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mRNAs as biomarkers for
phenotype and disease severity
of myelin oligodendrocyte
glycoprotein IgG-
associated disease
Xin Wang1*, Yi Qu2, Jiayu Fan1 and Huiqiang Ren3

1Second Department of Neurology, Hebei Children’s Hospital, Shijiazhuang, China, 2Department of
Science and Education, Hebei Children’s Hospital, Shijiazhuang, China, 3Department of Pathology,
Hebei Children’s Hospital, Shijiazhuang, China
Background and purpose: Myelin oligodendrocyte glycoprotein (MOG) IgG is

frequently elevated in pediatric patients with acquired demyelinating syndrome

(ADS). However, no specific biomarkers exist for phenotype classification,

symptom severity, prognosis, and treatment guidance of MOG-IgG-associated

disease (MOGAD). This study evaluated neurofilament light chain (NfL) and

endothelial growth factor receptor (EGFR) mRNA expression levels in serum

and cerebrospinal fluid (CSF) as potential biomarkers for MOGAD in

Chinese children.

Methods: This was a cross-sectional and single-center study. We enrolled 22

consecutive pediatric patients hospitalized with MOGAD and 20 control pediatric

patients hospitalized for noninflammatory neurological diseases in Hebei

Children’s Hospital. Serum and CSF were collected from MOGAD patients

within 3 days before immunotherapy. The mRNA levels of NfL and EGFR in

serum and CSF were measured by real-time polymerase chain reaction (qPCR),

and the EGFR/NfL ratio mRNA was calculated. These measurement values were

then compared between disease groups and among MOGAD phenotypes. In

addition, the correlations between the mRNAs of three markers (NfL, EGFR,

EGFR/NfL ratio), extended disability status scale (EDSS) scores, and clinical

phenotypes were analyzed.

Results: Serum and CSF NfLmRNA levels were significantly higher of acute-stage

MOGAD patients than those of control patients (p< 0.05 and p< 0.01,

respectively), while the mRNA levels of serum EGFR and EGFR/NfL ratio were

significantly lower of MOGAD patients than those of controls (p < 0.05, p <

0.0001). Serum NfL mRNA was significantly correlated with mRNA of serum

EGFR (r =0.480, p < 0.05). Serum and CSF NfL mRNA levels in MOGAD patients

with the ADEM-like phenotype were also significantly higher than those in

control patients (p < 0.01, p < 0.01) and optic neuritis (ON) phenotype (p <

0.05, p < 0.05). Both mRNAs of NfL in CSF and EGFR/NfL ratio in serum were

correlated with EDSS scores (p < 0.05, r = 0.424; p < 0.05, r= -0.521).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1388734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1388734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1388734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1388734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1388734/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1388734/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1388734&domain=pdf&date_stamp=2024-05-14
mailto:xinbelieve2013@126.com
https://doi.org/10.3389/fimmu.2024.1388734
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1388734
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2024.1388734

Frontiers in Immunology
Conclusion: The mRNA levels of elevated NfL in serum and CSF as well as lower

EGFR and EGFR/NfL ratio in serum could help distinguish acute-phase MOGAD.

Higher mRNA levels of NfL in serum and CSF of MOGAD patients help distinguish

ADEM-like phenotype. In addition, serum EGFR/NfL mRNA ratio is indicative

of disease severity in pediatric patients with MOGAD. Further investigations

are warranted to elucidate the pathological mechanisms underlying

these associations.
KEYWORDS
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Introduction

Myelin oligodendrocyte glycoprotein (MOG) is an

oligodendrocyte-specific biomolecule that is located in the

outermost layer of the myelin sheath. It is believed to be essential

for myelin stability, neuroimmune regulation, and various

intracellular signaling functions (1). MOG-IgG-associated disorder

(MOGAD) is a predominantly childhood-onset autoimmune

demyelinating disease of the central nervous system (CNS) that

may manifest with paraparesis, paralysis, vision and other sensory

impairments, and seizures depending on the region affected (2–6).

Although many patients with MOGAD are responsive to hormone

therapy, some of them continue to experience relapse or residual

effects. Predicting disease onset, symptom profile, relapse risk, and

therapeutic response could be invaluable for clinical management.

Nevertheless, no reliable biomarkers have been identified and tested

for MOGAD.

Neurofilament light chain (NfL) is a component of the neuronal

cytoskeleton that is released into the blood and CSF after axon damage

(4, 7). Thus, serumNfL concentrations are elevated in neurodegenerative

disorders and demyelinating diseases such as multiple sclerosis (MS) as

well as following neurotrauma (8, 9). Moreover, NfL release is

proportional to the extent of myelin damage in MS; hence, the serum

or CSF concentration of NfL may be associated with disease severity,

treatment efficacy, and long-term prognosis (10, 11). However, no studies

have examined the relationships of serum and CSF NfL with disease

parameters in children with MOGAD.

Epidermal growth factor receptor (EGFR) is a receptor tyrosine

kinase that is often upregulated in different types of cancer. Recent

studies have shown that EGFR expression may also be altered in various

immunoinflammatory and autoimmune diseases (12). Further, EGFR

can stimulate the maturation of oligodendrocytes after CNS injury and

has metabolic effects on the mammalian spinal cord (13), suggesting

potential associations with current clinical severity and outcome.

In the current study, we compared serum and CSF mRNA

expressions of NfL and EFGR as well as the corresponding EGFR/
02
NfL ratios between children with acute-stage MOGAD and children

with non-demyelinating neurological diseases. This comparison

was performed to assess the specificity of these values as

diagnostic markers. In addition, we examined associations with

specific MOGAD phenotypes and correlations with disease severity.
Patients and methods

This was a cross-sectional and single-center study. We enrolled

22 pediatric inpatients diagnosed with MOGAD for the first acute

episode in Hebei Children’s Hospital and collected serum and CSF

samples within 3 days before immunotherapy. Serum and CSF

samples were collected on an empty stomach in the morning. We

also included as controls, blood and CSF samples from 20 age- and

sex-matched children hospitalized at the same institution for non-

demyelinating diseases, including febrile convulsions (n = 4),

infectious meningitis (n = 6), and migraine (n = 10). Detailed

diagnostic evaluations were conducted to exclude demyelinating

diseases and demyelinating injuries.

The diagnosis of MOGAD was based on the criteria proposed

by the International MOGAD Expert Group in 2023 (14). The

patients included fulfilled the following criteria: i) pediatric patients

were hospitalized in Hebei Children’s Hospital for the first episode

of disease; ii) met diagnostic criteria of International MOGAD

Expert Group in 2023; iii) serum MOG-IgG was positive,

aquaporin-4 (AQP4)-IgG and other immune antibodies were

negative, which was confirmed by live cell cell-based assays; iv)

except congenital demyelinating syndrome and other genetic or

metabolic diseases.

Two neurologists collected clinical data including age, gender,

triggering events, days of hospitalization, symptoms, brain magnetic

resonance imaging (MRI) findings, clinical phenotype, treatments,

and expanded disability status scale (EDSS) scores, at the time of

blood and CSF sampling. All CSF samples collected by lumbar

puncture were acquired for diagnosis or treatment.
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Preparation of the samples

Serum and CSF samples were collected within 3 days before

immunotherapy, on an empty stomach in the morning. The

samples were centrifuged immediately after collected and stored

at −80°C until assayed for NfL and EGFR mRNA levels.
RNA extraction and quantitative real-time
polymerase chain reaction

Real-time polymerase chain reaction (qPCR) was used to

quantify the expression levels of NfL and EGFR mRNAs in serum

and CSF. Briefly, total RNA was extracted using TRIzol solution

according to the manufacturer’s instructions. RNA concentration and

purity were determined using a NanoDrop® ND-2000 (CW0623S,

Jiangsu, China) spectrophotometer, while RNA integrity was

determined by denatured agarose gel electrophoresis. Total RNA

samples obtained were then reverse transcribed into cDNA using the

HiScript III 1st Strand cDNA Synthesis Kit (+gDNA wiper) (R312-

01, Nanjing, China) according to the manufacturer’s instructions.

Quantitative real-time PCR was performed on a Rotor-Gene Q

instrument (BIO-RAD, Shijiazhuang, China) using real-time

Master Mix SYBER Green (CW0957, Jiangsu, China) and the

primers listed in Table 1. Gene expression was calculated using the

DDCt method and normalized to controls.
Statistical analysis

All statistical analyses were conducted using Statistical Package

for Social Sciences (SPSS) 23.0. Depending on whether the dataset

has normality and homogeneity of variance, results are expressed as

mean ± standard deviation (SD) or median (interquartile range,

[IQR]). Two normally distributed datasets were compared by

independent samples t-test, while two non-normally distributed

data sets were compared Mann-Whitney U test. More than two

normally distributed datasets were compared by ANOVA and

Scheffe correction for pairwise comparison. Associations between
Frontiers in Immunology
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factors were evaluated by calculating Spearman test correlation

coefficients. A value of p < 0.05 (two-tailed) was considered to be

statistically significant for all tests.
Results

Demographic and clinical characteristics of
MOGAD and control patient groups

A total of 22 children with MOGAD (12 females and 10 males,

6.96 ± 2.98 years) were recruited. In 14 cases (14/22, 63.6%), disease

onset was associated with a precursor event (infection or

vaccination) while no such event was identified in the remaining

8 cases (8/22, 36.4%). The main clinical manifestations were

drowsiness (12/22,54.5%), fever (10/22,45.5%), convulsion (6/

22,27.3%), movement disorder (5/22,22.7%) and vision loss (3/

22,13.6%). The brain MRI lesions mainly involved subcortical white

matter (16/22,72.7%), thalamus/basal ganglia area (14/22,63.6%),

cerebellum (10/22,45.5%), brain stem (8/22,36.4%), the corpus

callosum (6/22,27.3%) and optic nerve (3/22,13.6%). Most

patients had multiple lesions (19/22,86.4%). Six patients (6/22,

27.3%) brain MRI lesions completely disappeared, and 16 (16/

22,72.7%) improved. Four (4/22,18.2%) showed linear meningeal

enhancement, which is more common in non-ADEM encephalitis

pediatric patients. The median number of days of hospitalization

was 24.0 [18.8–25.0] and the median EDSS score was 1.5 [1.5–2.0].

Nineteen patients (19/22, 86.4%) received first-line immunotherapy

with intravenous methylprednisolone sodium succinate (20mg/

kg·d,3-5d) and/or immunoglobulin (1g/kg·d, 2d). Three (3/22,

13.6%) received escalation therapy, 2 patients receiving rituximab

(375mg/m2, q1w) and 1 patient receiving tocilizumab (12mg/kg·d,

q4w). Neither serum NfL, CSF NfL, serum EGFR, nor CSF EGFR

differed by age at sampling, sex, preceding event (or not), days of

hospitalization, or treatment did not differ significantly from the

control group (Table 2).
Elevated NfL mRNA expression in serum
and CSF of pediatric MOGAD patients
compared to controls

Serum NfL mRNA expression was significantly higher in

MOGAD patients than control patients with noninflammatory

neurological diseases (0.98 ± 1.60 vs. 0.21 ± 0.32, p = 0.031, p <

0.05) (Figure 1A). Similarly, NfL mRNA in CSF was higher in

MOGAD patients than controls (2.97 ± 5.87 vs. 0.84 ± 0.66, p =

0.007, p < 0.01) (Figure 1B).
Lower EGFR mRNA expression in serum of
pediatric MOGAD patients compared
to controls

Serum EGFR mRNA expression was significantly lower in the

MOGAD group than the control group (0.34 ± 0.45 vs. 2.80 ± 3.74,
TABLE 1 The primers information of genes in this study.

Gene Primers sequence (5’to3’)
Amplicon
length
(bp)

EGFR Forward CGCTACCTTGTCATTCAG 101

EGFR Reverse ACGTCGTCCATGTCTTCT

NfL Forward CAGCGTGGGAAGCATAAC 78

NfL Reverse GTCTGTAAACCGCCGTAG

GAPDH Forward CACCCACTCCTCCACCTTTGA 188

GAPDH Reverse TCTCTCTTCCTCTTGTGCTCTTGC
EGFR, Epidermal growth factor receptor. NfL, neurofilament light chain; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase.
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p = 0.022, p < 0.05) (Figure 1C). However, there was no significant

difference in CSF EGFR mRNA expression between MOGAD and

control patients (0.80 ± 0.62 vs. 1.29 ± 0.29, p = 0.204) (Figure 1D).
Lower EGFR/NfL mRNA ratio in the serum
of pediatric MOGAD patients compared
to controls

The serum EGFR/NfL ratio mRNA expression was significantly

lower in MOGAD patients than controls (0.31 [0.04–1.27] vs. 3.51

[1.85–107.3], p < 0.0001) (Figure 1E). In contrast, the EGFR/NfL

ratio mRNA expression in CSF did not differ between MOGAD

patients and controls (0.56 [0.29–1.05] vs.1.04 [0.29–2.24], p =

0.299) (Figure 1F).
Correlations of measured factors with
pediatric MOGAD severity

Serum NfL mRNA expression was correlated with EGFR

mRNA expression (r =0.480, p < 0.05), while the CSF levels of

these factors were not correlated (Figures 2A, B). In addition, both
Frontiers in Immunology 04
mRNA levels of CSF NfL and serum GFER/NfL ratio were

correlated with EDSS (r= 0.424, p < 0.05; r= -0.521, p < 0.05)

(Figures 2C, D). There were no significant correlations between

EDSS and serum EGFR (p = 0.801), serum NfL (p = 0.652), CSF

EGFR (p = 0.085), and CSF EGFR/NfL ratio (p = 0.441)

(Figures 2E–H).
Differences in NfL and EGFR mRNA levels
among MOGAD clinical phenotypes

The common phenotypes of MOGAD patients included acute

disseminated encephalomyelitis (ADEM)-like, encephalitis (non-

ADEM-like), optic neuritis (ON), and myelitis. The CSF EGFR

mRNA level was significantly higher in the ADEM-like phenotype

than the ON phenotype (p = 0.049, p < 0.05) (Figure 3A), and the

CSF NfL mRNA level was significantly higher in the ADEM-like

phenotype than that in the encephalitis phenotype (p = 0.010, p <

0.05), ON phenotype (p = 0.024, p < 0.05), and control non-

myelinating diseases (p = 0.002, p < 0.01) (Figure 3B). In

addition, the serum NfL mRNA level was higher in the ADEM-

like phenotype than that in ON phenotype (p = 0.019, p < 0.05) and

non-myelinating diseases (p = 0.0013, p < 0.01) (Figure 3C). Serum
TABLE 2 Comparison of basal characteristics and biomarkers in pediatric MOGAD.

Basal characteristics (n=22)
mean ± SD or median (IQR) or

n (%)
serum-NfL CSF-NfL serum-EGFR CSF-EGFR

Age(years) 6.96 ± 2.98
p=0.479
r=0.014

p=0.329
r=0.099

p=0.254
r=0.167

p=0.387
r=0.065

Gender n (%)

Male
Female

10 (45.5)
12 (54.5)

p=0.697 p =0.652 p=0.829 p=0.797

Preceding event n (%) p=0.285 p=0.365 p=0.930 p=0.764

Respiratory infection 14 (63.6)

none 8 (36.4)

Days of hospitalization,
median (IQR)

24.0 (18.8-25.0)
p=0.278
r=0.270

p=0.295
r=0.234

p=0.363
r=0.228

p=0.155
r=0.314

clinical phenotype n (%)

Encephalitis&ADEM 8 (36.4) & 8 (36.4) p=0.126 p=0.010 p=0.990 p=0.452

encephalitis&ON 8 (36.4) & 3 (13.6) p=0.905 p=0.194 p=0.413 p=0.085

encephalitis &myelitis 8 (36.4) & 3 (13.6) p=0.393 p=0.990 p=0.990 p=0.921

ADEM&ON 8 (36.4) & 3 (13.6) p=0.019 p=0.024 p=0.914 p=0.049

ADEM&myelitis 8 (36.4) & 3 (13.6) p=0.292 p=0.497 p=0.990 p=0.630

myelitis&ON 3 (13.6) & 3 (13.6) p=0.990 p=0.700 p=0.990 p=0.200

Treatment n (%) p=0.824 p=0.164 p=0.586 p=0.464

First-line treatment 19 (86.4)

Escalation treatment 3 (13.6)

EDSS score at sampling, median (IQR) 1.5 (1.5-2.0)
p=0.652
r=0.102

p=0.039
r=0.424

p=0.801
r=0.064

p=0.085
r=0.303
ADEM, acute disseminated encephalomyelitis; CSF, cerebrospinal fluid; EDSS, Expanded Disability Status Scale; ON, optic neuritis.
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EGFR mRNA expression did not differ significantly among clinical

phenotypes (Figure 3D).
Discussion

Reliable biomarkers are urgently needed to improve the

accuracy of pediatric ADS diagnosis and prognosis. NfL is a

neuron-specific protein that maintains the structural stability of

the axon cytoskeleton. Under normal conditions, low levels of NfL

are constantly released from axons, probably in an age-dependent
Frontiers in Immunology 05
manner. However, in response to axonal damage (15), nutrient loss,

oligodendrocyte damage, secondary degeneration, mitochondrial

damage, and axonal energy failure (16), the release of NfL sharply

increased, which is released into the CSF, and then drained into the

blood (17). To date, however, studies on the associations of serum

or CSF NfL content with MOGAD in children are lacking. Our

study found significantly higher levels of NfL mRNA levels which

were actually measured in both CSF and serum samples from

children of untreated acute-onset MOGAD compared with

children having non-demyelinating neurological disorders,

suggesting that MOGAD onset may be associated with acute
B C D

E F G H

A

FIGURE 2

Correlations between mRNA expression of NfL and EGFR in serum (A) and CSF (B), and correlations between mRNA expression of NfL in CSF (C),
EGFR/NfL ratio in serum (D), EGFR in serum (E), NfL in serum (F), EGFR in CSF (G), EGFR/NfL ratio in CSF (H) and EDSS in patients with MOGAD. CSF,
cerebrospinal fluid; NfL, neurofilament light chain; EGFR, endothelial growth factor receptor; EDSS, expanded disability status scale.
B C

D E F

A

FIGURE 1

The mRNA levels of NfL in serum (A) and CSF (B), EGFR in serum (C) and CSF (D), EGFR/NfL ratio in serum (E) and CSF (F) between MOGAD and
controls. (*p < 0.05, ** p < 0.01, **** p < 0.0001). MOGAD, Myelin oligodendrocyte glycoprotein IgG-associated disease; CSF, cerebrospinal fluid;
NfL, neurofilament light chain; EGFR, endothelial growth factor receptor.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1388734
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1388734
axonal and myelin injury or secondary pathological processes.

Elevated NfL mRNA levels which were actually measured in CSF

were also associated with disease severity as assessed by the EDSS,

suggesting that higher levels reflect more widespread damage to

axonal structures. We suggest that serum NfL might be a valuable

and accessible biomarker to assist in MOGAD diagnosis.

Numerous studies have demonstrated the value of serum NfL

for assessing the current severity of MS pathology (18–20). For

instance, higher serum NfL levels are predictive of a faster increase

in lesion volume on MRI (21) and are correlated with the number of

newMRI lesions (22). Associations with CSF NfL are also presumed

but not widely reported as sampling is highly invasive. Our study

found that serum and CSF NfL levels were higher in MOGAD

patients with the ADEM-like phenotype than the ON phenotype

and higher than in patients with nonmyelinating disease. Children

with the ADEM-like phenotype of MOGAD usually have large,

blurry, bilateral, and extensive lesions on MRI that primarily affect
Frontiers in Immunology 06
the white matter and subcortical areas (18–20, 23). The differences

in serum and CSF NfL among phenotypes may be related to the

larger size of brain MRI lesions in the ADEM-like phenotype than

the ON phenotype due to more severe demyelination and axonal

injury. Elevated NfL levels in serum and CSF may also be the result

of white matter damage from persistent neuroinflammation.

Among pediatric ADS patients, those with ADEM exhibited the

most extensive impairments in brain growth after a single

demyelinating event (24). These associations may be helpful for

the early identification of the ADEM phenotype for timely

individualized treatment.

Epidermal growth factor receptor (EGFR) is a multifunctional

transmembrane glycoprotein essential for proper neuron, astrocyte

and oligodendrocyte development, neural circuit formation, axon

compensation, neurotransmission, and synaptic plasticity (25, 26).

The unidirectional penetration of endogenous EGF into the CNS

parenchyma through the blood-brain barrier has been reported
B

C D

A

FIGURE 3

Correlations between mRNAs levels of EGFR in CSF (A), NfL in CSF (B), NfL in serum (C), EGFR in serum (D) and phenotypes in patients with MOGAD.
(*p < 0.05, ** p < 0.01). ADEM-like, acute disseminated encephalomyelitis-like, encephalitis (non-ADEM-like); ON, optic neuritis; CSF, cerebrospinal
fluid; NfL, neurofilament light chain; EGFR, endothelial growth factor receptor.
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(27). The major components of the EGF-EGFR system in

mammalian adult CNS and the transport of blood and CNS EGF

have been identified (28). By promoting oligodendrocyte and

axonal development, EGFR signaling is essential for specific

stages of white matter formation (29). However, EGFR

hyperphosphorylation, astrocyte activation, and proinflammatory

cytokine production lead to demyelination, glial scarring, and

oligodendrocyte destruction (30). When neuroinflammatory

pathways are activated, ensuing changes in EGFR signaling affects

oligodendrocyte maturation and inhibits myelin regeneration

around damaged neurons (31). Surprisingly, EGFR inhibitors can

promote axon regeneration, reduce myelin loss, promote the

upregulation of growth-related proteins, and ultimately improve

the recovery of limb motor function after spinal cord injury (32).

This relation suggests that EGFR plays a dual role in controlling

oligodendrogenesis and myelin regeneration depending on the

activation of other signaling pathways (33). We found that serum

EGFR level was significantly lower in MAGOD patients than age-

matched nonmyelinating disease patients, while CSF EGFR level

did not differ significantly between these clinical groups. After CNS

injury, serum EGFR can enter the CNS through the blood–brain

barrier, where it promotes the nutritive effects of cobalamin

(vitamin B12) on myelin in oligodendrocytes and oligodendrocyte

progenitors, as well as the multidirectional differentiation and

proliferation of astrocytes (34). The difference in EGFR

expression between serum and CSF may be related to distinct

mechanism of action at these sites. Therefore, the associations of

serum and CSF EGFR levels with disease status are likely complex

and context dependent. Nonetheless, changes in serum EGFR may

be useful for the differential diagnosis of MAGOD when combined

with other clinical biomarkers and symptom patterns.

Serum EGFR level was significantly associated with serum NfL

level, suggesting that the maturation of oligodendrocytes and

subsequent myelination in MOGAD require both EGFR and NfL

signaling (as well as other unknown signaling pathways). As EGFR

can enhance the density and maturation of myelin-expressing

oligodendrocytes and promote myelin regeneration after injury

(35), EGFR signaling is a potential therapeutic target for

enhancing axon regeneration after CNS injury despite the

development of a myelin-inhibiting microenvironment (36). The

molecular signaling pathways linking EGFR, NfL, and related

inflammatory factors, and the specific contributions of these

factors to MAGOD pathogenesis warrant further study to identify

effective therapeutic targets.

In accordance with evidence that higher serum NfL levels reflect

lesion size in MS (18–22), a few studies have found that serum NfL

levels are associated with sustained axonal injury and significantly

correlated with MS symptom severity and progression (37, 38). Also,

serum NfL levels predicted the long-term disability course of MS and

were strongly associated with higher EDSS and prolonged disease

duration (39); moreover, serum NfL decreased after immunotherapy

(40). Therefore, serum NfL could be useful for the early identification

of high-risk MS patients (41). In adult patients with MOGAD, serum

NfL levels were associated with seizure severity and disease activity (42,
Frontiers in Immunology 07
43). However, few studies have been conducted on CSF NfL levels in

children with MOGAD. The main therapeutic goals of MOGAD

treatment are to suppress inflammation, reduce axonal damage and

demyelination, and improve quality of life. Our study found that EDSS

was significantly associated with NfL in CSF but not in serum, a finding

at odds with previous studies. This discrepancy may be due to the

significantly higher and thus more accurately measurable NfL

concentrations in CSF than in serum or the heterogeneity of the

selected cases. Therefore, these changes in serum and CSF NfL levels

require further study in larger samples. We also found that the serum

EGFR/NfL ratio was significantly correlated with EDSS. The utility of

NfL alone as a biomarker may be limited as it is released by brain injury

independent of etiology. Compared to CSF collection, serum is stable

and easy to obtain. Therefore, the serum EGFR/NfL ratio may be a

particularly valuable biomarker to evaluate the severity, progression,

and treatment response of pediatric MOGAD patients. Frequent serum

EGFR/NfL ratio measures may allow for the precise monitoring of

disease activity, the timely identification of critical patients, and better

treatment decisions, such as the timing of disease-modifying

therapy upgrade.

Taken together, our study suggests that changes in serum and

CSF NfL levels may be useful biomarkers for the early identification

of acute-onset MAGOD and the differential diagnosis of clinical

phenotypes. In addition, the serum EGFR/NfL ratio may be

especially valuable as a biomarker of disease activity and

severity in pediatric MOGAD patients. Further studies are

needed to identify the cytokine pathways linking NfL and

EGFR in MOGAD and the associations with the underlying

pathological processes.

This study has several limitations. The small sample resulted in

the under- and overrepresentation of certain phenotypes (such as

the high proportion of ADEM patients). And, we cannot exclude

that some patients may have suffered from systemic infection with

potential CNS involvement, which may also increase blood NfL

levels (44). Further, disease status was measured using only

the EDSS as there are no other standardized assessment tools.

Nonetheless, further research should also include tools to assess

quality of life indicators and cognitive function.
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