
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jun Zhang,
Kumamoto University, Japan

REVIEWED BY

Utpreksha Vaish,
University of Alabama at Birmingham,
United States
Roberto Rangel,
University of Texas MD Anderson Cancer
Center, United States
Chuan Lan,
Affiliated Hospital of North Sichuan
Medical College, China

*CORRESPONDENCE

Guoming Hu

hgmplj@126.com

Liming Huang

shaoxinghlm@126.com

†These authors share the first authorship

RECEIVED 19 February 2024

ACCEPTED 07 May 2024
PUBLISHED 22 May 2024

CITATION

Ye Z, Cheng P, Huang Q, Hu J, Huang L and
Hu G (2024) Immunocytes interact directly
with cancer cells in the tumor
microenvironment: one coin with two sides
and future perspectives.
Front. Immunol. 15:1388176.
doi: 10.3389/fimmu.2024.1388176

COPYRIGHT

© 2024 Ye, Cheng, Huang, Hu, Huang and Hu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 22 May 2024

DOI 10.3389/fimmu.2024.1388176
Immunocytes interact directly
with cancer cells in the
tumor microenvironment:
one coin with two sides
and future perspectives
Zhiyi Ye1†, Pu Cheng2†, Qi Huang3,4†, Jingjing Hu5,
Liming Huang1* and Guoming Hu6,7*

1Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing
Hospital, Zhejiang University School of Medicine, Zhejiang, China, 2Department of Gynecology, The
Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China, 3Department
of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
4Department of Oncology, Anhui Medical University, Hefei, Anhui, China, 5School of Medicine,
Shaoxing University, Zhejiang, China, 6Department of General Surgery (Breast and Thyroid Surgery),
Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing,
Zhejiang, China, 7Key Laboratory of Cancer Prevention and Intervention, Ministry of Education,
Hangzhou, Zhejiang, China
The tumor microenvironment is closely linked to the initiation, promotion, and

progression of solid tumors. Among its constitutions, immunologic cells emerge

as critical players, facilitating immune evasion and tumor progression. Apart from

their indirect impact on anti-tumor immunity, immunocytes directly influence

neoplastic cells, either bolstering or impeding tumor advancement. However,

current therapeutic modalities aimed at alleviating immunosuppression from

regulatory cells on effector immune cell populations may not consistently yield

satisfactory results in various solid tumors, such as breast carcinoma, colorectal

cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic

effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils,

and tumor-associated macrophages on tumor cells within the tumor

microenvironment. The review also delves into the underlying mechanisms

involved and presents the outcomes of clinical trials based on these direct

effects, aiming to propose innovative and efficacious therapeutic strategies for

addressing solid tumors.
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1 Introduction

The tumor microenvironment (TME), consisting of

immunocytes, stromal cells, extracellular matrix (ECM), and

blood and lymphatic vascular networks, forms a complex

immunomodulatory network (1, 2). In recent years, attention has

been focused on understanding how immune cells, stromal cells,

and cytokines regulate tumor cell proliferation, growth, metastasis,

and invasion within the TME (3–5). Rather than functioning in

isolation, these components of the TME synergistically interact to

form an integrated entity (1). What’s more, disruptions in any part

of this network may significantly impact overall tumor behavior.

Therefore, a comprehensive grasp of the intricate dynamics

inherent in the TME is imperative for forming efficacious

cancer therapies.

Even more noteworthy is that immune cells, as a critical

component in the TME, significantly contribute to maintaining

human health. They play a pivotal role in recognizing, targeting,

and eliminating mutated cells within the body (6, 7). This function

is not only achieved through indirect pathways, such as adjusting

the functionality and differentiation of other cells through the

secretion of cytokines, but also through directly influencing the

survival and subsequent progression of tumor cells (8). In contrast

to the complexities inherent in indirect actions and the multifaceted

interplay of reciprocal regulations, immunocytes’ direct cytotoxic

effects offer a clear and unequivocal avenue for tumor treatment (9,

10). These direct interactions usually remain unaffected by

intermediate multi-step modulations, resulting in potent

cytotoxicity or significant direct promoting effects (11). However,

this dual nature complicates immune therapy, closely tying it to the

current challenge of achieving effective treatment for certain

malignancy (12).

Therefore, we discuss the direct interplay between various

immunocytes and neoplastic cells, coupled with an ensuing

discourse on related treatments and clinical applications,

alongside the extant obstacles, which may be beneficial for

further research.
2 Direct cytotoxic effects of immune
cells and their counteractions

2.1 T cells

2.1.1 CD4+ T cells
The differentiation process of CD4+ T cells is governed by

multiple factors, including antigen-specific stimulation, T cell

receptors(TCR), cytokines, and transcription factors (13). Initially,

upon detection of “non-self” or foreign substances by the immune

system, antigens are presented to CD4+ T cells via the TCR,

initiating the differentiation process (14). The type of antigen

presenting cell(APC) determines the antigen type, while its

affinity and quantity influence the nature and strength of TCR

signaling, collectively regulating the activation and differentiation of

CD4+ T cells in conjunction with co-stimulatory molecules (13, 14).
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Subsequently, cytokines secreted by antigen-presenting cells

and differentiated CD4+ T cells play crucial roles in

differentiation. For instance, interleukin-12(IL-12) and interferon-

gamma(IFN-g) promote type 1helper T(Th1) cell differentiation

(15, 16), IL-4 induces Th2 cell differentiation (17), IL-4 and

transforming growth factor beta(TGF-b) enhance Th9 cell

differentiation (18, 19), and IL-6 and TGF-b drive Th17 cell

differentiation (20). These cytokines activate distinct signaling

pathways, guiding the formation of specific T cell subgroups (13).

Finally, under the regulation of specific cytokine signals and

cellular environments, master transcription factors contribute to

shaping and maintaining the balance and diversity of the immune

system by activating specific gene expression patterns (16). Each T

cell subset is governed by lineage-specific master transcription

factors, such as T-bet, GATA binding protein 3(GATA3),

interferon regulatory factor 4(IRF4), and retinoid-related orphan

receptor gamma t(RORgt), which control the expression of subset-

specific genes, thereby determining the direction of cell

differentiation (18, 21–24). Therefore, the variegated landscape of

the tumor microenvironment impels T cells toward distinct

subtypes, underscoring the critical importance of the types and

functional states of T cell subtypes in shaping the immune response

to tumors (13).

2.1.1.1 Th1 cells

Historically, CD4+ T cells have been construed as orchestrators

of immune responses, activating and recruiting other immune cells

by producing their distinctive cytokines (25). In contrast, CD8+ T

cells are intricately associated with the direct elimination of target

cells (26). Nevertheless, recent years have witnessed an in-depth

exploration of the intricacies of CD4+ T cell functionality,

particularly those cells exhibiting antigen-specific cytotoxic

activity, denoted as CD4+ cytotoxic T lymphocytes (CTLs) (27).

These CD4+ T lymphocytes have been demonstrated to elicit

cytotoxic effects on tumor cells by directly releasing granule

enzymes (28–31). Additionally, they have been validated to

implement cytotoxic responses in solid tumors such as melanoma

and lymphoma through mediation of the factor associated suicide/

factor associated suicide ligand(Fas/FasL) and tumor necrosis

associated apoptosis-inducing ligand(TRAIL) pathways (32–34).

While in the initial phases, CD4+ CTLs were erroneously

classified within the Th1 cell subset (25). However, lamentably,

there is a dearth of conclusive evidence substantiating the assertion

that Th1 cells can induce direct cytotoxicity against tumor cells

through the three pathways above.

However, Th1 cells efficaciously manifest their anticancer

prowess through the secretion of IFN-g (Figure 1). Primarily, the

IFN-g orchestrates a reduction in the envelopment of peripheral

tumor cells, facilitating the aberrant genesis of vasculature and the

regularization of vascular architecture, thereby impeding

the proliferation of tumor vasculature (35). These actions possess

the potential to perturb the oxygenic and nutritive milieu within the

TME, ultimately precipitating the demise of neoplastic cells (36).

Additionally, the impact of IFN-g extends through the orchestrated

proteasomal degradation of the human epidermal growth factor
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receptor 2(HER2) membrane receptor, mediated by the E3

ubiquitin ligase cullin-5, inducing the senescence of tumor cells in

breast cancer (37). According to the latest pancreatic cancer study,

the collaboration of Th1 cell-derived IFN-g with tumor necrosis

factor(TNF) triggers a state of enduring growth arrest in the G1/G0

phase, activates p16 the inhibitor of cyclin-dependent kinase 4a

(p16INK4a), and instigates downstream hypophosphorylation of

the Rb protein at serine residues, thereby effectuating the senescence

of b-pancreatic cancer cells (38) (Figure 1).
Frontiers in Immunology 03
2.1.1.2 Th9 cells

In the presence of IL-4 and TGF-b1, naïve CD4+ T cells exhibit

the capacity to differentiate into a distinct subset known as Th9 cells

(39). These cells possess the ability to generate IL-9, a cytokine

initially proposed to be involved in promoting tumorigenesis (39).

However, subsequent investigations have revealed its anti-tumor

effects. Purwar et al. pioneered the demonstration of Th9 cells’

efficacy in suppressing melanoma growth upon injection into

murine hosts, outperforming the effects of Th1, Th2, and Th17
FIGURE 1

The direct antitumor action of immune cells and the counteraction of tumor cells. Through the Fas/Fasl pathway, ADDC pathway, and TRAIL
pathway, immune cells exert direct cytotoxic effects on tumor cells. Simultaneously, they can release granule enzymes, IFN-g, TNF-a, ROS, INOS,
and other mediators to generate cytotoxicity. In addition, Th9 cells induce apoptosis in tumor cells by releasing IL-9. It is noteworthy that tumor
cells, in turn, enhance the cytotoxicity of NK cells and CTL cells through secretion lactic acid, TGF-b, PGE2, and VEGF-A.
FIGURE 2

The direct tumor-promoting action of immune cells and the counteraction of tumor cells. Through the secretion of multiple chemokines, cytokines
and other effector molecules such as IL-4, interleukin-5, and so on, immunocytes promote tumor cells through the following ways: promoting the
proliferation of tumor cells, promoting the migration and metastasis of tumor cells and promoting tumor angiogenesis. It is worth noting that tumor
cells can in turn promote the activation and recruitment of macrophages and Th2 cells via secreting CCLX, IL-33, IL-4, IL-10, and M-CSF, thus
promoting the formation of loops.
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cells (40). The heightened efficiency in inducing tumor cell

apoptosis was intricately associated with the elevated expression

of granzyme B, the blockade of which markedly mitigated the

cytotoxic effects (23, 40) (Figure 1). Further elucidation of Th9

cells unveils their proficiency in eradicating advanced tumors.

Studies emphasize Eomesodermin as a principal regulatory factor

governing the expression of cytotoxic enzymes. Augmentation of

Eomesodermin coincides with an increase in the gene expression of

the cytotoxic enzyme repertoire within Th9 cells (41).

In addition, IL-9 is critical for suppressing tumor growth (42)

(Figure 1). In murine melanoma experiments, the increase in both

the quantity of Th9 cells and IL-9 significantly reduces the tumor

growth rate, despite in vitro studies demonstrating a close

association with their indirect effects (43). Another study centered

around HTB-72 and SK-Mel-5 melanoma cells has established a

link between the anti-proliferative effects of IL-9 and the heightened

expression of p21 (44). Besides, a discernibly elevated count of

apoptotic cells following IL-9 treatment has been observed

compared to when contrasted with the control group, further

validating their conclusion (44).

2.1.2 CD8+ T cells
Under antigen stimulation, naïve CD8+ T cells generate effector

and memory T cells, with the effector CD8+ T cells referred to as

CD8+ CTLs (13). CTLs assume a pivotal role in the vigilant immune
TABLE 1 The effects of immune cells on tumor cells and their related
mechanisms in the process.

Immune
cells

Mechanisms Biology effects Refs

Th1 cell INF-g, TNF-a Induces tumor senescence
and apoptosis

35-38

Th2 cell IL-4 Promots tumor proliferation
and inhibits the apoptosis

118-
120

Th9 cell Granzyme Induces poptosis in
tumor cells

23,
40-41

IL-9/IL-9R Induces tumor cell cycle arrest
and apoptosis

42-44

IL-9/IL-9R Promotes tumor growth
and metastasis

123-
124,
127

Th17 cell IL-17 Promotes tumor proliferation,
migration, and invasion

126,
129-
131,
133-
134

TWEAK Promotes cellular epithelial-
mesenchymal transition.

132

gdT cell Fas-Fasl Induces apoptosis of
tumor cells

76

Granzyme Induces apoptosis of
tumor cells

64-67

ADCC Induces apoptosis of
tumor cells

68-71

TRAIL Induces apoptosis of
tumor cells

72-75

INF-g, TNF-a Inhibits the growth of
tumor vascular

77-79

IL-17 Promotes tumor cell
proliferation and metastasis

142

TGF-b Promotes the
tumor invasiveness

143

CTL Granzyme Induces apoptosis of
tumor cells

46-51

Fas-Fasl Induces apoptosis of
tumor cells

52-53

INF-g, TNF-a Influences the metabolism of
tumor cells and promotes the
rupture of tumor blood vessels

54-57

NK cell Granzyme Induces apoptosis of
tumor cells

80-84

TRAIL Induces apoptosis of
tumor cells

85, 89

Fas-Fasl Induces apoptosis of
tumor cells

87-88

INF-g Inhibits the growth of tumor
vascular and changes the
sensitivity of tumor cells

90

Helper ILC INF-g Stimulating tumor cell
apoptosis and pyroptosis

93

(Continued)
TABLE 1 Continued

Immune
cells

Mechanisms Biology effects Refs

TRAIL Induces apoptosis of
tumor cells

94

Macrophage2 VEGF Promotes migration
and invasion

147-
148

ADM,
CCL18, Tie2

Promotes the generation of
tumor blood vessels

149-
151

IL-6, IL-
8, CHI3L1

Promotes growth
and migration

145,
152-
153,
155-
158

Eosinophil MBP, ECP, EPX Induce lysis of tumor cells 108,
109

Granzyme Induces apoptosis in
tumor cells

110-
112

TNF-a Induces apoptosis of
tumor cells

114-
115

MBP, EPX, CCL6 Promotes tumor metastasis 163-
164,
166

Macrophage1 ROS, INOS Induces apoptosis of
tumor cells

100-
101

TNF-a Promotes the destruction of
tumor vasculature

56, 106

ADCC Induces apoptosis of
tumor cells

104
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surveillance against neoplastic entities, recognizing cell surface

antigens on tumor cells through the discerning receptors of the

TCR (44, 45). The primary mechanisms through which CTLs

coordinate their anti-tumor capabilities involve the granzyme/

perforin pathway and cytotoxicity mediated by Fas receptors (46).

The granzyme/perforin cascade involves the liberation of granules

containing granzymes and perforin, thereby directly instigating

apoptotic cascades within targeted cellular domains (47–49).

Usually, perforin serves as the conduit for ingressing granzymes

into tumor cells, thereby facilitating the demise of targeted cells

(50). Therefore, the absence or impairment of perforin may

diminish the tumor-suppressive efficacy of CTLs (47). In the

latest literature, it has been discovered that endosomal sorting

complexes required for transport can repair the plasma

membrane pores caused by perforin. This rehabilitative action

restores membrane integrity, effectively preventing the invasion of

granzymes (51) (Figure 1).

In instances where the integrity of the granzyme/perforin

pathway is compromised, there emerges a heightened prominence

of Fas-mediated processes (46) (Figure 1). FasL triggers apoptosis

through the intricate activation of caspases (52). Nonetheless,

noteworthy observations posit that FasL expressed by exosomes

might exert divergent effects, potentially fostering tumor invasion

instead of inducing apoptotic signals (53).

Furthermore, CTLs also possess the capability to modulate the

metabolic dynamics of neoplastic cells through the secretion of

cytokines (Figure 1). Notably, factors such as IFN-g, originating
from CTLs, downregulate certain components of the glutamate-

cystine antiporter system, subsequently influencing lipid

metabolism within the tumor cell milieu and promoting tumor

cells’ apoptosis (54, 55). Another secreted product, TNF-a, despite
its potential derivation from various immune cells, undeniably plays

a role in inducing the rupture of tumor blood vessels, promoting cell

infiltration, and maintaining an ischemic state in tumors (56)

(Figure 1). However, under typical circumstances, the contact of

individual CTLs with tumor cells fails to eliminate the tumor cells

effectively. And it is only through sequential interactions with

multiple CTLs that elimination occurs (57).

In addition, tumor cells heavily impact the function of CTLs

(Figure 1). Tumor-derived lactic acid efficaciously reduces the

activity of monocarboxylate transporter -1, which weakens

cellular metabolism and diminishes the cytotoxicity of IFN-g,
granzymes, and perforin in CTLs (58). Moreover, the secretion of

TGF-b by tumor cells directly impedes the immune activity of CTLs

by inducing the upregulation of miR-23a and simultaneous

downregulation of B-lymphocyte-induced maturation protein 1

(Blimp-1) (59). Notably, Blimp-1, as a pivotal transcriptional

repressor, plays a fundamental role in the differentiation and

memory response of effector CD8+ T cells (60). Consequently,

this mechanism undermines the immune function mediated by

CTLs. Tumor cells also induce the expression of FasL in endothelial

cells via vascular endothelial growth factor-A (VEGF-A), IL-10, and

prostaglandin E2 (PGE2), thereby eliciting specific cytotoxic effects

in effector T cells (61).
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2.1.3 Gammadelta T cells (gdT cells)
gdT cells and abT cells are the two main types of T cells within

the adaptive immune system. gdT cells have T-cell receptors

composed of g and d chains and recognize a broader range of

antigens, while abT cells bear T-cell receptors made of a and b
chains and primarily respond to peptide antigens presented by

major histocompatibility complex (MHC) molecules (62).

Despite being a minority among peripheral blood cells, gdT cells

assume a pivotal role in the detection and eradication of tumor cells

(63). In a previous study focused on squamous cell carcinoma of the

head and neck (SCCHN), it was observed CD56+ gdT cells, isolated

from peripheral blood mononuclear cells (PBMCs) expanded under

the stimulation of isopentenyl pyrophosphate (IPP) and IL-2, could

effectively destroy SCCHN cell lines in a dose-dependent manner,

in contrast to CD56- gdT cells (64). What’s more, the cytotoxicity of

gdT cells underwent a notable suppression following treatment with

concanamycin A (CMA), an inhibitor of the granzyme/perforin

pathway (64), which concurrently functions as a downregulator

(65). Additionally, gdT cells also exhibit a lytic effect on MCF-7

breast tumor cells. Subsequent research revealed that MCF-7 tumor

cells were surrounded by a substantial number of gdT cells, forming

a tight conjugate, and were subsequently eliminated within a span of

ten seconds. Furthermore, gdT cells were empirically demonstrated

to possess the capability to lyse autologous primary tumor kidney

cells, a phenomenon alleviated upon the application of CMA (66).

From the above, it can be deduced that the perforin/granzyme

pathway occupies an irreplaceable position in the cytotoxic activity

of gdT cells (67) (Figure 1).

Antibody-dependent cell-mediated cytotoxicity (ADCC)

constitutes another crucial mechanism (68) (Figure 1). Classified

by their maturation levels, gdT cells categorize into four functionally

distinct subpopulations: naïve gdT cells, central memory gdT cells,

effector memory gdT cells, and terminally differentiated effector

memory gdT cells (69). The latter two subpopulations express

CD16, a surface receptor that efficiently facilitates tumor cell

killing, even in the absence of antibody engagement (68, 70).

Vg9Vd2 T cells, isolated from PBMCs of healthy donors, undergo

activation, leading to the expression of CD16, a phenomenon not

observed in their unstimulated counterparts (71). Furthermore,

when TCR-activated Vg9Vd2 T cells are cross-linked to plastic

wells with anti-CD16 monoclonal antibodies, substantial TNF-a
production occurs, a response mitigated by the addition of soluble

anti-CD16 monoclonal antibodies (71).

The cytotoxic activity of gdT cells is also ascribed to the

expression of TRAIL and FasL, which bind to corresponding

receptors on tumor cells (72, 73) (Figure 1). TRAIL’s interaction

with different receptors produces varied outcomes: knockdown of

TRAIL-Receptor 4(TRAIL-R4) in Colo357 and MDA-MB-231 cells

significantly reduces sensitivity to gdT cell-induced cytotoxicity,

whereas TRAIL-R4 knock-in HeLa cells show reinforced

cytotoxicity (74). Furthermore, serum TRAIL levels hold clinical

significance, as evidenced in a study involving eighteen patients

with refractory prostate cancer, where higher serum TRAIL levels at

nine months correlated with improved clinical outcomes (75).
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Additionally, the upregulation of Fas on the surface of osteosarcoma

cells effectively increases the cytotoxicity of gdT cells (76).

Finally, gdT cells serves as potent producers of IFN-g and TNF-

a, exerting anti-tumor effects through various mechanisms,

including the inhibition of tumor vascular growth (77) (Figure 1).

Blocking TNF-a or its receptor significantly diminishes

cytotoxicity, while knocking down miR-125b-5p could increase

the secretion of IFN-g and TNF-a, thereby enhancing anti-tumor

effects (78, 79). Studies focusing on solid tumors, particularly breast

cancer, nasopharyngeal carcinoma, and melanoma, have

demonstrated a positive correlation between the production of

TNF-a by peripheral gdT cells and their contribution to tumor

defense (77).
2.2 Innate lymphoid cells (ILCs)

2.2.1 NK cells
NK cells have consistently been acknowledged as effector cells

proficient in lysing tumor cells or viruses, albeit with a non-specific

targeting of cells. Upon recognizing target cells, NK cells exhibit

directed movement of their abundant granules toward the binding

site of target cells with the assistance of dynein motors (80, 81). The

aggregation of these granules enhances efficiency in secretion while

reducing the killing of surrounding cells. However, the cytotoxic

impact of granules is contingent upon the presence of perforin.

Mouse experiments have demonstrated that defective perforin leads

to diminished cellular cytotoxicity, expedited tumor growth, and

heightened metastasis, underscoring the crucial role of perforin in

this process (82–84) (Figure 1). Currently, it is possible to induce

the expression granzymes and perforin genes to augment the

cytotoxic effects of NK cells.

Termed as “serial killers”, NK cells frequently shift towards cell

destruction contingent upon FasL and TRAIL once their reservoirs

of granzymes and perforin are depleted (85, 86) (Figure 1).

Subsequent investigations have revealed NK cells deficient in

perforin, previously considered lacking cytotoxicity, effectively

eliminate MHC class I-deficient tumor cells due to the

upregulation of FasL (87). FasL, in turn, interacts with the CD95

receptor on target cells, thereby initiating the apoptotic signaling

cascade intrinsic to target cells (88). Intriguingly, the cleaved soluble

form of FasL proves to be devoid of cytotoxic efficacy. Furthermore,

NK cells harvested from the murine hepatic milieu distinctly

express TRAIL, with their cytotoxicity potential markedly

attenuated upon the introduction of anti-TRAIL monoclonal

antibodies (85, 89).

Besides, IFN-g secreted by NK cells has been demonstrated

independently to exert anti-tumor functions, irrespective of

perforin (Figure 1). Its collective influence plays a crucial role in

governing the initiation, proliferation, and metastasis of tumors

(90). Furthermore, while the specific anti-tumor mechanism of

IFN-g in particular tumors remains incompletely understood, its

capabilities to inhibit tumor angiogenesis and modulate the

sensitivity of tumor cells have long been reported (89).

In contrast, neoplastic cells may indeed serve as a crucial force

driving the anti-tumor effects innitiated by NK cells (Figure 1). In
Frontiers in Immunology 06
melanoma, lactate derived from tumor cells significantly reduces

the quantity and activation of NK cells. This is accomplished by

suppressing the upregulation of the nuclear factor of activated T

cells (NFAT) with NK cells, leading to a noticeable reduction in

IFN-g production and a simultaneous alleviation of the cytotoxic

impact on tumors (91). In another study, it was revealed that lactate

derived from tumor cells also directly diminishes the expression of

perforin and granzyme, thereby impeding their cellular lytic

functionality (92).

2.2.2 Helper ILCs
ILCs earn their name due to their absence of adaptive antigen

receptors. In addition to NK cells, other subsets include ILC1s,

ILC2s, ILC3s, and lymphoid tissue inducer cells (LTi) (93). They

predominantly inhabit tissues and maintain close associations with

the extracellular matrix (93). Typically, within the tumor

microenvironment, ILC1s release significant levels of IFN-g. This
cytokine acts on tumor cells, inducing the upregulation of MHC-I

and MHC-II, thereby directly stimulating tumor cell apoptosis and

pyroptosis (93). Moreover, both ILC1s and ILC3s possess the ability

to directly eliminate tumor cells by expressing TRAIL, thereby

imbuing these cells with the potential of anti-tumor effector cells

(94) (Figure 1).
2.3 M1-type macrophages
(M1 macrophages)

In the TME, a subset of infiltrating macrophages, referred to as

tumor-associated macrophages (TAMs), exhibits the capacity to

differentiate into two distinct polarization states: M1 macrophages

and M2-type (M2) macrophages (95). The identification of new

markers such as C-X-C motif chemokine ligand 9(CXCL9) and

(secreted phosphoprotein 1)SPP1 challenges the conventional M1/

M2 classification paradigm (96). CXCL9, produced by

macrophages, plays a pivotal role in immune cell activation and

signaling involved in inflammatory responses, thereby enhancing

anti-tumor capabilities (97, 98). Conversely, SPP1 expressed in

macrophages can boost the expression of interferon-gamma and

interleukin-12, influencing macrophage polarization, migration,

and cytokine profile (98). The CXCL9:SPP1 expression ratio

holds greater clinical significance (98). These newfound markers

present a nuanced perspective on the potential range of macrophage

activation states, offering fresh insights and avenues for the

advancement of targeted immunotherapy strategies. In the

following discussion, we chose to describe the more traditional

and extensively studied M1/M2 classical polarization.

M1 macrophages possess potent antimicrobial and anti-tumor

activities, releasing cytotoxic molecules such as reactive oxygen

species (ROS) and nitric oxide synthases (INOS), gradually causing

damage to tumor cells (99–101) (Figure 1). In murine animal

experiments, it has been demonstrated that M1 macrophages

secrete these factors that delay the growth of ovarian cancer

tumors (102). However, others argue that TAMs release nitric

oxide (NO) and reactive oxygen intermediates (ROI), causing

DNA damage and genetic instability in the initial stages,
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categorizing them as tumor-promoting factors (103). Another rapid

method of cell destruction involves ADCC, as clearly shown by the

vitamin D-dependent release of antimicrobial peptide cathelicidin.

This peptide effectively targets the mitochondria of malignant cells,

culminating in the demise of high-grade B-cell lymphoma entities

(104). As previously found, TNF-a at the tumor site is primarily

derived from M1 macrophages and tumor cells (105) (Figure 1).

Early research demonstrated that exogenous TNF-a could promote

the destruction of tumor vasculature, thereby indirectly leading to

the necrosis of tumor cells (106). Subsequent studies showed that

high levels of exogenous TNF-a administration may act directly on

malignant cells by inducing apoptosis, although the specific

mechanisms of this process are not yet fully understood (56).
2.4 Eosinophils

Despite their lower presence in the peripheral bloodstream

compared to T cells or B cells, eosinophils are selectively

recruited to the tumor microenvironment by chemotactic agents,

such as high mobility group box one protein (HMGB1) (107).

Subsequently, these granulocytes release a spectrum of mediators,

causing a direct cytotoxic impact on tumor cells. The identified

mediators encompass major basic protein (MBP), eosinophil

cationic protein (ECP), and eosinophil peroxidase (EPX), all

capable of inducing tumor cell lysis in vitro (108, 109) (Figure 1).

Furthermore, murine experiments focusing on colorectal cancer

and lymphoma have revealed that the cytotoxic mediators wielded

by eosinophils predominantly involve granule enzymes A and B

(110–112).

In addition, in the presence of IL-5, eosinophils exhibit a

significantly enhanced cytotoxic potency, coinciding with a

noticeable deceleration in murine tumor growth (113). Moreover,

when induced by lipopolysaccharide (LPS), eosinophils

demonstrate the ability to directly undermine murine hepatic

cancer cells via the release of TNF-a (114) (Figure 1). However,

this phenomenon, can be effectively impeded by the administration

of anti-TNF-a antibodies (115).
3 Direct tumor-promoting effects of
immune cells and their counteractions

3.1 T cells

3.1.1 CD4+ T cells
3.1.1.1 Th2 cells

The role of Th2 cells in allergic diseases has been extensively

investigated, but their specific implications in tumor immunity

remain elusive (116). Notably, several studies have highlighted a

close association between Th2 cells in the TME and the progression

and metastasis of breast, cervical, colorectal, and lung cancers (117).

IL-4, a pivotal factor in Th2 cell polarization and a primary

secretion of Th2 cells, is proposed as a potential mechanism for

its direct impact on tumors (Figure 2). Firstly, in colorectal cancer,
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IL-4 induces the expression of epithelial-mesenchymal transition

(EMT)-promoting proteins through signal transducer and activator

of transcription 6(STAT6)-dependent transcription, thereby

prompting EMT in colon cancer cells (118). Secondly, IL-4

stimulates the proliferation of pancreatic cancer cells by activating

phosphorylation in mitogen-activated protein kinases(MAPK),

Akt-1, STAT3, and insulin receptors (119). In vitro experiments

have additionally demonstrated that IL-4 promotes the expression

of anti-apoptotic genes in various human cancers (120).

Besides, recent research has also highlighted the interplay between

tumor-infiltrating Th2 cells and tumor cells, where tumor fungal

elements activate signaling pathways in cancer cells, promoting the

secretion of IL-33, which is essential for the recruitment and activation

of Th2 cells (121) (Figure 2). Conversely, the genetic deletion of IL-33

or antifungal therapy results in the regression of stable pancreatic

ductal adenocarcinoma (PDAC), underscoring the tumor-promoting

nature of Th2 cells. Despite this, concrete evidence substantiating the

tumor-promoting effects of Th2 cells remains limited (121).

3.1.1.2 Th9 cells

Tumor-infiltrating Th9 lymphocytes release the characteristic

cytokine IL-9, which has been implicated in various immune and

inflammatory diseases, including parasitic infections, allergies, and

lymphoma (122). However, the precise and consistent role of IL-9

in tumor immunity remains enigmatic and subject to controversy

(Figure 2). According to existing literature, IL-9 binds to

heterodimer receptors, activating the Janus kinase(JAK)-STAT,

insulin receptor substrates(IRS), and MAPK signaling pathways,

thereby directly stimulating tumor cell proliferation (123).

Additionally, investigations have indicated that overexpression of

IL-9 leads to amplified proliferation of colonic epithelial cells,

attributed to the upregulation of c-MYC and cyclin D1

expression (124).

EMT, a pivotal mechanism underlying tumor metastasis,

involves profound phenotypic alterations such as cytoskeletal

reorganization, detachment from the extracellular matrix, and loss

of polarity (125). Salazar et al. conducted a study encompassing

lymphocyte co-cultures, in vivo mouse models, and human lung

cancer tissues (126). The study revealed that tumor-infiltrating Th9

cells induce EMT and migration, and metastatic expansion of lung

cancer. Similarly, others disclosed that IL-9 exerts notable influence

on increasing the expression of C-C chemokine ligand 20 (CCL20)

in hepatocellular carcinoma cells, thereby eliciting EMT changes

through STAT3 phosphorylation (127).

3.1.1.3 Th17 cells

Named after their hallmark product, IL-17A, Th17 cells are

considered a major component among infiltrating tumor

lymphocytes, concurrently secreting IL-17F, IL-21, IL-22, and IL-

2 (128). First, IL-17, originating from Th17 cells, serves as a

stimulant for tumor cell proliferation across diverse pathways

(129) (Figure 2). For instance, B-cell acute lymphoblastic

leukemia relies on Akt and STAT3 pathways, colorectal cancer

involves STAT3 and NF-kB pathways, and ovarian cancer stem

cells necessitate the engagement of NF-kB and MAPK pathways
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(130, 131). In a recent investigation, it has been unveiled that the

secretion of tumor necrosis factor-like weak inducer of apoptosis

(TWEAK) by Th17 cells triggers epithelial-mesenchymal transition,

consequently fostering liver metastasis in colorectal cancer

(132) (Figure 2).

Moreover, within the domain of lung cancer research, the

interaction between Th17/Treg cells and their impact on non-

squamous non-small cell lung cancer (NSCLC) biology has

garnered attention. These emphasize that Th17 cells not only

induce EMT in lung cancer cells, but also augment migration and

dissemination, correlating with lymphatic vessel density (126).

Subsequent investigations have provided evidence linking IL-17

and IL-22 to increased invasiveness and metastasis of lung cancer

cells (Figure 2). Furthermore, these studies have demonstrated

resistance to combined MEK inhibitor and anti-PD-L1 therapies

in KRAS/p53 mutant lung cancers (133). In the context of non-

small cell lung cancer, IL-17A actively promotes migration and

invasion through the STAT3/NF-kB/Notch1 signaling pathway

(134). Despite the substantial roles of IL-17 and IL-22 in inducing

angiogenesis, facilitating EMT, and expressing matrix

metalloproteinases (MMPs) to promote tumor growth and tumor

metastasis, there is currently a dearth of literature specifying the

specific sources of these two cytokines (135–139).

3.1.2 gdT cells
While traditionally recognized for their potent anti-tumor

effects, gdT lymphocytes also possess the potential to accelerate

the progression and invasive tendencies of solid tumors (140).

Nonetheless, compelling evidence suggests that gdT cells may

expedite the development and invasion of solid tumors (141). At

the core of their tumorigenic impact is the pivotal mediator IL-17, a

molecule that not only drives neoplastic cell proliferation through

intricate IL-6/STAT3 and NF-kB signaling cascades but also

triggers metastasis by inducing the secretion of VEGF and MMP

(142). Furthermore, under specific circumstances, epithelial Vd1 T

cells have been observed to secrete notable quantities of TGF-b,
initiating the transformation of epithelial cells into mesenchymal

cells and thereby amplifying the invasiveness of malignancies

(143) (Figure 2).
3.2 M2 macrophages

In contrast to the anti-tumor effects associated with M1

macrophages discussed earlier, M2 macrophages are typically

considered closely associated with promoting tumor metastasis

(Figure 2). Notably, macrophage-colony stimulating factor

(CSF-1), primarily sourced from macrophages, has been found to

be correlated with poor prognosis in breast cancer, ovarian cancer,

endometrial cancer, lung cancer, and prostate cancer, though the

detailed underlying mechanisms remain unclear (144, 145). M2

macrophages promote metastasis by producing MMPs and tissue

proteases, which degrade the extracellular matrix, allowing invasive

tumor cells to migrate into surrounding tissues and the vascular

system (145). Secondly, M2 macrophages can promote lymph node

metastasis of tumor cells by enhancing the functionality of
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lymphatic vessels. Additionally, M2 macrophages play roles in

inducing the formation of tip cells in lymphatic endothelial cells

(LECs) and the proliferation of lymphocytes through the secretion

of VEGF-C and the expression of podoplanin (146).

The promotion of tumor metastasis by M2 macrophages is

closely associated with the formation of new tumor blood vessel as

well (147, 148) (Figure 2). The MMP9 produced by these

macrophages typically facilitate the release of VEGF from the

extracellular reservoir, thereby increasing the bioavailability of

VEGF (147). Although TAM infiltration is predominantly

associated with extensive angiogenesis via VEGF signaling

pathway, studies have shown that disrupting the VEGFA allele

effectively impacts vascular sprouting without affecting the

recruitment of macrophages and angiogenesis. Further research

has demonstrated that this is closely associated with TAM-derived

adrenomedullin (ADM) and C-C motif ligand 18(CCL18) (149,

150). Respectively ADM promotes angiogenesis and melanoma

growth via the paracrine effect, mediated by the endothelial nitric

oxide synthase signaling pathway, and CCL18 promotes human

umbilical vein endothelial cell migration and tube formation via

PITPNM3 (149, 150). Additionally, the expression of the Tie2

receptor by these macrophages is a known receptor for

angiopoietin, playing a crucial role in angiogenesis. Additionally,

the expression of the Tie2 receptor by these macrophages is a

known receptor for angiopoietin, playing a crucial role in

angiogenesis (151).

The EMT is a process in which epithelial cells gradually lose their

epithelial characteristics and acquire a mesenchymal phenotype,

playing a crucial role in tumor cell metastasis. Macrophages exhibit

high infiltration in the tumor microenvironment, secreting a series of

inflammatory and cytokine factors to promote EMT and enhance the

stemness of cancer cells (152) (Figure 2). For instance, IL-6 derived

fromM2 macrophages has been found to downregulate the epithelial

marker E-cadherin and upregulate the mesenchymal marker

vimentin in cancer cells (145). Additionally, M2 macrophages can

also secrete TGF-b to induce Sox9 expression in lung cancer cells

through the c-Jun/Smad3 pathway, thereby inducing EMT and

enhancing lung cancer cell migration (145). IL-8 also has the ability

to induce EMT by activating the JAK2/STAT3/Snail pathway

(153). Moreover, TAMs regulate breast cancer stem cell phenotype

and promote tumor growth via the EGFR/Stat3/Sox-2 signaling

pathway (154).

Several other cytokines derived fromM2 macrophages also play

vital roles, as follows (Figure 2). For instance, IL-6 has been shown

to activate cancer stem cells, facilitating cancer growth and

metastasis by promoting anti-apoptotic pathways through STAT3

phosphorylation (155, 156). As we all know, Chitinase 3-like

protein -1 (CHI3L1), as a glycoprotein, assumes a pivotal role in

governing various aspects of tumor cell behavior, including growth,

proliferation, invasion, metastasis, angiogenesis, and activation

(157). Correspondingly, CHI3L1, derived from M2 macrophages

in mice, facilitates the metastasis of gastric cancer and breast cancer

through the IL-13 receptor (158).

Surprisingly, tumor cells often react against TAMs in a way that

amplifies their facilitation (Figure 2). TAMs originate from

peripheral monocytes, recruited into tumors by several growth
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factors, particularly those produced by matrix and tumor cells

(159). Macrophages’ polarization is regulated by various

microenvironmental signals from tumor cells, such as IL-4 and

IL-10, which serve the same purpose (160). In addition to

macrophage colony-stimulating factor (M-CSF) and tumor-

derived factors such as chemokines CCL2, CCL3, CCL4, and

CCL5, which serve as macrophage chemoattractants, CCL2 is

extensively expressed in various human tumors (161). For

example, cancer cells produce CCL2 to recruit inflammatory CC

chemokine receptor 2(CCR2) monocytes from blood to metastatic

sites, where they differentiate into related macrophages and

promote tumor cell extravasation under the influence of

VEGF (162).
3.3 Eosinophils

Initially, eosinophils were commonly associated with specific

inflammatory issues, particularly allergies and parasitic infections

(114). However, as our knowledge grows regarding how

inflammatory factors play a role in starting and advancing tumor

cells, there has been a recent reevaluation of the role of eosinophils

in this process. Preliminary studies have confirmed MMP9’s role in

extracellular matrix degradation (163). Still, we are not completely

sure about how this contributes to tumor cell invasion and

spreading. Likewise, in situations with inflammation, MBP has

been seen to make blood vessel cells multiply and boost the

growth effects of VEGF (164). However, we are still working to

confirm its similar role in the tumor environment (164).

Moving forward, substantial progress has been achieved in

investigating eosinophils in solid tumors. According to Vasilios

and his team, EPX from eosinophils has been observed to encourage

tumor spreading in a mouse breast cancer model using the 4T1

strain (165). Furthermore, eosinophils have been strongly linked to

speeding up the movement and spread of tumor cells in melanoma,

credited to the release of a substance called CCL6 (166) (Figure 2).
4 Therapeutic strategies according to
the mechanisms of direct effects of
immunocytes on cancer cells

Despite atechnological advances, immunotherapy and targeted

therapy remain key cancer treatments. Common immune

checkpoints, exemplified by programmed death 1(PD-1), upon

binding with programmed cell death-ligand 1(PDL-1), are

typically expressed on the surface of tumor cells, orchestrating the

inhibition of T cell proliferation and activation, thereby facilitating

the evasion of tumor cells from immune surveillance (167). A

parallel player in this regulatory milieu is cytotoxic T

lymphocyte-associated antigen-4(CTLA-4), predominantly

curtailing T cell activation and proliferation through competitive

interference with the engagement of CD28 and co-stimulatory

molecules CD80/86 (168). Additionally, lymphocyte activation

gene-3(LAG-3) and T-cell immunoglobulin and mucin-domain

containing-3(TIM-3) serve as pivotal suppressors of T cell
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II molecules and the ligand Galectin-9 (169). These two are typically

not expressed on tumor cells, but are mainly expressed on T cells.

Presently, PD-1 inhibitors such as Pembrolizumab and Nivolumab,

along with PDL-1 inhibitors like Atezolizumab and Avelumab, as

well as the CTLA-4 inhibitor Ipilimumab, stand as stalwarts in

clinical intervention (170). Meanwhile, agents targeting LAG-3,

TIM-3, among others, represented by BMS-986016 and MBG453,

traverse the clinical research terrain, poised to offer therapeutic

avenues for diverse malignancies in the forthcoming era.

Nevertheless, notwithstanding the therapeutic promise, the

response rate to immune checkpoint therapy remains modest,

with resistance posing a formidable challenge (171, 172). Since

current methods primarily enhance indirect anti-tumor effects,

there is a pressing need to understand and explore direct anti-

tumor therapies for comprehensive.

In this review, we focus mainly on the direct anti-tumor

mechanisms of immune cells from three perspectives: amplifying

the ADCC effect, triggering the secretion of granzymes and

perforin, and modulating the Fas/FasL pathway (Table 1). Firstly,

monoclonal antibodies such as Rituximab(anti CD20) and

Trastuzumab(anti-HER2) have shown effectiveness via the ADCC

pathway (173). Noteworthy studies involving mice lacking the Fcg
chain have revealed increased ADCC-mediated cytotoxicity in the

absence of Fc gammaRIIB, while optimal antibody binding

minimizes inhibitory effects via Fc gammaRIIB (174). Other

antibodies, such as Cetuximab(anti-EGFR), Pertuzumab(anti-

HER2), and bispecific antibodies-Catumaxomab, have opened

new avenues in clinical research for gastrointestinal and breast

cancer treatments (175). In addition, clinical drugs like Anktiva and

Nemvaleukin alfa (ALKS 4230) stimulate the secretion of cytokines,

such as IL-2, IL-21, and IL-15, to enhance the ADCC effect of NK

cells (176). In the most recent study, researchers have devised a

high-affinity, non-cleavable CD16 variant. Upon fusion with the

NK cell activation domain, this novel construct robustly augments

anti-tumor cell activity via the ADCC pathway (177). This approach

primarily focuses on NK cells, which is less common in research

involving other immune cells (178, 179).

Chimeric antigen receptor-modified T(CAR-T) technology

enhances the release of perforin and granzymes, transforming

CTLs, Th cells, NK cells, and other cells into powerful weapons

for eliminating tumor cells (180). Additionally, the NKp30 receptor

serves as another specific receptor for CAR-T technology, triggering

the secretion of granzymes and perforin upon when binding to B7-

H6l (181). However, there is a lack of developed antibodies or small

ligands targeting NKp30. Despite various studies demonstrating the

presence of perforin and granzyme B in T cells from CAR patients,

resulting the cleavage of fibronectin extra domain B-positive cells

and the induction of apoptosis, effective therapeutic interventions

are still pending (158, 182, 183). In addition, blocking immune

checkpoints can alleviate the suppression of the expression

of perforin and granzymes, enhancing cytotoxicity (184).

Furthermore, in in vitro experiments, it has been demonstrated

that the use of PD-1 blockade drugs can effectively boost the

cytotoxicity of gd T cells (185). Furthermore, in vitro, assays

revealed that either Bacillus Calmette-Guéri or Zoledronate
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treatment of bladder tumor cells induced granzymes (186).

Ongoing experiments are focused on investigating fluorescent

biosensors, allowing for a more specific and sensitive assessment

of granzyme B activity (187).

Compared to the involvement of granzyme and perforin, the

Fas/FasL pathway and secreted cytokines, as another potent anti-

tumor target, can significantly and directly enhance the tumor-

killing efficacy (188). Traditional chemotherapy drugs like

Doxorubicin and Methotrexate induce DNA damage in immune

cells, leading to the expression of FasL on their surface to bolster the

effectiveness of the immune system (189, 190). Undoubtedly, the

application of antibodies, such as R-125224, is undeniable in this

context. Moreover, FasL gene therapy is also actively under

development, though its practical implementation remains

contentious. Common delivery methods encompass adenovirus

delivery, FasL-engineered cell delivery, and attenuated bacterial

delivery (191). Despite, IFN-g being an FDA-approved drug for

treating chronic granulomatous disease and osteopetrosis, its

approval for malignancy treatment is currently pending (192).

Given the evolving landscape of direct tumor-modulating

mechanisms of immune cells, strategies to curtail tumor cell

proliferation and inhibit blood vessel growth have garnered

exploration (Table 1). Despite their crucial role in regulating

tumor cell proliferation, differentiation, and apoptosis (193), the

precise mechanisms and long-term consequences of STAT3 and

STAT5 remain relatively unknown (194). Among the few inhibitors

targeting the SH2 domain of STAT3 and interacting with STAT5,

OPB-31121 has shown anti-tumor activity in leukemia, with

ongoing phase I/II clinical trials assessing efficacy against solid

tumors and hematopoietic cancers (195).

The prominence of EMT in tumor progression has galvanized

extensive research into approaches for tumor treatment (196, 197)

(Table 1). In a recent investigation, Soundararajan et al. embarked

on exploring the potential of combining EMT therapy to overcome

resistance to immunotherapy, presenting a promising strategy for

enhancing treatment outcomes (198, 199). Targeting upstream

pathways of EMT can significantly inhibit tumor growth, with

TGF-b signaling being the most prominent inducer of EMT

(200). Extensive research has focused on evaluating the

effectiveness of TGF-b inhibitors, such as LY2157299, as potent

anti-EMT compounds in ongoing clinical trials (201, 202).

Similarly, targeting upstream transcription factors of EMT has

been proposed as a feasible therapeutic alternative for invasive

cancers (203–206). Furthermore, another treatment option for

EMT-dependent cancers is targeting the stromal cells, with an

exciting approach being to target the stromal cells themselves by

inhibiting stroma-specific proteins with monoclonal antibodies

(207). This has been validated in a mouse model of breast cancer

(208). However, the current therapeutic approaches for EMT

programs remain rudimentary, suggesting an exciting avenue for

future developments in highly effective therapies to manage high-

grade tumor malignancies.

In addition to the aforementioned factors, MMPs are other

major mediators for metastasis and invasion of tumor cells in the

tumor microenvironment (209) (Table 1). Though attempts to

develop drugs targeting MMPs were made twenty-five years ago,
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inhibitors (MPIs) yielded disappointing, failing to improve survival

rates for cancer patients. The limited efficacy of MPIs for palliative

care has been widely recognized (201). Currently, MMP inhibitory

monoclonal antibodies are considered promising MMP-targeted

therapies, as they offer higher target selectivity and better

pharmacokinetic properties compared to small molecule drugs

(210). Inhibitory monoclonal antibodies targeting individual

MMP-9 and MMP-14 have been developed and demonstrated

anti-tumor activity in preclinical models of breast cancer, which

could become a promising area of research in the future (211–214).

Ultimately, interfering with tumor vasculature has emerged as a

promising strategy to inhibit tumor growth (202, 215, 216)

(Table 1). Notably, Bevacizumab(anti-VEGF), an FDA-approved

drug for previously untreated metastatic colorectal cancer, has

demonstrated remarkable effects, extending its application to

diverse malignant tumors, including NSCLC, renal cell

carcinoma, ovarian cancer, and cervical cancer (215, 217).

Another fusion protein capable of effectively targeting

angiogenesis by inhibiting VEGF-A, VEGF-B, and placental

growth factor is Ziv-aflibercept, which has also been brought to

market. It is worth noting that, compared to bevacizumab, it

exhibits a higher binding affinity to VEGF-A (218, 219).

Additionally, Ramucirumab is a human IgG1 monoclonal

antibody that acts as an inhibitor of VEGFR2 (220). It works by

binding to and inhibiting the activation of VEGFR2, thereby

suppressing the signaling pathways mediated by VEGF (220).

other drugs like Aflibercept are currently under development,

showing promising potential in inhibiting tumor vasculature (221).
5 Conclusions

Despite significant progress in cancer treatment, the ongoing

existence of malignant tumors highlights persistent challenges such

as immune suppression, evasion, and tolerance. Given the pivotal

role of immune cells within the TME, this review comprehensively

delves into the direct, intricate, and bidirectional impacts they exert

on tumor cells. These dynamic interactions unveil a complex

pattern, wherein distinct immune cell cohorts may paradoxically

propel tumor progression or incite robust antitumor responses

across varied tumor microenvironments. Precision interventions

aimed at enhancing immune cell cytotoxicity or diminishing their

tumor-promoting effects show promise in overcoming the

challenges presented by the dual nature of immune cells and the

intricate landscape of indirect immune regulation.

However, in the overall scheme, the efficacy of tumor treatment

is closely related to the immune environment of tumor patients,

going beyond just describing the direct interactions between

immune cells and tumor cells as outlined in this paper. The

indirect influences of immune cells, including the regulation of T

cells and fibroblasts, need to be considered. Additionally, the

emergence of novel immune cell markers may indicate the

emergence of diverse subgroups of immune cells with various

functionalities and contributions to tumor biology. These new

insights challenge traditional paradigms of immune polarization,
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emphasizing the importance of a detailed understanding of immune

cell heterogeneity in oncology and highlighting the complex

composition of immune cell biology. Therefore, exploring the

intricately complex components of the tumor microenvironment,

understanding their specific, direct mechanisms of action, can yield

valuable insights into slowing tumor progression, controlling drug

resistance, and more.
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Glossary

FAS Factor associated suicide

FASL Factor associated suicide ligand

TRAIL Tumor necrosis associated apoptosis-inducing ligand

HER2 Human epidermal growth factor receptor 2

TNF Tumor necrosis factor

INK4a The inhibitor of cyclin-dependent kinase 4a

Blimp-1 B-lymphocyte-induced maturation protein 1

VEGF-A Vascular endothelial growth factor-A

PGE2 Prostaglandin E2

MHC Major histocompatibility complex

PBMCs Peripheral blood mononuclear

IPP Isopentenyl pyrophosphate

SCCHN Squamous cell carcinoma of the head and neck

CMA Concanamycin A

ADCC Antibody-dependent cell-mediated cytotoxicity

ILCs Innate lymphoid cells

NFAT Nuclear factor of activated T cells

LTi Lymphoid tissue inducer cells

TAMs Tumor-associated macrophages

M1 macrophages M1-type macrophages

M2 macrophages M2-type macrophages

ROS Reactive oxygen species

iNOS Nitric oxide synthases

NO Nitric oxide

ROI Reactive oxygen intermediates

HMGB1 High mobility group box one protein

MBP Major basic protein

ECP Eosinophil cationic protein

EPX Eosinophil peroxidase

LPS Lipopolysaccharide

EMT Epithelial-mesenchymal transition

STAT6 Signal Transducer and Activator of Transcription 6

MAPK Mitogen-activated protein kinases

PDAC Pancreatic ductal adenocarcinoma

IRS Insulin receptor substrates

JAK Janus kinase

CCL20 C-C chemokine ligand 20

NSCLC Non-squamous non-small cell lung cancer

(Continued)
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MMPs Expressing matrix metalloproteinases

CSF-1 Macrophage-colony stimulating factor

LECs Lymphatic endothelial cells

ADM TAM-derived adrenomedullin

CHI3L1 Chitinase 3-like protein -1

M-CSF Macrophage colony-stimulating factor

CCR2 CC chemokine receptor 2

PD-1 Programmed death 1

CTLA-4 Cytotoxic T lymphocyte-associated antigen-4

PDL-1 Programmed cell death-ligand 1

LAG-3 Lymphocyte activation gene-3

TIM-3 T-cell immunoglobulin and mucin-domain containing-3

CAR-T Chimeric antigen receptor-modified T

MPIs Metalloproteinase inhibitors

CXCL9 C-X-C motif chemokine ligand 9

SPP1 secreted phosphoprotein 1

TWEAK tumor necrosis factor-like weak inducer of apoptosis
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