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Alternative splicing (AS) is an important molecular biological mechanism

regulated by complex mechanisms involving a plethora of cis and trans-acting

elements. Furthermore, AS is tissue specific and altered in various pathologies,

including infectious, inflammatory, and neoplastic diseases. Recently developed

immuno-oncological therapies include monoclonal antibodies (mAbs) and

chimeric antigen receptor (CAR) T cells targeting, among others, immune

checkpoint (ICP) molecules. Despite therapeutic successes have been

demonstrated, only a limited number of patients showed long-term benefit

from these therapies with tumor entity-related differential response rates were

observed. Interestingly, splice variants of common immunotherapeutic targets

generated by AS are able to completely escape and/or reduce the efficacy of

mAb- and/or CAR-based tumor immunotherapies. Therefore, the analyses of

splicing patterns of targeted molecules in tumor specimens prior to therapy

might help correct stratification, thereby increasing therapy success by antibody

panel selection and antibody dosages. In addition, the expression of certain

splicing factors has been linked with the patients’ outcome, thereby highlighting

their putative prognostic potential. Outstanding questions are addressed to

translate the findings into clinical application. This review article provides an

overview of the role of AS in (tumor) diseases, its molecular mechanisms, clinical

relevance, and therapy response.
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1 Introduction

RNA splicing is a fundamentally highly regulated process in the

expression of most genes, mediated by the spliceosome removing

introns from unspliced pre-RNA to produce mature mRNAs, but

also affecting nuclear export, mRNA translation, and quality control

(1, 2). The principles of constitutive splicing, including the

composition and structure of the spliceosomal complexity, have

been recently summarized (3). Its function in eukaryotic cells is to

produce numerous transcript variants of mRNAs from an initial

single unspliced pre-mRNA, leading to increased protein diversity

with elevated structural, functional and in some cases even catalytic

complexity. Approximately 95% of human genes show splicing, a

molecular process of selecting different splice site combinations

(4–6).
1.1 Alternative splicing – features and
molecular mechanisms

The simple splicing of introns followed by exon ligation is

known as constitutive splicing, which occurs for most intron

containing genes (7). Apart from this, alternative splicing (AS)

provides an additional level of regulation and can dramatically

increase the number of resulting splice variants (8). This could be

controlled by the strength of the splice sites, which is modulated by

cis-acting regulatory elements, like sequences with regulatory

potential within the intron and/or exon. For example,

homozygous single nucleotide polymorphisms (SNPs) in splicing

relevant sites within the non-coding introns can affect the AS and,

consequently, the resulting final coding mRNA. In addition, the

length of exons/introns and even the expression of molecules

involved in the splicing process, like trans-acting factors and

RNA-binding proteins (RBPs), have an impact on the resulting

splicing pattern (9–11).

On average, there exist 8.8 exons and 7.8 introns per annotated

gene. Interestingly, the total length of introns and intergenic DNA
Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; ADCP,

antibody-dependent cellular phagocytosis; AML; acute myeloid leukemia; APC,

antigen presenting cell; AS, alternative splicing; BMI, body mass index; CAR,

chimeric antigen receptor; CLL, chronic lymphocytic leukemia; CR, calorie

restriction; DMD, duchenne muscular dystrophy; DNA, deoxyribonucleic acid;

dsDNA, double stranded DNA; EBV, Epstein-Barr-Virus; e.g., exempli gratia;

FDA, Food and Drug Administration; HBV, hepatitis B virus; HCV, hepatitis C

virus; HHV, human herpes virus; HLA, human leukocyte antigen; hnRNPs,

heterogeneous nuclear ribonucleoproteins; HPV, human papilloma virus; HTLV-

1, human T-lymphotropic virus; ICP, immune checkpoint; IL, interleukin;

KSHV, Kaposi’s sarcoma-associated herpesvirus; mAb, monoclonal antibody;

MCByV, Merkel cell polyomavirus; MDS, myelodysplastic syndrome; miR,

microRNA; MPN, myeloproliferative neoplasm; mRNA, messenger RNA; nt,

nucleotide; RBP, RNA binding protein; RNA, ribonucleic acid; snRNA, small

nuclear RNA; snRNPs, small nuclear ribonucleic proteins; SNP, single nucleotide

polymorphism; ss, single stranded; TMB, tumor mutational burden; TME, tumor

microenvironment; UTR, untranslated region.
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on each chromosome is significantly correlated with the size of the

chromosome (12). A recent study analyzed 21,106 human genes

and identified 14.8% of these genes with evidences of at least one

intron retention, usually limited to the untranslated regions

(UTRs; (13)).

Next to intron retention, four other mechanisms of AS, namely

exon skipping, alternative 5’ splice site, alternative 3’ splice site and

coordinated exon splicing, have been identified. The alternative

exon splicing leading to exon skipping is inducible and, meanwhile,

even employed as a molecular therapeutic strategy for, e.g.,

duchenne muscular dystrophy (DMD). DMD patients with

mutations frequently leading to an early stop codon within exon

51 can be treated with anti-sense oligoribonucleotides, specifically

binding to this exon 51. As consequence, the mutated exon 51 and

its flanking introns are spliced out, resulting in a mRNA that lacks

exon 51 but has a restored reading frame encoding a shortened but

at least partially functional dystrophin protein (14).

Alternative 5’ splice site and alternative 3`splice site are less

common compared to exon skipping, and both AS mechanisms

represent an intermediate state between constitutive and alternative

cassette exons. The respective exon has on one site a fixed splice site

and on the other site two or more competing splice sites, leading

after splicing to different lengths of these regions (15). The fifth

mechanism of AS forming “mutually exclusive exons” describes a

splicing event with coordinated exon splicing – thus, one exon or

one group of exons is retained, while the other exon or group of

exons is spliced out. This splicing mechanism is less disruptive to

the later protein structure and is frequently found for ion channels

and membranous transporters (16, 17). It is noteworthy, that not all

resulting splice variants are protein encoding and several protein-

coding genes express long non-coding RNA splice variants and can

even generate circular RNAs next to their canonical mRNA

transcripts (18).

The spliceosome, which does not exist in prokaryotes and

archaea and represents one of the most complex molecular

machineries catalyzes two transesterification reactions for

successful splicing (19). It consists, in general, of five small

nuclear RNAs (snRNAs) and over a hundred proteins. So far, two

different spliceosomal complexes, the major and the minor

spliceosome, can be distinguished, whereby each of them splices

its own introns (3, 20). The major spliceosome contains the

following five snRNAs: U1, U2, U4, U5, and U6, while the minor

spliceosome has the five snRNAs U11, U12, U4atac, U6atac, and U5

(21). Depending on the organism, the major (also named U2-

dependent) spliceosome excises approximately 99.5% of introns,

while the minor (or U12-dependent) spliceosome excises about

0.5% of introns. Usually only one intron in a gene can be U12-

dependent, while the other introns of the same gene are U2-

dependently spliced (22). The formation of the spliceosome

involves the stepwise assembly of small nuclear ribonucleic

proteins (snRNPs), e.g., in the case of the major spliceosome U1,

U2, U4/U6, and U5, as well as a large number of non-snRNP

proteins (23).

In general, the spliceosome recognizes splicing signals, which

are sequence elements located at the 5′ and 3′ of the splice sites, but
it remains unclear why certain splice sites are recognized and
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chosen, while others are not utilized (24). There exists a complex

synergy of different cis- acting elements, including the 5′ and 3’

splice site, the polypyrimidine tract, the branchpoint sequence, the

exonic/intronic splicing enhancers as well as exonic/intronic

splicing silencers (23). In addition, trans-acting factors, such as

RBPs, like the serine arginine-rich proteins and the heterogeneous

nuclear ribonucleoproteins (hnRNPs), transcript modifications,

and RNA secondary structures are contributing to the complex

splicing process (25). Furthermore, the different RNA-binding

motifs of SR proteins and hnRNP can also indirectly induce or

reduce the gene expression of genes, including, among others, ICP

molecules. For example, hnRNP C induces p65 and thereby

indirectly CD80 and CD40 (26).

In addition, recent research has discovered altered AS in cells

exposed to many kinds of stresses, like aging, viral infections,

neoplastic transformation, and even chronic inflammation (27–

29). Although AS is a key process for increasing the transcriptome

and proteomic diversity, there exist a lack in the understanding of

the functional consequences of these changes. Furthermore, AS is

interconnected with other molecular regulatory processes at the

epigenetic, transcriptional, and posttranscriptional levels (30).

The cellular AS also affects microRNAs (MiRs), which are small

(~21 nts) non-coding RNAs binding sequence specifically to their

target mRNAs, leading to translational inhibition as well as mRNA

decay. This binding occurs preferentially, but not exclusively, to the

3’-untranslated region (UTR) (31). Since intron retention in

eukaryotes predominantly occurs within the UTRs, but also in the

case of microRNA (miR) binding within the coding sequence, splice

variant-specific regulation by miRs in the host cell might be possible

for various transcripts. In addition, indirect effects of miRs on AS

should be considered, for instance, if a splicing regulating factor of

the host cell is disbalanced/targeted by miRs, causing alterations to

the AS pattern.

Interestingly, even oncogenic viruses like human herpes virus

(HHV) and human papilloma virus (HPV) encode for their own

miRs, but these molecules and their regulatory potential for AS have

not yet been addressed in detail.

Independently of virus-encoded or endogenous human miRs,

the context of miRs and AS also includes the human introns, where

about 60% of the human endogenous miRs are encoded (32). The

down-regulation of classified anti-tumoral acting endogenous miRs,

like hsa-miR-34A-5p, or the overexpression of oncogenic miRs, like

hsa-miR-21-5p, represent stand-alone molecular mechanisms able

to cause malignant transformation (33, 34).

Since splicing profiles of healthy and viral infected or neoplastic

transformed cells displaying a high diversity associated with a

widely deregulated AS in tumor diseases. Therefore, there is a

specific focus on the protein coding splice variants of selected

tumor immune checkpoint (ICP) molecules, which frequently

exert altered expression and/or altered AS in neoplastic diseases

but also already in conditions contributing to oncogenic

transformation like oncogenic viral infections or chronic

inflammatory diseases.
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2 Altered alternative splicing in virus-
induced and neoplastic diseases

High-throughput analyses revealed that AS regulates and is

regulated by many biological processes. Splicing profiles of healthy,

virus-infected and/or neoplastic transformed cells display a high

diversity associated with a widely deregulated AS in cancer.

Therefore, a specific focus is on the protein-coding splice variants

of selected tumor immune checkpoint (ICP) molecules, which

frequently exert altered expression and/or AS in tumor diseases,

but also already in conditions contributing to oncogenic

transformation like oncogenic viral infections or chronic

inflammation. These features can influence the efficacy of

(immune)therapies, and they can provide novel treatment

opportunities. The relevance of AS for therapeutic approaches is

exemplified and discussed for different immunological (anti-

tumoral) therapies. All the above mentioned issues will be

addressed in the following parts in much more detail under the

aspect of altered AS and its putative role for respective therapies

focusing on immune-based targeted oncological therapies, which

strongly depend on the structure (for instance, the existence and/or

steric accessibility of the respective epitope).
2.1 Altered alternative splicing in selected
oncogenic viral diseases

Certain viral infections are associated with the development of

several tumor types, and such oncoviruses are implicated in

approximately 15-20% of all human cancers (35). Oncogenic

viruses can convert normal cells into cancer cells by modulating

different metabolic pathways, altering genomic integrity mechanisms

as well as the expression of immune modulatory molecules, and

inhibiting the apoptotic pathways associated with enhanced cell

proliferation. So far, seven oncogenic viruses have been identified

to promote tumorigenesis. These include the DNA viruses HPV,

HBV, EBV, KSHV, MCByV) and the RNA viruses HCV and HTLV-

1. For certain viruses, the splicing machinery is highjacked to

produced viral proteins and maintain the life cycle of the virus

(36). Therefore, it is not surprising that viruses can also affect the

molecular processes of AS, leading to the diversification of the viral

proteome and an altered splicing pattern within the host cell. This

also affects mRNAs of genes with relevance for immune surveillance

and immune evasion, indicating co-evolutionary formed molecular

interactions between the host and viruses as a result of selective

pressure. Indeed, splicing variants of innate but also of adaptive

immune response have been shown to exhibit viral defense (2, 36, 37).

Even in plant immunity, AS plays an important role due to the

generation of specialized splicing variants of plant resistance genes

against pathogen infections, such as plant viruses (2). Furthermore,

certain viral encoded transcripts can be spliced by the host cell, which

is so far known for adenoviruses and cytomegaloviruses (14, 38, 39).
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Currently, an increasing number of publications describe

different human viruses interfering with AS to prevent immune

recognition. These viruses range from ss/dsRNA viruses, like, inter

alia, Influenza A, Zika, Dengue virus, Lentivirus and also SARS-CoV-

2 to dsDNA viruses, like, e.g., human herpes viruses, as well as

papilloma viruses (HPV) (40, 41). The high-risk variants of HPV and

a g-subfamily of the human Herpes viruses consisting of Epstein-Barr

Virus (EBV, HHV4) as well as Kaposi’s sarcoma-associated herpes

virus (KSHV, HHV8) have a strong oncogenic potential (42, 43). This

raises the question, whether the virus-driven impact on AS

contributes to the molecular processes of malignant transformation.

For EBV, the two long non-coding RNAs EBER1 and EBER2, which

are expressed even during the different latency phases, have been

reported to interfere with AS within the infected host cells (35, 41, 44).

In addition, comparative analyses revealed an impact of the AS

process mediated by the Hepatitis B Virus (HBV) and Hepatitis C

Virus (HCV) and identified some host cell genes with an altered AS

with relevance to carcinogenesis (45) thereby supporting the hypothesis

that viral-driven altered AS patterns in the infected host cell contribute

to malignant transformation. During disease progression, an increasing

number of host cell genes become altered in their expression, associated

with an accumulation of disbalanced AS patterns.
2.2 Altered alternative splicing in cancer

High-throughput RNA sequencing studies demonstrated that

neoplastic diseases are characterized by transcriptome-wide

aberrant splicing when compared to normal tissues. In fact,

deregulated RNA splicing is a very common molecular feature

that exists in almost all tumor types, including solid tumors as well

as hematological neoplasms. These splicing abnormalities influence

all steps of oncogenesis, which is clearly underlined by disrupting

physiological processes, involving different tumor suppressors and

oncogenes, promoting cell cycle and the epithelial-to-mesenchymal

transition, as well as enhancing cellular metabolism (2, 35, 36).

Comprehensive bioinformatics analysis demonstrated AS

signatures that were associated with malignant transformation in

kidney tumors by altering metabolic pathways (37). Moreover, AS

can increase cell proliferation and can suppress apoptotic pathways in

tumor cells. In a very recent study, integrated multi-omics analyses

identified CDCA5 as a prognostic biomarker in colon cancer that was

significantly associated with AS. AS is involved in the progression and

metastatic spread of neoplastic diseases and affects the local tumor

microenvironment (TME) thereby regulating the immune cell

response (38–40) and enhancing tumor progression (41, 42). It

influences the repertoire as well as the frequency and function of

different immune cell subsets and is correlated with the tumor

mutational burden (TMB), which is linked to immunological

features like immune cell subpopulations and ICP expression (43).

Altogether, AS is involved in the generation of anti-tumor immune

responses as well as immune evasion of malignant cells, which has

been recently comprehensively summarized (2, 35, 36, 41). AS is

often correlated with a more aggressive tumor phenotype and

resistance to chemotherapy (2, 35, 36, 44), targeted therapy, and

immunotherapy (45) as shown for a variety of different drugs,
Frontiers in Immunology 04
including therapeutic antibodies like Rituximab (anti-CD20),

Blinatumomab (anti-CD19), or the selective estrogen receptor

modulator Tamoxifen (45–48).

Despite the extent to which cancer-related AS drives

pathogenesis, disease progression, and resistance to therapy is still

under investigation (49), several studies showed that recurrent

somatic mutations and altered expression of trans-acting factors

governing splicing catalysis and regulation cause AS in neoplastic

diseases (2, 49). In order to uncover genetic aberrations that are

associated with AS, genomic studies were performed and identified

mutations in the RNA splicing machinery or spliceosomal factors

with the highest prevalence in hematopoietic malignancies,

including all forms of myeloid neoplasms (31, 33, 38), but have

also been detected at lower frequency in solid tumors (32, 34, 50,

51). A high number of hot spot mutations were found in

components of the spliceosomal complex, such as SF3B1, U2AF1,

SRSF2, and ZRSR2, that are largely exclusive to each other (31). A

summary of the frequency of the genetic alterations in the respective

splice factors is provided in Table 1.

Analyzing the impact of genetic splice factor alterations on

intracellular signaling revealed an activation of transcription factor

c-myc in human and mouse cells by SF3B1 mutations. These

mutations promoted the decay of mRNA transcripts encoding the

PP2A subunit PPP2R5A, thereby increasing the phosphorylation of

c-myc S62 and BCL2 S70, which supports c-myc protein stability and

impairs apoptosis, respectively (66). In contrast, due to SRSF2 gene

mutations, the sequence-specific RNA-binding activity is altered,

thereby changing the recognition of specific exonic splicing

enhancer motifs and driving recurrent mis-splicing of key cell

regulators (67). Concerning U2AF1 gene mutations, an activation

of the transcription factor FOXO3a that mediates a variety of cellular

processes, including apoptosis, proliferation, cell cycle progression,

and DNA damage has been described (68, 69). Furthermore,

mutations in splicing factors have a context-dependent prognostic

value (70, 71). Studies in patients with myelodysplastic neoplasms

(MDS) demonstrated that patients carrying an SF3B1 mutation have

a significantly better prognosis compared with patients without

SF3B1 mutations (72–74). However, patients with mutations in

SRSF2 and U2AF1 have been shown to have an adverse outcome in

MDS and AML (38, 75–77), while others showed no significant

prognostic impact of mutations in U2AF1, ZRSR2, and SF3B1 on

patients’ outcome (78). Beyond genomic alterations, the expression of

different AS-related splice variants has prognostic value. In prostate

cancer, the most common male tumor type, transcriptomic analysis

of AS revealed prognostic signatures effectively distinguishing high-

risk and low risk patients (79), while epigenetic changes and SRSF2

modifications can enhance T cell exhaustion by histone modification

of several ICP molecule genes (80).

Furthermore, the hallmark of the cancer “genome instability and

mutation” impairs AS pattern, driving the cell towards malignant

transformation. So far, several mutations in cancer-related genes have

been reported with altered AS, including mutated KRAS, leading to

reduced anti-tumoral immune surveillance (46). In addition, mutated

p53 has also been reported to alter AS, thereby activating oncogenic

RAS signaling (47). Interestingly, AS may also induce malignant

transformation by the two p53 negative regulators MDM2 and
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MDM4 (MDMX), which are characterized by the existence of more

than 70 splice variants for MDM2 (48) and 8 for MDM4 (49), some

of which are tumor associated due to their ability to downregulate the

tumor suppressor p53 more efficiently than other splice variants,

underscoring again the relevance of AS for malignant transformation.

In recent years, inflammation has been shown to favor

carcinogenesis, malignant transformation, tumor growth,

invasion, and metastatic spread (50). This can be due to faulty

immune system regulation, dysbiosis, chronic stress, or other

environmental factors, which also affect AS (51, 66–72).

Furthermore, obesity (body mass index, BMI ≥30) that is

associated with chronic low-grade inflammation is linked to

numerous diseases like type 2 diabetes, fatty liver disease,

atherosclerosis, and cardiovascular disorders, but also to many

tumor types, including colorectal cancer, renal cancer, post-

menopausal breast cancer, esophageal adenocarcinoma, thyroid

cancer, endometrial cancer, leukemia, and prostate cancer (75). In

fact, the insulin receptor, the leptin receptor, as well as the

transcriptional coactivator lipin-1 (required for adipocyte

differentiation and lipid metabolism) exert mis-splicing in obesity.
3 Alternative splicing of
immunomodulatory molecules with
consequences for immunotherapies

The complex regulation of immunological surveillance is a

finely balanced process characterized by the induction of immune

response. Furthermore, the existence of immune-privileged tissues

such as cytotrophoblasts in the placenta, cornea tissue and
Frontiers in Immunology 05
endocrine pancreatic islets, in which inflammation must be

avoided to prevent irreversible tissue damage followed by

functional loss, requires rigorously controlled expression levels of

molecules inhibiting immune surveillance and enhancing local

limited immune evasion. Frequently, the same molecular

mechanisms used for establishing such physiological immune-

privileged tissues can be detected as pathophysiological immune

evasion strategies of solid and hematopoietic tumors, as well as of

many viral, bacterial, and even fungal infectious diseases, and also

with relevance of certain inflammatory diseases (81).
3.1 Alternative splicing of non-classical
HLA class Ib molecules

Inhibition of immunological surveillance in immune-privileged

tissues is achieved by various mechanisms, including the down-

regulation of classical human leukocyte antigen (HLA) class Ia

molecules (HLA-A, -B, -C) leading to reduced antigen presentation

to CD8 positive cytotoxic T lymphocytes (CTLs), which is

absolutely crucial in the chorion of the placenta to protect the

developing fetus with its paternal antigens from maternal

immunity. In addition, non-classical HLA class Ib molecules

(HLA-G, -E) have a physiologically tightly regulated expression

that is restricted to immune-privileged tissues. Their predominant

function shifted from antigen presentation to a role as ligand for

strong inhibitory receptors present on all immune effector cells,

with HLA-G as ligand for the inhibitory receptors ILT2/LILRB1

(monocytes, dendritic cells, macrophages, B cells, T cells, NK cells),

ILT4/LILRB2 (monocytes, dendritic cells, macrophages), KIR2DL4
TABLE 1 Summary of the frequency of mutations in splicing factors in different neoplasias.

SF3B1 SRSF2 U2AF1 ZRSR2 Reference

Hematopoetic tumors

MDS 12-31% 9-18% 8-11% 8% (52–55)

MPN 6% 8% 4% 3-7% (52)

MDS/MPN 9% 22-44% 6% 3% (55, 56)

AML 5% 12% 4-7% 3% (54, 56)

CLL 5- 18% (57)

Cancer

Breast Cancer 1.8% 0.1% 0.2% 0.2% (58)

Pancreatic Cancer 4% (59)

Lung Cancer 3% (60)

Prostate Cancer 1% 0.5% (61)

Melanoma

Uveal melanoma 15-37% (62, 63)

Leptomeningeal melanoma 33% (64)

Central nervous system tumors

Prolactinoma 19% (65)
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(NK cells, T cells), as well as HLA-E as ligand for the inhibitory

receptor NKG2A (NK cells, T cells) (82). Interestingly, HLA-G is

the only HLA class Ia/b molecule characterized by the existence of

AS. So far, 7 different HLA-G splice variants have been defined,

from which HLA-G1 to G4 encode for membranous proteins, while

HLA-G5-G7 encode for secreted proteins due to the loss of the

transmembrane domain (Table 2). Recently, a novel HLA-G splice

variant, namely HLA-GDa1, has been reported. It lacks the peptide

binding groove and does not exert any immune inhibitory function

on peripheral blood T and NK cells, which strongly underlines the

relevance of AS for the generation of diversity (107).

The HLA-G1 and –G5 splice variants exert the highest

abundancies. Despite soluble HLA-G fulfills its inhibitory

functions in the local micromilieu, it can also be detected in the

peripheral blood. For example, elevated HLA-G levels were detected

in the peripheral blood of pregnant women, which is even stronger

in multigravid women compared to primigravid women (108).

Furthermore, elevated sHLA-G serum levels can be more

commonly detected in patients with many solid and

hematopoietic tumor diseases (109). Recently, BND-22 a

monoclonal antibody against ILT2, entered clinical studies with

promising results in anti-tumor therapy (110). Furthermore, the

efficacy and toxicity of HLA-G-specific CAR-T cells are currently

being investigated in clinical trials (111).

In addition to the HLA class Ib molecules, other immune

checkpoint (ICP) molecules contribute to the integrity of

immune-privileged tissues as well as immune evasion strategies in

tumors, which correlate with reduced patient survival rates

(112, 113).
3.2 Alternative splicing and its
consequences of the PD1/PD-L1 and
CTLA4 axes

A potent inhibitor of costimulation as a second signal for

monitoring T cell response is the inhibitory receptor PD-1

expressed on monocytes, dendritic cells, macrophages, B cells, T

cells, and NK cells (114). Recent literature reports different PD1 splice

variants next to the full length transcript (97). Due to splicing of exon

3, the PD1D3 variant is formed, which encodes for a soluble PD1

protein, which is secreted and indeed interferes with proper

inhibitory signaling by binding and sterically blocking its ligands

PD-L1 and PD-L2 on the potential target cells for any further binding

of the actual membraneous PD1 on immune effector cells, thereby

leading to their inhibition (competition). Recently, the clinical

relevance of this PD1D3 splice variant has been reported for non-

small cell lung cancer (98). In this context, it is noteworthy that the

anti-PD-1 therapeutic mAbs Nivolumab and Pembrolizumab bind

PD-1 in exon 2, since PD-1 splice variants lacking exon 2 have been

reported. This should be considered absolutely therapy relevant and

influences mAb efficacy (Tables 2, 3). Next to AS of PD-1 soluble and

membraneous isoforms of its PD-L1 ligand were identified. The

soluble/secreted PD-L1 (secPD-L1) deploys its inhibitory functions to

potential immune effector cells in complete analogy to soluble
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TABLE 2 Summary of known splice variants in anti-tumor therapy
relevant ICP molecules.

ICP
Number of

known alternative
splicing variants

Clinical
relevance
of splicing
variants

Reference

B7-1/CD80

3 (1 membranous full
length and 2 soluble

variants
s1CD80 and s2CD80)

soluble sCD80-
varians inhibit

T cells
(83)

B7-2/CD86

3 (1 membranous full
length and 2 soluble

variants sCD86
and CD86DTM)

soluble variante
sCD86 shows
activating
functions

(84, 85)

CD40
3 (1 full length, 1 soluble
variant and 1 variant with
low ligand binding affinity

indirect
inhibitory
function of
soluble CD40

(86, 87)

CD44
2 (standard (CD44s) and
variant (CD44v) isoforms)

not determined (88)

CTLA4

3 (1 membranous full
length, 1 membranous

without exon 2 (liCTLA4)
and 1 secreted variant

without exon 3 (sCTLA4);
exon 3 encodes

transmembrane domain)

indirect
inhibitory
function of

soluble sCTLA4

(89–92)

CD155/
PVR

4 (membranous a- and d-
isoform with exon 6,
soluble b isoform with
partially loss of exon 6,
soluble g isoform with
complete loss of exon 6)

NK and T cell
inhibition,

soluble CD155
with putative
impact on
monoclonal
antibody
therapy in
analogy to
soluble PD-
L1 isoforms

(93, 94)

HLA-G

7 (4 membrane-bound
(HLA-G1-4) and 3 solube
variants (HLA-G5-7); exon

5 encodes
transmembrane domain)

NK and T cell
inhibition,

soluble HLA-G
with putative
impact on
monoclonal
antibody
therapy in
analogy to
soluble PD-
L1 isoforms

(81)

ILT2/ILT4

in addition to the
membranous variants: also

soluble ILT2/ILT4
variants detectable

not determined (95)

LAG3

2 (1 membranous full
length and 1 secreted
splice variant; exon 7

encodes
transmembrane domain)

membranous
LAG3 protein
inhibits T cells

(96)

PD-1

5 (2 membranous variants:
PD-L1 full length, PD-

1Deltaex2
and three secreted

clinical
relevance of
secreted
variants

(97, 98)

(Continued)
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HLA-G also within the micromilieu (99). Concerning PD-L2, up to 8

different splice variants have been reported with so far unknown

clinical relevance (133) (splice variants detailed listed in Table 2).

Next to PD1/PD-L1, AS also has relevance for the CTLA4 ICP

axis. The receptor CTLA4 on T cells mediates an inhibitory signaling

in combination with the ligands B7-1/CD80 and B7-2/CD86 mainly

expressed by professional antigen presenting cells (APCs). CTLA4

was the first ICP, which was targeted by mABs and implemented in

anti-tumor therapies. Next to the membraneous full length CTLA4,

at least 2 different splice variants exist – one variant with ligand

independent liCTLA4, lacking exon 2, and one soluble sCTLA4

variant lacking exon 3 (89, 90). Since the anti-CTLA4 mAbs

Ipilimumab and Tremelimumab bind CTLA4 in exon 2, they could

not inhibit the liCTLA4 splice variant, which is considered as therapy

relevant (Tables 2, 3). Regarding CD80, two soluble splice variants

can be generated, namely s1CD80 and s2CD80, which both exert

inhibitory signaling and functions analogous to soluble HLA-G and

PD-L1 (83). AS of CD86 can lead to the soluble splice variant sCD86

lacking the transmembrane domain/exon 6 (CD86DTM) and to
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another membranous splice variant B7-2C (84). Recently, the anti-

CD80 antibody Galiximab entered clinical trials [Table 3 (134)].
3.3 Alternative splicing also affects other
immune checkpoints, such as LAG3, TIGIT,
and CEACAM1

AS occurs also in the LAG-3/CD223 ICP axis. In addition to the

membraneous full length LAG3 transcript, one soluble splice

variant generated by AS has been reported, but no information

about a possible clinical relevance exists (135) (Table 2). LAG3

binds to HLA class II molecules of APCs with a higher affinity than

CD4 and leads to decreased cell proliferation and activity of these

immune effector cells, thus providing another mechanism of

immune evasion. Furthermore, tumor cells, e.g., melanoma cells,

can also express HLA class II molecules, which was correlated with

poorer survival of patients (136). LAG3 blockade using therapeutic

mAb, e.g., Relatlimab, is currently being implemented in clinical

trials for the treatment of cancer patients, frequently in combination

with Nivolumab in melanoma patients (137).

The ICP molecule TIM-3 exhibits one additional soluble splice

variant (105). Regarding TIGIT, an inhibitory receptor on NK and T

cells, and its ligand CD155/PVR four CD155 splicing variants have

been identified with the membranous a and d isoforms containing

the transmembrane domain (exon 6). The d isoform has an enlarged

exon 6 due to additional nucleotides at the end of exon 6. These

additional nucleotides of the d isoform encode for an early stop

codon, which leaves exon 7 and 8 untranslated. The soluble b isoform
partially lacks exon 6, while the soluble g isoform has a complete exon

6 loss (93, 94). Currently, the three therapeutic mAbs Vibostolimab,

Etigilimab, and Tiragolumab blocking the TIGIT ligand interactions

have entered clinical studies with promising results, as recently

reviewed by Rousseau and co-authors (138).

Furthermore, CEACAM1 (CD66a) has been identified as an

ICP molecule interfering with T, NK, and B cell functions. AS

generates 12 different CEACAM1 splice variants, including 3

secreted splice variants lacking the transmembrane domane

(CEACAM1-4C1, CEACAM1-3, CEACAM1-3C2). The anti-

CEACAM1 therapeutic mAb MRG1 binds to the N-terminal IgV

domain of CEACAM1 protein, which is present in all 12 splice

variants (106, 132). No clinical relevance of AS of CEACAM1 for

the respective antibody therapy has been reported, despite a

putative influence of the secreted isoforms is likely.

A summary of putative anti-tumor therapy relevant splicing

variants in ICP molecules is listed in Table 2 and clinically relevant

mAb as ICP inhibitors, including their epitopes, are summarized

in Table 3.
3.4 Reconsidering the impact of alternative
splicing on immune checkpoint therapies

Due to the fact that an increasing number of mAb based

therapies against the above mentioned ICP axes have already

successfully received or will receive clinical approval, the
TABLE 2 Continued

ICP
Number of

known alternative
splicing variants

Clinical
relevance
of splicing
variants

Reference

variants:
PD-1Deltaex3, PD-
1Deltaex2,3, and PD-
1Deltaex2,3,4; exon 3

encodes
transmembrane domain)

PD-L1

6 (1 membranous full
length, 1 membranous
delta IgV-like domain

(exon3) variant, 4 secreted
splice variants: PD-L1-1,
PD-L1-3, PD-L1-9; PD-
L1-12; exon 5 encodes

transmembrane domain)

clinical
relevance of
secreted

variants with
correlated
disease

progression

(99–101)

PD-L2

3 (1 membranous full
length, 1 membranous

without exon 3 containing
Ig constant-like domain
and 1 soluble isoform)

indirect
inhibitory
function of

soluble PD-L2

(102, 103)

SLAM6

3 (1 full length with
antagonistic effects on T
cells, 2 variants with

partially (SLAMF6D17–65)
and completely

(SLAMF6D18–128)
skipped exon 2)

SLAMF6D17–65
boosting T-cell

Effector
Functions

(104)

TIM-3
2 (1 membranous full
length and 1 secreted

splice variant)
T cell inhibition (105)

TIGIT not determined not determined –

CEACAM1

12 different splice variants;
with 3 secreted isoforms

(CEACAM1-4C1,
CEACAM1-3,

CEACAM1-3C2)

not determined (106)
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expression of at least secreted ICP ligand variants in the targeted

tumor tissues should be analyzed as crucial therapy relevant

markers prior to therapy selection. This is currently not the case,

but the costs of the respective (tumor) immunotherapies with mAbs

or CARs are by far higher than any analyses of the targeted ICP

molecule splice variants. Tumors with higher levels of secreted ICP

ligands and lower expression levels of membranous ICP ligands will

certainly be targeted worse by equal amounts of applied therapeutic

ICP ligand-binding mAbs, than in vice versa tumors, which is an

important aspect of the need for cost reduction, but also

optimization of treatment efficacy. It should be considered that a

single splicing factor potentially leading to an increased splicing of

one secreted ICP ligand is also able to increase the splicing of even

more co-expressed ICP ligands of other ICP axes with additive

effects for (tumor) immune evasion (Figure 1) highlighting the

potential relevant splice factors of ICP molecules as putative

prognostic markers with relevance for therapy selection. Recently,
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two splicing relevant RNA binding proteins, DHX9 and hnRNPM,

have been reported to exert prognostic relevance for ICP inhibitor

therapy in non-small cell lung cancer patients (139).

The AS also affects other tumor-relevant molecules apart from

the ICPs, which are not directly associated with the efficacy of ICPi

therapy. CD44 is a non-kinase cell surface transmembrane

glycoprotein that has been shown to play an important role in

malignant transformation and tumor progression (88). The full

length CD44 gene comprises 20 exons. However, the CD44 gene

regularly undergoes AS, resulting in the standard (CD44s) and

variant (CD44v) isoforms (88). The smaller and most widely

expressed CD44s consists of ten constant exons with no variant

exons. CD44v differs from CD44s by the insertion or excision of

alternatively spliced exons between the N-terminal and C-terminal

domains (140, 141). Hyaluronan is the major ligand of CD44, which

activates CD44 and results in the activation of cell signaling

pathways that influence cell proliferation and enhance cellular
TABLE 3 Summary of alternative splice variants of ICP molecules and their interaction with therapeutic ICP blockade.

Target Antibody-binding site Exon Consequence Reference

CTLA4

Ipilimumab front b-sheet of CTLA-4 and intersects with the CTLA-4:B7 recognition surface 2 splice variant liCTLA4
cannot be bound;

sCTLA4 can bind anti-
CTLA4 antibodies and

consecutive cell damage will
not be initiated

(115–117)

Tremelimumab The side chain atoms of CTLA4K1 and CTLA4K95 and main chain atoms of
CTLA4M3, CTLA4Q41, CTLA4M99, CTLA4Y104, CTLA4L106, and CTLA4I108

participate in the formation of hydrogen bonds between CTLA-4 and tremelimumab,
whereas CTLA4E97 participates in salt bridge formation.

2 (116, 118)

ILT2

BND22 D1 and D2 domains of ILT2 1 – 2 – (110, 119)

LAG-3

Relatlimab D1 and D2 domains of LAG3 4 – (120–122)

PD-1

Nivolumab N-loop, FG and BC loops of the IgV domain 2 splice variants lacking exon
2 have been described that
cannot be bound by anti-

PD-1 antibodies

(100, 123)

Pembrolizumab C′D loop in the sub-interface I contributes predominantly to the binding affinity
of permbrolizumab

2 (100, 124)

PD-L1

Atezolizumab interaction between PD-L1 and atezolizumab is mediated largely by residues within the
central CC′FG b-sheet of PD-L1 and the heavy chain of atezolizumab

2 sPD-L1 can bind anti-PD-L1
antibody and consecutive cell
damage will not be initiated

(100,
125, 126)

Avelumab The avelumab-binding epitope region on hPD-L1 is predominantly constituted by the C
strand, C′ strand, F strand, G strand and CC′ loop of hPD-L1

2 (100,
126, 127)

Durvalumab Most of the key interactions of PD-L1 with durvalumab are concentrated on the central
CC′FG b-sheet within PD-L1

2 (100,
125, 126)

BMS-936559 The side-chain atoms of PDL1D49, PDL1Y56 and PDL1H69 and main-chain atom of
PDL1A121 participate in the formation of hydrogen bonds between PD-L1 and BMS-

936559, while a salt bridge is formed by PDL1E58

2 (100,
118, 126)

TIGIT

Vibostolimab extracellular immunoglobulin variable region 2 – (128–130)

Tiragolumab extracellular immunoglobulin variable region 2 – (129–131)

CEACAM1

MRG1 N-terminal IgV domain
(present on all 12 splice variants)

2 – (132)
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motility (142). Although, the different functional roles of CD44s

and specific CD44v isoforms are not completely understood, an

important role of CD44v in malignancies has been shown. CD44v is

more frequently expressed in metastasized tumors, whereas

switching between CD44v and CD44s may play a role in

regulating epithelial to mesenchymal transition (142). Moreover,

CD44 monitors changes in the extracellular matrix in general, and

CD44v influences cell growth, survival, and differentiation (143).

CD44v contains additional peptide motifs that can interact with

growth factors and cytokines at the cell surface and passing these

signals through association with the actin cytoskeleton, thereby

functioning as coreceptors to facilitate cell signaling (142, 143). Due

to these changes in intra- and extracellular signaling an impaired

chemosensitivity has been demonstrated and can be enhanced by

knockdown of CD44 in acute myeloid leukemia (AML) cells (144).

In addition, CD44s has an independent prognostic significance in

hematological neoplasms and can serve as a marker for tumor

diagnostics as well as a molecular anti-tumor target for mAb-based

therapies or as a target for chimeric antigen receptors (CARs) (145).
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Thus, the AS of CD44 is a valuable example addressing the

complexity of the role of AS in targeted immunotherapies. In

contrast to the AS-mediated reduction in the efficacy of anti-

tumor therapies targeting these ICP splice variants, the AS of

CD44 creates novel molecular targets, which can be used for

novel anti-tumor immunotherapies.
4 Perspectives

4.1 Alternative splicing and its
clinical relevance

Deciphering the clinical role of AS is a very current focus of

research, which offers on the one hand the basis for novel (immuno)

therapies or therapeutic approaches in general, but on the other

hand, it must be noticed that AS creates various splice variants of

the same targeted molecule, and the balance between such possible

splice variants might be dramatically varying within patients
FIGURE 1

Alternatively spliced ICP ligands interfere tumor immunotherapies. Illustrated summary of alternatively spliced ICP ligands and their impact on anti-
tumor immunotherapies based on mAbs and CARs, as well as thought-provoking impulses to implement splicing factors in clinical prognostics and
diagnostics for optimal therapy success, as well as artificial exon skipping as a strategy to avoid the formation of secreted ICP ligands and to increase
anti-tumor (therapy) immune response (created with BioRender.com). I. The efficacy of therapeutic mAbs against certain ICP axes (e.g. HLA-G, PD-
L1, CD155, CD80) may be affected by AS of these molecules due to 1.) loss of antibody binding site (antigen escape) and/or 2.) loss of
transmembrane domain of the antigen resulting in secreted antigens causing a reduced or no further tumor cell lysis by ADCC, ADCP, complement
activation. II. The AS per se is affected by viral infection, chronic inflammation, malignant transformation, etc. biological processes, which
interestingly also induce the expression of certain ICP molecules. III. Is there any prognostic and diagnostic potential of regulatory trans-acting splice
factors like RBPs in tumor biopsies prior mAb/CAR therapy selection? IV. Tumor-associated CD44V splice variants as an example for AS based
generation of tumor neoantigens serving for novel targets of CARs and therapeutic mAbs. A mechanism, which can even be induced in analogy to
exon skipping. V. Putative CARs directed against antigens upon tumor cells (e.g., ICP ligands) are affected by altered AS of targeted antigens in/upon
tumor cells, which could lead to 1.) loss of antibody binding site and/or 2.) loss of transmembrane domain of the antigen, resulting in secreted
antigens, which will bind to CARs spatially remote from tumor cells ➔ steric blockage of the CARs ➔ no further cell lysis. In addition: secreted ICP
ligands inactivate (CAR) T/NK cells already in the tumor microenvironment as immune (therapy) escape.
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suffering from the same (tumor) disease, and that these diverging

splice variants also might be targeted differentially effective by the

same therapeutics, for instance by mAbs or CARs.

This point raises several important questions, whether the

splicing pattern of targeted molecules should be analyzed before a

panel of therapeutic antibodies or a certain CAR can be selected, in

dependency of, whether the targeted epitope is present in the most

abundant splice variants within the respective (tumor) tissue, which

also has relevance for anti-tumor vaccination. Subsequently, the

next question follows, even if the epitope is present in the most

expressed splice variants of the targeted molecule, will the presence

of predominantly secreted splice variants of the targeted molecule

require higher (expensive) antibody doses or vice versa lower

antibody doses if predominantly membranous splice variants are

expressed? In fact, secreted ICP ligands will bind their inhibitory

receptors upon immune effector cells, and also to the CAR upon the

CAR T/NK cells, or the therapeutic mAbs as ICP inhibitors, even

before these therapeutics can reach the tumor cell and could induce

cell lysis. Without antibody opsonization of the targeted (tumor)

cell no antibody-dependent cellular cytotoxicity (ADCC) and

phagocytosis (ADCP), and no complement activation can be

achieved (Figure 1).

Moreover, it should be analyzed whether AS alters the

expression variants of targeted molecules, e.g., ICPs as a

mechanism of ICP blockade resistance. Introducing an artificial T

cell receptor in (autologous) expanded and activated CTLs/NK cells

would allow their redirection towards the novel (tumor) antigen

before their injection into the patient. Predominantly, CAR T cell

therapies exert remarkable clinical results in certain hematological

malignancies, like B cell leukemia and lymphoma, using, e.g., CD19

as target antigen, which was the first CAR T cell therapy approved

by the US Food and Drug Administration (FDA) in 2017 (146).

Despite this success, 50% of patients relapse due to immune

rejection and T cell exhaustion, or epitope loss (147).

However, for CAR T cell therapy targeting different antigens and

ICPs, relevant splicing events have also been reported. For example, an

insufficient activity of the splicing factor SRSF3 has been linked to the

abundance of the CD19 Dex2 isoform in relapsed B cell leukemias after

CAR T cell therapy leading to resistance (148). In addition, AS driven

CAR T cell resistance was also found for CD22 due to skipping of

exons 5 and 6 and exon 2 leading to a deregulated splicing (149).

Certain limitations of CAR based anti-tumor therapies exist, such as

on-target off-tumor effects, antigen escape, low penetration in solid

tumors, and an inhibitory micromilieu of solid tumors of injected CAR

T cells (146), while the 5’-UTR reduces the transduction of CD20

mRNA, resulting in resistance to CD20-based immunotherapies (150).

However, it should be considered that the AS of such ligands can

generate secreted soluble isoforms, which are able to block the CAR

and inhibit the CAR T/NK cell activity before they even reach the

tumor cell. Furthermore, the production of soluble and secreted ICP

ligands can also act as an antigen escape mechanism. Tumor cells

secreting the antigen into the micromilieu instead of expressing it upon

their cell surface, will not be targeted by the CAR T/NK cells anymore.

The next point, which should be addressed in more detail, are

the splicing mechanisms of the targeted molecules, whether there
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are any trans-acting factors like RBPs involved, which could also be

of importance as putative prognostic or therapy relevant marker

genes, or even get targeted themselves by respective inhibitors in

combined therapies to increase the response rates of the (even more

expensive) mAbs/CAR therapies. However, the development of

inhibitors targeting RBPs or even SFs have been challenging due

to the lack of targetable catalytically active sites with the exception

of aryl sulfonamides (151).

As mentioned in the introduction, the artificial exon skipping of

mutated exon 51 in DMD patients offers a complete new level in the

treatment of certain human genetic diseases, already with

progressed stages. In the case of exon skipping in DMD patients,

various therapeutics have been approved by the FDA, and

meanwhile also other mutated exons can be targeted by the same

technique in DMD patients. Next to this, also the applied antisense

oligonucleotides have been improved over the years, newer ones

enhance exon skipping levels more than 100 times when compared

to the old ones, strongly underlining the future prospects of this

approach (152). Based on this, the authors hypothesize that this

technique could also be used in future anti-tumor therapies to

induce unusual splice variants upon the tumor cells as putative

tumor neoantigens, which could be targeted by respective mAbs/

CARs. Next to the targeting of alternative splice factors, several

other approaches exist. These include (i) targeting of upstream

regulatory proteins, such as protein arginine methyltransferase,

known as regulators of both constitutive and AS, (ii) targeted

splicing corrections by small molecules targeting individual

isoforms, (iii) splicing modulation with oligonucelotides or (iv)

gene editing by CRISPR-based strategies targeting specific

AS events.

Meanwhile, many different mAb/CAR therapies have already

entered clinics targeting various tumor biology relevant molecules

even apart from the highlighted ICP axes, e.g., to interfere with

neovascularization or the binding of growth factors, alone or in

combination with cytokines, cell cycle/mTOR inhibitors,

chemotherapeutics, etc.

At this point, it should also be considered to investigate the

impact of the above mentioned combined pharmaceuticals on the

splicing pattern within the treated tumor. Are such theoretical side

effects relevant for the loss of epitope or loss of transmembrane

domain in the targeted molecules and thereby relevant for the

expensive mAb/CAR therapy?
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