and 2B4

were reduced (Supplementary Figure 4A). These results suggest that

CD56dim NK cells are reduced with enhanced expression of

inhibitory receptors and reduced expression of activating receptors.
Increase of ILT2 on intrahepatic CD56dim

NK cells in HCC patients

Next, we compared the frequencies and surface markers of

hepatic NK cells from HCC patients between paired cancerous (Ca)

and non-cancerous (NCa) tissues (Supplementary Table 1). The

frequency of Ca-CD56dim NK cells was lower than the frequency of

NCa-CD56dim NK cells (6), while the frequencies of CD56bright NK

cells were comparable (Figure 3A). In cancerous tissue, the

expression and frequency of ILT2 on CD56dim NK cells were

significantly higher, while the expression and frequency of 2B4
Frontiers in Immunology 06
were lower, compared with their counterparts in non-cancerous

tissue (Figure 3B, Supplementary Figure 4B). We further compared

the expression of ILT2 on CD56dim NK cells from HCC patients

between the peripheral and intrahepatic compartments.

Intrahepatic NK cells exhibited higher levels of ILT2 than

peripheral NK cells, with higher expression in cancerous tissue

than in non-cancerous tissue (Figure 3C). By contrast, the

expression levels of 2B4 on CD56dim NK cells did not differ

between the two locations (Figure 3C). These results show that

ILT2 on CD56dim NK cells may be altered according to the age of

patients and that its expression is higher in intrahepatic and HCC

tissues than in peripheral tissue. Based on these observations, we

focused on ILT2 as a signature molecule of NK cells in

HCC patients.
MIF and CXCR4 are involved in the ILT2
expression on CD56dim NK cells

To investigate the mechanisms of ILT2 induction on CD56dim

NK cells in HCC patients, we performed in vitro co-cultures of NK
A

B

FIGURE 2

Changes in peripheral CD56dim NK cells in HCC patients. (A) Percentages of CD56dim NK cells and CD56bright NK cells among total PBMCs from HVs
(n=12) and HCC patients (n=12). Data are presented as mean ± SD. (B) MSI values for ILT2, NKG2A, CD47, Siglec-7, DNAM-1, 2B4, NKp46 and CD16
expression on CD56dim NK cells from HCC patients (n=12) and HVs (n=12). *p<0.05, **p<0.01, ***p<0.001, by the Mann–Whitney U-test.
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cells recovered from HVs and HCC cell lines. The expression of

ILT2 on CD56dim NK cells was increased in the presence of Huh7

cells (Figure 4A, Supplementary Figure 5A). The enhanced

expression of ILT2 on CD56dim NK cells was not reduced with

transwell insert cultures, suggesting that soluble factors from Huh7

cells are involved in the induction of ILT2 (Figure 4B,
Frontiers in Immunology 07
Supplementary Figure 5B). In support of this notion, culture

supernatants from Huh7 cells alone increased ILT2 expression on

CD56dim NK cells (Supplementary Figure 5C). To further explore

this finding, we examined 40 chemokines and cytokines in culture

supernatants of Huh7 cells with or without NK cells. We found that

the concentrations of CCL21, CXCL5, CX3CL1, CXCL1, CXCL8,

MIF, CCL20, CXCL12, and CCL25 were high in Huh7 cell

supernatants (Figure 4C). Among these factors, MIF was the only

factor that was also increased in the supernatants from other HCC

cell lines (Supplementary Figure 5D). We compared the serum

levels of the same factors between HCC patients and HVs. Again,

the MIF level was significantly higher in HCC patients than in HVs

(Supplementary Table 6).

Next, we cultured NK cells from HVs with various

concentrations of recombinant MIF and examined the expression

of ILT2. Recombinant MIF induced expression of ILT2 on CD56dim

NK cells in a dose-dependent manner (Figure 4D). It has been

reported that CXCR4, CXCR2, and CD74 comprise a family of

receptors for MIF (12). Because CD74 and CXCR4 were expressed

on CD56dim NK cells (Supplementary Figure 5E), we performed

blocking experiments with masking antibodies against CXCR4 and

CD74. The enhanced expression of ILT2 on CD56dim NK cells in

the presence of MIF was decreased after anti-CXCR4 antibody

treatment (Figure 4E). Similar results were observed for anti-MIF

and/or anti-CXCR4 antibodies in co-cultures of NK cells with Huh7

cell supernatants (Figure 4F). In contrast, antibodies against CXCR2

and CD74 failed to exert these effects (Figure 4E). Therefore, HCC-

derived MIF and its receptor CXCR4 may be involved in the

induction of ILT2 on CD56dim NK cells.
Impaired functions of ILT2+CD56dim NK
cells and their restoration by anti-ILT2
antibody treatment

We compared the functions of NK cells recovered from HCC

patients and HVs. The cytotoxicity and ADCC capacities of NK

cells were impaired in HCC patients compared with HVs

(Figure 5A). Next, we examined the functions of CD56dim NK

cells in terms of expression of ILT2 and NKp46. Because the

expressions of ILT2 and NKp46 on CD56dim NK cells are

mutually exclusive, we compared the cytotoxicity and ADCC

capacities among three cell subsets: ILT2+NKp46−, ILT2−NKp46+,

and ILT2−NKp46− cells. We found that ILT2+CD56dim NK cells

were functionally impaired compared with their ILT2− counterparts

regardless of NKp46 expression (Figure 5B).

To evaluate the possibility of ILT2 as a target for functional

regulation of NK cells, we conducted cytotoxicity and ADCC assays

of NK cells in the presence of a masking antibody against ILT2.

Functional improvement of NK cells was observed after anti-ILT2

antibody treatment (Figure 5C). Furthermore, HLA-G, a ligand for

ILT2, was more highly expressed in HCC tissue than in non-cancerous

tissue (Figure 5D). These results show that ILT2 is a functional molecule

of CD56dim NK cells and may have potential as a possible target for

reinvigoration of impaired CD56dim NK cells in HCC patients.
A

B

C

FIGURE 3

Changes in intrahepatic CD56dim NK cells from HCC tissues.
(A) Percentages of intrahepatic CD56dim NK cells
(CD45+CD3−CD14−CD56dim) and CD56bright NK cells
(CD45+CD3−CD14−CD56bright) from HCC tissue (Ca) and non-
cancerous adjacent liver tissue (NCa) in 17 HCC patients. (B) MSI
values for ILT2, PD-1, Tim-3, Siglec-9, Siglec-10, CD49a, NKp30,
CXCR6, CX3CR1, HLA-DR, NKp44, CD57, and 2B4 expression on
Ca-CD56dim NK cells and NCa-CD56dim NK cells. (C) MSI values and
percentages of ILT2 expression on peripheral, intrahepatic NCa, and
Ca CD56dim NK cells. *p<0.05, **p<0.01, ***p<0.001, by the
Friedman test with Dunn’s multiple comparison test.
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Discussion

NK cells are important effectors in cancer immune surveillance.

In the present study, we found that CD56dim NK cells are a major

population in the IHLs in cancerous and non-cancerous tissues. Of

interest is the finding that ILT2 is a signature molecule of CD56dim

NK cells with impaired killing capacity against tumor cells. While

ILT2+ NK cells were not dysfunctional per se, the presence of its

ligand on interacting cells was necessary to transmit inhibitory signals

to NK cells. In this scenario, blocking of the cognitive binding
Frontiers in Immunology 08
between ILT2 and its ligand HLA-G restored the cytolytic ability of

NK cells, thus raising the possibility that ILT2 and HLA-G may have

potential as targets for immune modulation in the TME.

ILT2 is broadly expressed on NK cells, T cells, B cells, dendritic cells

(DCs), and other immune cells, and it interacts with classical and non-

classical MHC class I molecules, such as HLA-ABC, HLA-E, HLA-F,

and HLA-G. In the present study, we found that HLA-G was more

highly expressed in cancer tissues than in non-cancerous tissues.

Enhanced expression of ILT2 on NK cells has been reported in

various disease conditions, including cancers, autoimmune diseases,
A B

D E F

C

FIGURE 4

Induction of ILT2 expression on CD56dim NK cells by HCC cell lines. (A) Representative flow cytometry plots showing the expression levels (%) of ILT2 on
CD56dim NK cells from NK cells only or NK cells co-cultured with Huh7 cells for 72 h with 1 ng/mL IL-15. ***p<0.001, by the Mann–Whitney U-test. (B)
Representative flow cytometry plots showing the expression levels (%) of ILT2 on CD56dim NK cells from NK cells only or NK cells co-cultured indirectly with
Huh7 cells using transwell inserts for 72 h with 1 ng/mL IL-15. ***p<0.001, by the Mann–Whitney U-test. (C) Analysis of 40 chemokines and cytokines in
culture supernatants of an HCC cell line (Huh7). (D) Induction of ILT2 expression by recombinant MIF. *p<0.05, ***p<0.001, by the Kruskal–Wallis test with
Dunn’s multiple comparison test. (E) Inhibition of induction of ILT2 expression by recombinant MIF (5 mg/mL) for 48 h in the presence of CXCR2 antagonist,
CXCR4 antagonist, anti-CD74 blocking antibody, DMSO, or isotype antibody. *p<0.05, by the Kruskal–Wallis test with Dunn’s multiple comparison test. (F)
Inhibition of induction of ILT2 expression by Huh7 cell culture supernatants for 48 h in the presence of CXCR4 antagonist, anti-MIF blocking antibody,
CXCR4 antagonist, anti-MIF blocking antibody, DMSO, and isotype antibody. ns, not significant.
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and chronic infections (13). In patients with triple-negative breast cancer

or glioblastoma, ILT2 expression on NK cells was upregulated, and the

degree of upregulation was correlated with the functional impairment

against tumor cells (14, 15). The mechanisms for the ILT2 upregulation
Frontiers in Immunology 09
on NK cells remain to be clarified in the context of the tumor-bearing

state. A previous study indicated that TGF-bmay be responsible for the

enhanced ILT2 expression on CD56dimCD16+ NK cells, which was

associated with their dysfunction and susceptibility to apoptosis (16). In
A

B

D

C

FIGURE 5

Dysfunction of ILT2+CD56dim NK cells. (A) Cytotoxicity and ADCC assays of peripheral NK cells from HVs and HCC patients against K562 cells
treated with 200 U/mL IL-2 or Daudi cells treated with 10 mg/mL rituximab were performed at 5:1 or 10:1 effector/target (E:T) ratios, respectively.
*p<0.05, ***p<0.001, by the Mann–Whitney U-test. (B) NKp46−ILT2+, NKp46+ILT2−, or NKp46−ILT2− subpopulations of CD56dim NK cells were
sorted by flow cytometry. Cytotoxicity and ADCC assays of these subpopulations against K562 cells treated with 200 U/mL IL-2 or Daudi cells
treated with 10 mg/mL rituximab were performed at 2.5:1 E:T ratio. The red plots represent NKp46−ILT2+ cells, the blue plots represent NKp46+ILT2−

cells, and the yellow plots represent NKp46−ILT2− cells. *p<0.05, ***p<0.001, by the Friedman test with Dunn’s multiple comparison test.
(C) Functional recovery of ILT2+CD56dim NK cells by anti-ILT2 blocking antibody treatment. The cytotoxicity and ADCC assays of ILT2+CD56dim NK
cells treated with anti-ILT2 blocking antibody. The cytotoxicity and ADCC capacities of ILT2+CD56dim NK cells with anti-ILT2 blocking antibody
treatment were evaluated by the fold changes in the presence or absence of the anti-ILT2 blocking antibody. *p<0.05, ***p<0.001, by the Mann–
Whitney U-test. (D) Histograms showing the expression levels (%) of HLA-G on NCa and Ca liver tissue evaluated by flow cytometry. The red, blue,
and black lines indicate Ca liver tissue, NCa liver tissue, or isotype, respectively. *p<0.05, by the Mann–Whitney U-test.
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the present study, the expression of ILT2 on CD56dim NK cells increased

with closer localization to HCC in the liver, suggesting that factors with

increasing or decreasing effects in the TME of the liver may be involved

in the phenotypic change of NK cells.

MIF is an inflammatory cytokine and an important regulator of the

innate immune response. In the search for humoral factors derived from

HCC cells, we found that MIF, but not TGF-b, was one of the

responsible factors for increasing the ILT2 expression on NK cells.

Regarding receptors that interact with MIF, we found that CXCR4, but

not CXCR2 or CD74, was involved by conducting blocking experiments

in vitro. An immunomodulatory role of tumor-derived MIF has been

reported previously. Specifically, overexpression of MIF contributed to

tumor progression and the immune escape mechanism of HCC, ovarian

carcinoma, and melanoma (17–19). More precisely, MIF downregulated

the interaction between cancer-associated fibroblasts and immune cells

including B cells, DCs, myeloid derived suppressor cells, monocytes, NK

cells, and T cells via the CD74/CD44 and CXCR2/CXCR4 signaling

pathways (19–21). In other studies related to HCC, the expression of

MIF was higher in HCC tissues than in healthy or adjacent non-tumor

liver tissues (17, 22). MIF was measurable in sera from patients with

HCC, and the level was associated with hepatic tumor size and outcome

of patients receiving transcatheter arterial chemo embolization (23). One

of the limitations of the present study is the lack of analysis between

serumMIF levels and expression levels of ILT2 on CD56dimNK cells due

to the scarcity of serum samples.

The role of NK cells as an immune effector against HCC has not

been well established in clinical settings. Currently, reinvigoration

of exhausted CD8+ T cells is one of the major approaches for the

treatment of advanced HCC with ICIs. Considering that 20% of

HCC patients show progressive disease under first-line

atezolizumab and bevacizumab therapy, addition of an NK cell-

mediated cytolytic effect may be a rational modality to overcome the

primary resistance to ICIs. To this end, two options for NK cell

treatment have been proposed: an adoptive transfer of activated

autologous or allogeneic NK cells, and the use of antibodies against

target cell-expressing molecules to promote ADCC. Several HCC-

specific killer cell engagers have been reported as ADCC enhancers,

such as antibodies targeting glypican-3 (24) and PD-L1 (25). In the

present study, addition of an anti-ILT2 antibody improved the

ADCC capacity in vitro, suggesting that targeting ILT2 or its ligand

HLA-G as an engager may be an option for future investigations.

In summary, ILT2-positive CD56dim NK cells have impaired

cytolytic and ADCC capacities that are enhanced in cancerous tissues

in HCC patients. ILT2 serves as a target for NK cell-mediated immune

modulation, as shown by the functional improvement observed after

anti-ILT2 antibody treatment in vitro. MIF and CXCR4 are associated

with the induction of ILT2 on CD56dim NK cells, the significance of

which as a therapeutic target should be addressed in further studies.
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Glossary

ADCC antibody-dependent cellular cytotoxicity

Ca cancer

CCL C-C motif chemokine ligand

CD cluster differentiation

CFSE carboxyfluorescein succinimidyl ester

CyTOF cytometry by time-of-flight

CXCL C-X-C motif chemokine ligand

CXCR C-X-C motif chemokine receptor

CX3CL1 C-X3-C motif chemokine ligand 1

CX3CR1 C-X3-C motif chemokine receptor 1

DC dendritic cell

DNAM-1 DNAX accessory molecule-1

FBS fetal bovine serum

FCS fetal calf serum

F stage fibrosis stage

FcgRIIIa Fc-gamma receptor IIIa

GM-CSF granulocyte macrophage colony stimulating factor

HLA human leukocyte antigen

HV healthy volunteer

ICI immune-checkpoint inhibitor

IFN-g interferon-gamma

IHL intrahepatic lymphocyte

ILT2 immunoglobulin-like transcript 2

LAG-3 lymphocyte-activation gene 3

MIF macrophage migration inhibitory factor

MSI mean signal intensity

NCa non-cancer

NK natural killer

NKG2A natural killer group 2 member A

NKG2D natural killer group 2 member D

NKp30 natural killer cell p30

NKp44 natural killer cell p44

NKp46 natural killer cell p46

PBMC peripheral blood mononuclear cell

PD-1 programmed cell death-1

PD-L1 programmed cell death-ligand 1

pNK peripheral NK

Siglec sialic acid-binding immunoglobulin-like lectin

(Continued)
F
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TIGIT T-cell immunoreceptor with immunoglobulin and ITIM domains

Tim-3 T-cell immunoglobulin and mucin domain 3

TME tumor microenvironment

viSNE visual stochastic network embedding.
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