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Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic,

debilitating disease characterised by a wide range of symptoms that severely

impact all aspects of life. Despite its significant prevalence, ME/CFS remains one

of the most understudied and misunderstood conditions in modern medicine.

ME/CFS lacks standardised diagnostic criteria owing to variations in both

inclusion and exclusion criteria across different diagnostic guidelines, and

furthermore, there are currently no effective treatments available. Moving

beyond the traditional fragmented perspectives that have limited our

understanding and management of the disease, our analysis of current

information on ME/CFS represents a significant paradigm shift by synthesising

the disease’s multifactorial origins into a cohesive model. We discuss how ME/

CFS emerges from an intricate web of genetic vulnerabilities and environmental

triggers, notably viral infections, leading to a complex series of pathological

responses including immune dysregulation, chronic inflammation, gut dysbiosis,

and metabolic disturbances. This comprehensive model not only advances our

understanding of ME/CFS’s pathophysiology but also opens new avenues for

research and potential therapeutic strategies. By integrating these disparate

elements, our work emphasises the necessity of a holistic approach to

diagnosing, researching, and treating ME/CFS, urging the scientific community

to reconsider the disease’s complexity and the multifaceted approach required

for its study and management.
KEYWORDS
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Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/

CFS) or Systemic Exertion Intolerance Disease (SEID) (1–3)

(hereafter referred to as ME/CFS) is a debilitating chronic

multisystem illness. ME/CFS is estimated to have a global

prevalence ranging from 0.1-0.8% (4–7). It is thought to affect

some 17 to 24 million people worldwide (8) and the United States

(U.S.) Centres for Disease Control and Prevention (CDC) and the

U.S. National Academy of Medicine estimate that there are

approximately 836,000 to 2.5 million (2, 9) individuals diagnosed

with ME/CFS in the U.S., with a quarter of these patients thought to

be housebound or bedbound (10). Additionally, current data from

the United Kingdom (U.K.) Biobank has indicated that there are

more than 250,000 individuals suffering from ME/CFS in England

and Wales (11), with a prevalence of 0.2% in three regions of

England (6).

ME/CFS impacts all ages, races, and socioeconomic groups (4,

12). Most patients tend to be diagnosed around middle age (13), but

diagnosis has been made in individuals as young as three years old

and as old as 77 years (2, 12). Black and Hispanic populations

appear to have a higher prevalence of ME/CFS with worse severity

than other racial groups (9, 14). Women are affected 2-3 times more

frequently than men (2, 4, 8, 11, 12).
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Due to the disabling symptoms which include cognitive and

physical impairment worsened by exertion (15–17), there is a

significant economic burden created by ME/CFS (4) as many

patients are unemployed and less than a fifth work full-time (11).

It is thought that up to 75% of ME/CFS patients are unable to work

(10). ME/CFS is thought to cost the U.S. between $18 and $24

billion annually (18), and £3.3 billion annually in the U.K (19).

In this review paper, we will focus on describing ME/CFS in

terms of symptoms, severity and burden, diagnostic criteria, causes

and triggers; followed by an overview of the complex

pathophysiology and management of the condition. We will

conclude by listing research priorities for the future. See Figure 1

for a content overview.
ME/CFS symptoms

ME/CFS is a heterogeneous disease (16, 20), meaning that

patients display varying symptoms and several body systems are

impacted (11). Although many of the symptoms of ME/CFS overlap

with other diseases, one feature that sets ME/CFS apart is a

worsening of symptoms in response to relatively minor physical,

cognitive, orthostatic or even emotional exertion (13). This

phenomenon is known as post-exertional malaise (PEM) or PESE
FIGURE 1

Overview review article of ME/CFS as a complex and multifactorial condition (Created with Biorender.com).
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(post exertional symptom exacerbation). Following exertion,

patients experience reduced mental and physical stamina,

accompanied by accelerated muscle and cognitive fatigue (15–17).

PEM is characterised by a delayed onset, prolonged duration, and

an intensity disproportionate to the precipitating exertion (15, 16).

Fatigue is a prominent feature in most patients; in contrast to

physiological tiredness, fatigue is not alleviated regardless of how

much patients sleep or rest (2, 21). Common symptoms of ME/CFS

are summarised in Figure 2.
ME/CFS severity classifications

The long-term outlook for ME/CFS patients varies significantly

(11). An important prognostic factor is how the illness is managed

in its initial stages (27). The chance of full recovery has been

estimated to be only 5% (28) as most patients do not regain their

full pre-ME/CFS function; a third of patients deteriorate to being

house or bedbound (8). Hence, ME/CFS significantly reduces a

patient’s quality of life (11, 24, 29–31), impacting activities of daily

living, socialising, family life, emotional wellbeing, work, and

education (11, 23). Numerous researchers have found that

individuals suffering from ME/CFS have a lower quality of life

than people with other chronic illnesses, including multiple

sclerosis (MS) (32), lung disease (33), rheumatoid arthritis (RA)

(33–35), and some forms of cancer (11, 33, 35). Similar to other

disabling chronic illnesses, resultant depression and anxiety in ME/

CFS are frequent (36) and there is a higher risk of suicide in ME/

CFS (37).

Patients’ symptoms can usually be categorised into four levels of

severity; mild, moderate, severe, and very severe (11, 29, 38). In mild

severity ME/CFS, an individual is still able to attend work or

education and perform light tasks (11). However, they are likely
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to experience difficulties with mobility, and their social life is

impacted. In moderate ME/CFS, individuals experience impaired

mobility, meaning they are likely unable to attend work or

education, cannot undertake activities alone, have decreased sleep

quality, and need frequent rest. People with severe ME/CFS are

usually housebound (11) and have a functional capacity ranging

from 5% to 15% of normal functioning (39). They also experience

cognitive difficulties and are hypersensitive to external stimuli (11).

Lastly, people with very severe ME/CFS are bedbound (11) and have

a functional capacity of less than 5% (39). These individuals are

usually completely dependent on others for care, require tube

feeding, are unable to complete personal hygiene, and are highly

sensitive to sensory stimuli (11). ME/CFS has been described as a

fluctuating condition as symptoms change in nature and severity

sporadically (40). 61% of patients have reported being bedbound on

their worst days (41) and at least one-quarter of ME/CFS patients

have recounted being housebound or bedbound at some point in

their lives (2). Hence, patients must adapt to life with regular flare-

ups and relapses (11, 42).

In one survey of 1418 ME/CFS patients (43), it was found that

98.5% (n=1397) of the ME/CFS participants struggled with

performing daily tasks and more than half (n=775) were

completely unable to complete their usual activities. Additionally,

93.9% (n=1331) of participants experienced moderate (n=976) or

extreme (n=355) pain, 88.6% (n=1256) of patients had trouble with

mobility, and 67.3% (n=954) experienced trouble with washing or

dressing themselves. However, the severity of ME/CFS means that

family members or caretakers are also severely impacted. Of 1418

respondent caretakers/family members, 96.1% (n=1362) felt

worried in relation to their family member’s ME/CFS, 84.7%

(n=1201) found it difficult to care for their family members

suffering from ME/CFS, and 91.8% (n=1302) reported that their

family activities were affected. Additionally, caring for a member
FIGURE 2

Summary of the common symptoms of ME/CFS (12, 15, 22–26). PoTS, postural orthostatic tachycardia syndrome. Created with Biorender.com.
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with ME/CFS negatively impacts sleep, work, holidays, finances,

and sex life (43).
Diagnostic criteria for ME/CFS

The original neurological classification of ME/CFS
In 1969, the World Health Organisation (WHO) classified ME/

CFS as a neurological disease (44) based on the neurological features of

the disease. Positron emission tomography (PET) brain imaging of

ME/CFS patients also displays neuroinflammation (45–47).

Additionally, abnormalities of the white (23, 48–50) and grey (23)

matter have been noted. This neuroinflammation is likely to correlate

with cognitive impairments such as lowered information processing

speed, decreased reaction time, slower working memory, and reduced

attention (51).

Available diagnostic criteria
Despite its high prevalence, there are still no universally

accepted clinical criteria to characterise ME/CFS, making early

and accurate diagnosis difficult (52). Different ME/CFS diagnostic

criteria exist, as described in Figure 3. Additionally, many adult ME/

CFS patients make use of the self-scoring Bell Chronic fatigue

immune dysfunction syndrome (CFIDS) disability scale, a symptom

scale created by Dr David Bell in 1995 (55). However, this
Frontiers in Immunology 04
classification is subjective, and scores may change due to the

fluctuating nature of the disease; they may also vary depending

on the physician doing the scoring. Another problem is that a

patient may experience one score in one region, but a differing score

in another region, making it difficult for the physician to make an

overall decision. Despite the large number of criteria for the

diagnosis of ME/CFS, it is still unclear which one is the most

useful and validated. Current diagnostics rely on medical history,

physical examination, and clinical observations, which often require

many trips to the doctor and can be exhausting for a patient (11,

23, 56).

Additionally, PEM which can vary from very minimal to

extremely severe (e.g. affecting speaking, thinking, eating and

drinking, and orthostatic tolerance) is considered a key diagnostic

feature of ME/CFS; this is paradoxical as severe and very severe

patients are incapable of even the slightest exertion (39). Moreover,

diagnosis relies heavily on symptom-based exclusion of other

disorders (2, 11, 15, 16, 22, 56, 57), since ME/CFS symptoms

overlap with many other medical conditions (23). In essence,

since ME/CFS can be a “diagnosis of last resort” (1, 26), it can

take years for individuals to receive a diagnosis (22). This prolonged

diagnostic process is compounded by differences in exclusion

criteria across various definitions of ME/CFS, as highlighted by

Jason et al., 2012 (54). Hence, re-evaluation of these diagnostic

criteria is essential (57).
FIGURE 3

Different diagnostic criteria available for ME/CFS with a concise history of timelines (1, 2, 11, 15, 16, 22, 52–54). Created with Biorender.com. GET,
graded exercise therapy; ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; PEM, post-exertional malaise.
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Probable predisposition and causes of
ME/CFS

The diverse symptom presentation and patient heterogeneity

indicate that ME/CFS is likely to have a multifactorial origin (23, 30,

53, 58), with multiple physiological processes implicated in the

pathogenesis (52, 59). It is unlikely that one single protein or RNA

transcript will be consistent across the disease spectrum (60). It has

been proposed that stressful or traumatic incidents in genetically

susceptible individuals may trigger the development of ME/CFS

symptoms (58, 61). These stressors can include acute infections

(61), emotional stress (62), and major life events (61). However,

other stressors such as a quick walk, a glass of wine, or a

temperature change have also been known to trigger relapses in

ME/CFS (63). The next paragraphs will discuss genetic

predisposition and susceptibility as an underlying risk factor for

ME/CFS - the superimposition of external stressors and exposures

(59) results in a state of “aberrant homeostasis”, where a temporary

homeostatic state of functioning occurs, but functions at a less

optimum level (64).
Genetic predisposition

Unfortunately, there is little consensus among researchers on

the genetic, cellular, and molecular influences that alter the risk of

developing ME/CFS (21). However, it is thought that ME/CFS may

have a genetic predisposition (26, 29, 56, 61, 65–68) as members of

the same family have frequently been diagnosed with ME/CFS (65,

67, 68), though they will also tend to share similar lifestyles and

cultures. Similarly, genealogic analyses and twin studies have shown

a genetic link between ME/CFS patients and their offspring, ensuing

a heightened risk of developing ME/CFS in the offspring (26, 66,

69). As expected (70), these diagnoses do not seem to follow

predictable Mendelian patterns, suggesting that there are multiple

genes and alleles that increase the risk of developing ME/CFS (56).

Various studies have found that some ME/CFS patients identified

by the Fukuda criteria have a significant excess relatedness for close

(first or second degree) and distant (third degree) relatives (66, 68).

A large review (56) noted that three studies estimated the narrow-

sense heritability (h2) in large cohorts, and two of these studies

reported non-zero results, suggesting a heritability risk for ME/CFS.

However, other studies have shown no evidence of heritability. One

analysis of the U.S. health insurance resulted in a high narrow-sense

heritability (h2 = 0.48) (71), while an analysis of U.K. Biobank self-

reported ME/CFS patients approximated the h2 to be 0.08 with a

low confidence (72). Furthermore, another large twin-based study

produced inconclusive results (73).

Some polymorphisms in genes related to the immunomodulatory

response have been identified (69, 74), such as an increase of TNF-857

TT and CT genotypes (p=0.002), and a significant decrease of IFN

gamma low producers (A/A) (P=0.04) inME/CFS patients in respect to

controls (74). Polymorphisms impacting hormone action have also

been noted (69, 75). For example, NR3C1-1F DNA methylation was

found reduced in patients with ME/CFS and coincides with the

hypothalamic pituitary-adrenal (HPA) axis hypofunction hypothesis
Frontiers in Immunology 05
(75). The metabolic kynurenic pathways is likely also implicated in

ME/CFS, owing to common mutations in IDO2 (76) such as R248W

and Y359STOP (77). However, these genetic associations are

inconsistent as studies typically have quality-control issues (56).

Additionally, the Gln27 mutation (a polymorphism in the B2dR

genes) has been associated with adolescent ME/CFS (78). Such

Gln27 mutations, along with Arg16 mutations in adults, can result in

an unfavourable cardiovascular profile (79–81). On the other hand,

genome-wide association studies (GWAS) studies performed on ME/

CFS patient samples from the U.K. Biobank have found no DNA

variant repeated in the multiple analyses (82). However, it is not

entirely certain how many of these patients met ME/CFS criteria,

suggesting that replication studies should be done in future to help us

understand the genes, cellular processes, and tissues or cells that

causally change the risk for developing ME/CFS. Additionally,

pinpointing genetic risk factors for ME/CFS will help combat the

disbelief some health professionals have towards ME/CFS (56).

There are also genetic predispositions that render certain

individuals susceptible to developing autoimmune diseases (83)

and even after Epstein-Barr virus (EBV) infection (30, 84), such as

human leukocyte antigen (HLA) variants (30, 84, 85) that have

experienced selective pressures whilst co-evolving with pathogens

(86, 87). HLA proteins are crucial for the immune system as they

distinguish foreign pathogens from self-cells (56). An increased

frequency of HLA-DQA1 alleles and reduced expression of HLA-

DRB1 was found associated with ME/CFS (88). Additionally, in

patients diagnosed with the CCC, the HLA types HLA-C*07:04 or

HLA-DQB1*03:03 were shown to be significantly linked to ME/CFS

status when using the CCC (89). Since 10% of ME/CFS patients

have these alleles, their risk is altered around 1.5-2.0-fold, meaning

genetic differences in the immune system may change the risk of

developing ME/CFS (89). Some haplotypes also appear to be less

resistant to EBV infection, such as DR2-DQ6, DR3-DQ2, and DR4-

DQ8, making them more likely to develop EBV-related disorders

(90). Although, few researchers think that mitochondrial DNA

variants can explain the prevalence of ME/CFS (91–93).
Viral triggers and reactivation

As in other chronic diseases, ME/CFS involves an

asymptomatic predisposition stage, then a prodromal stage,

followed by symptomatic disease (59). Infection (30, 61, 94–97) is

often reported to be a common trigger for the development of ME/

CFS, as many patients recognise that the onset of their symptoms

coincided with an infectious episode (2, 58, 98). This is recounted by

more than 80% of patients (98) and it has been estimated that two-

thirds of ME/CFS cases arise following viral infection (85, 99). This

is supported by the fact that several ME/CFS outbreaks have

occurred in the same geographical region simultaneously (12).

Clustering provides strong support for the involvement of

infectious agents, as with some cases of MS that ‘appeared’ (100)

in the Faroe Islands duringWorld War II upon the arrival of foreign

army corps, and was eventually shown to be due to EBV (101).

Additionally, many ME/CFS patients experience symptoms similar

to bacterial or viral infections which may correlate to specific
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regions. Infectious pathogens thought to promote the development

of ME/CFS are summarised in Figure 4.

It is thought that many chronic illnesses, including ME/CFS,

originate with reactivation of latent or dormant viruses that are

present in the body, caused by a change in physiological conditions

(127). During acute illness, direct consequences of viral reactivation

or infection are thought to occur in localised areas such as the brain

and neuronal cells, muscle cells, and cardiac myocytes [Extended

Figure 8 in (127)]. Since these tissues are rich in mitochondria, it

can result in neuronal and autonomic nervous system

abnormalities, as well as immune modulation. However, with

chronic illness, indirect consequences of viral reactivation or

infection are proposed to occur. This occurs in peripheral

circulation and can promote symptoms such as postural

orthostatic tachycardia syndrome (PoTS), PEM, fatigue,

endothelial cell dysfunction, platelet hyperactivation, mast cell

activation, and connective tissue disorders. In this chronic phase,

it is thought that auto recovery is difficult (127).

Viral pathogens that often persist in a dormant manner include

herpesviruses such as the extensively studied EBV (52, 94, 95, 113).

Reactivation of herpesvirus has interestingly been hypothesised as a

key mechanism in the development of ME/CFS (128). In support of

this theory, one paper investigated the possibility of EBV-encoded

proteins existing in ME/CFS, such as BRRF1 and BLLF3, and the
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effects they may have (52). BRRF1 plays a role in the switch between

latent and lytic EBV replication (129), while BLLF3 encodes a

dUTPase and is expressed in the early phase of EBV lytic replication

(52). Similarly, evidence for antibodies against HSV-1 (127), EBV

(127, 130, 131), and HHV-6 (130) dUTPase proteins has been

identified in ME/CFS. These dUTPase proteins, along with other

viral dUTPases such as HSV-1 and HHV-6, are thought to promote

cellular damage and promote autoimmune features, as well as

promoting mitochondrial fusion and decreasing energy

production (127). This antibody presence is thought to potentially

elevate cytokine and chemokine levels, which is dependent on toll-

like receptor (TLR)-2 signalling and causes NF-kB activation (132,

133). Hence, the EBV UTPase may act as a novel pathogen-

associated molecular pattern (PAMP) ligand protein for

TLR2 (132).

Although EBV proteins may play a role in the progression of

ME/CFS (52), researchers have hypothesised that the virus has a

third state termed the abortive/leaky/lytic replication, as has been

suggested upon analysis of the EBV genome in T and NK cells of

patients with chronic EBV infection (134–136). The presence of

EBV dUTPases may cause neurological abnormalities in ME/CFS

via changes in gene expression, resulting in modulated neurological

circuits (137). Moreover, EBV dUTPases could also induce immune

dysfunction (52).

However, earlier serological studies on EBV and ME/CFS using

classical EBV antigens have resulted in contradicting results that

illustrate no upregulation of EBV-encoded proteins (99, 138–147).

More advanced studies using peptide microarray (148) and

suspension multiplex immunoassay (149) have also not found a

significantly higher EBV anti-immunoglobulin (Ig)-G response in

ME/CFS patients in comparison to controls. Most studies have not

reported a significant increase in the viral load in ME/CFS patients

in comparison to controls. Due to this evidence, some researchers

believe that herpesviruses as one of the causes of ME/CFS is a

“fading” hypothesis (150). However, a trigger does not have to

linger. Equally, heterogeneity in patient groups, the absence of

uniformity in case definitions, and differences in reliability and

precision could have resulted in there being no correlation between

the viral load and serological data (61, 99, 103, 109).

That said, serological data are probably of limited use as an

indicator of EBV reactivation (151). Although there is substantial

evidence that ME/CFS has a viral trigger (94, 95), symptom severity

and burden are often not related to the severity of the triggering

viral infection and its symptomatology. Additionally, there are

alternative theories differing to a post-viral causation, as noted

later in the text.
Toxin and drug exposure

Some also hypothesise that toxin exposure could trigger ME/

CFS (61), such as organophosphate compounds (152, 153) and

heavy metals (154). In the early 1960s, researchers found that

workers with chronic exposure to organophosphates, mainly in

insecticides and after sheep dipping, experienced persistent central

nervous system (CNS) changes (153). This included disabling
FIGURE 4

Infectious pathogens thought to promote the development of ME/
CFS including viruses, bacteria, fungi, and parasites (2, 25, 29, 85,
102–126). Created with Biorender.com.
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fatigue exacerbated by exercise and associated with myalgia,

excessive sleep, night sweats, irritable bowel syndrome (IBS)

symptoms, and mental changes. It was hypothesised that the

organophosphates induce various abnormalities such as an

elevated prevalence of lymphoproliferative disorders associated

with impaired natural killer (NK) cell and cytotoxic T cell

function. Additionally, exposure to heavy metals, such as

cadmium, may also contribute to the development of ME/CFS

(154). Cadmium is a widespread environmental and occupational

heavy metal pollutant and can potentially cause neurological

symptoms. Cadmium induces neuronal death in cortical neurons

through a combination of apoptosis and necrosis, involving

reactive oxygen species (ROS) generation and lipid peroxidation

(155). This action may explain decreased grey matter volume in

ME/CFS (156), as well as certain effects on the CNS such as reduced

attention levels and memory (157). Exposure to cadmium also

potentially reduces cerebral blood flow (158) [particularly cortical

blood flow (159)], as cadmium has a disruptive effect on

angiogenesis (160). This reduced blood flow can result in

neurological dysfunction and the abnormal neuroimaging

observed in ME/CFS (158). Cadmium may accentuate

inflammatory processes, which may in turn disrupt the HPA axis

and trigger symptoms of ME/CFS (161, 162). However, the exact

organ that cadmium toxicity targets is still unclear (154).

Additionally, cases of ME/CFS have also been recorded post-

immunization (163) and many patients are fearful that vaccinations

will worsen their already dysfunctional immune system and cause

symptom exacerbation (164). More recently, ME/CFS development

after the Sputnik V COVID-19 vaccination has been recorded (165).

Some research about vaccination safety relates to adjuvant

compounds used in some vaccinations to promote lasting

immunization (166, 167). For example, aluminum hydroxide

salts, often used as vaccine adjuvants, have been found to

abnormally persist within immune cells at the site of previous

immunization, resulting in macrophagic myofasciitis lesions (168).

These inflammatory macrophage formations can result in

associated microscopic muscle necrosis. While transient aberrant

changes associated with aluminum hydroxide salts are

acknowledged, the direct link between microscopic muscle

necrosis and the mechanisms underlying ME/CFS requires

further investigation. However, no indication of an increased risk

of developing ME/CFS was found post-HPV vaccination (169).

Additionally, ME/CFS patients were found to have similar humoral

and cellular immune responses as healthy controls post-influenza

vaccination (170) without worsening ME/CFS symptoms or causing

adverse effects (164, 171).

Furthermore, various drug exposure has been found to trigger

symptoms that are typically present in ME/CFS (172). For example,

widely prescribed fluoroquinolone antibiotics are usually prescribed

to treat various infections such as pneumonia and sinusitis (173–

175). However, these fluoroquinolones have been found to increase

tendinopathy involving oxidative stress and mitochondrial toxicity

(176–180). Hence, the use of such drugs may have a multisystem

effect and lead to the development of chronic illnesses such as

ME/CFS.
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The complex pathophysiology of
ME/CFS

As a consequence of infection and other stressors, such as poly-

trauma for example (181), a state of acute inflammation and

aberrant immune activation may occur. A compensatory anti-

inflammatory mechanism then typically follows (59), causing an

imbalance in immune responses (58, 59) combined with

hypothesised autoimmunity (30, 52, 85, 182). This may lead to

subsequent physiological abnormalities including gut dysbiosis and

systemic inflammation, eventually resulting in a pathological

clotting system, chronic endothelialitis, vasoconstriction, and

hypoxia, as found in similar conditions such as heat stroke (183).

Additionally, dysfunctional energy metabolism (52, 184–186) along

with oxidative stress (187, 188) are also hypothesised in the

development of ME/CFS. It is hypothesised that these

mechanisms occur in a spiralling, progressive way, toppling the

host’s homeostatic equilibrium (59).
Gut dysbiosis

ME/CFS patients often have gastrointestinal (GI) symptoms

(189) with gut inflammation (190), gut microbiome dysbiosis (57,

191) and changes in the gut microbiome (191, 192). A reduction in

microbiome diversity has been identified (191), but it is likely that

the microbiome composition will differ between ME/CFS patients

as each patient has a unique infectious history (193). In ME/CFS,

anti-inflammatory bacterial species such as Faecalibacterium (191,

194) and Bifidobacterium (191) are decreased, resulting in a

decreased production of anti-inflammatory butyrate (191, 194).

Butyrate is essential to maintain the mucosal barrier and

immunomodulation (195), whilst having anti-inflammatory

effects through downregulating pro-inflammatory cytokines (196).

However, this decrease in Faecalibacterium is found in various

disorders, and is not specific for ME/CFS (197). Similarly, some

studies found an elevation in short chain fatty acids (SCFAs)

butyrate, isovalerate, and valerate (198), contradicting these other

articles. Conversely, proinflammatory Proteobacteria species have

an elevated concentration in ME/CFS (191, 194). Proteobacteria are

known as a “microbial signature of disease” (199) and one form,

Enterobacteriaceae, is specifically increased in ME/CFS (191). This

increased concentration of Enterobacteriaceae may result in

increased transit time and IBS-like symptoms (200). It is also not

yet known whether such dysbiosis leads to ME/CFS, or whether it is

a consequence of the metabolic and immunologic changes that

occur in the disease (201).

It is hypothesised that once an acute infection has dysregulated

the host’s immune system, pathogens are capable of intracellular

persistence where they escape immune surveillance (202). When

metabolites and proteins expressed by these pathogens are created,

they interfere with host transcription, translation, and DNA repair

processes, leaving infected immune cells unable to express human

metabolites. Since these pathogen proteins and metabolites are

often similarly structured to ones created by the human host,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1386607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Arron et al. 10.3389/fimmu.2024.1386607
such molecular mimicry makes it difficult for the host to recognise

the foreign pathogen (193), resulting in the host’s immune system

becoming increasingly sluggish and more susceptible to acquiring

other infectious agents. This causes patients to become increasingly

dysbiotic as their immune system weakens over time, and successive

infections may explain the variability of symptoms experienced in

ME/CFS (193).

Microbe-associated molecular patterns (MAMPs) are molecules

found on bacterial surfaces (203) which interact with the immune

cell receptors of the host to promote inflammation (204). Elevated

levels of IgM and IgA antibodies to one potent MAMP- exotoxin

lipopolysaccharide (LPS)- have been observed in ME/CFS (205), as

well as higher blood levels of bacterial LPS, LPS-binding proteins,

and soluble CD14 (191). LPS is a structural component in the outer

membrane of many Gram-negative bacteria, and it has various

immunostimulatory and procoagulant effects (206). LPS molecules

have been identified as potent inflammagens (207–209) having

cytotoxic and neurotoxic effects (210–214) and heightening the

production of pro-inflammatory cytokines (215–218).

These inflammatory markers also indicate translocation of gut

bacteria and toxins from the GI tract into the blood (191), which

may result in systemic inflammation in ME/CFS (183). Specific gut

inflammation (190) and gut hyper-permeability (219) have been

identified, and microbe and virus communities may also persist in

ME/CFS blood and brain tissue (193). Not only does the abundance

of bacterial taxa correlate with the symptoms of pain and fatigue

(191, 194); metabolomic results illustrate an expression of bacterial

genes, rather than human (194). In essence, there appears to be a

link between the microbiome, gut inflammation, and the symptoms

of ME/CFS (201).

Additionally, the diverse intestinal virome that is established

from birth (57) includes many prokaryotic viruses called

bacteriophages (220). Bacteriophage richness was found elevated

in one ME/CFS study, but it is limited owing to its small sample sise

(191). Since bacteriophage predator-prey dynamics regulate the

diversity and equilibrium of the bacterial microbiome (221),

alterations in the virome can also cause intestinal microbial

dysbiosis in different diseases (222–224) and alter microbiome

homeostasis. Future studies need to include standardised

techniques and analyses when doing further research into the

virome as it is particularly understudied in ME/CFS (57).

External stressors like stressful or traumatic incidents, acute

infection, and toxic stressors may result in widespread and chronic

systemic and even neuroinflammation, driven by a variety of

inflammatory molecules in circulation. Such molecules might

have their direct origins from previous infections and the

resulting gut dysbiosis, as summarised in Figure 5.
Systemic inflammation

Systemic inflammation (225) and neuroinflammation (45–47)

are thought to play a major role in ME/CFS. Chronic inflammation

is a crucial hallmark of persistent infection (193), as infections can

alter proinflammatory and anti-inflammatory cytokine and

chemokine expression, adjusting the inflammatory and immune
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responses (30). Although inflammation is reflected in selective

biomarkers, traditional inflammatory markers such as C-reactive

protein (CRP) and erythrocyte sedimentation rate have also shown

an increased trend in ME/CFS, particularly in those with mild/

moderate disease generally not raised in ME/CFS (226).
Circulating inflammatory molecules

Early ME/CFS has been associated with elevated proinflammatory

cytokines (227–230) and a distinct cytokine inflammatory profile (225,

231). Heightened circulating inflammatory cytokines are crucial in

driving the development of autoimmune diseases (232). These

heightened cytokines are mainly related to Th1 and Th2-driven

responses, but not all studies have found consistent results.

However, as ME/CFS persists over several years, it is hypothesised

that the inflammatory profile (231) and plasma immune signatures

change with increasing disease duration (225). Perhaps this indicates

that in the early stages of ME/CFS, the immune system actively

attempts to target the infectious burden (193); however as the disease

progresses, pathogens in the microbiome disable the immune

response and “immune exhaustion” occurs (233, 234). In essence,

acute pathogens can cause chronic symptoms in ME/CFS by existing

in latent forms (193).

Cytokine activation has been noted in ME/CFS patients (225)

and appears to increase along with disease severity (231). This

suggests that patients with ME/CFS may struggle with an increasing

infectious burden over time. One study noted 17 cytokines had a

significant upward linear trend with the severity of ME/CFS: CCL11

(Eotaxin-1), CXCL1 (GROa), CXCL10 (IP-10), IFN (interferon)-y,

interleukin (IL)-4, IL-5, IL-7, IL-12p70, IL-13, IL-17F, leptin, G-

CSF, GM-CSF, LIF, NGF, SCF, and TGF-a (231). Out of these 17
FIGURE 5

The effects of the altered gut composition in ME/CFS (57, 183, 190–
196, 201, 203–209, 215–218). Created with Biorender.com. MAMP,
microbe-associated molecular pattern; ME/CFS, Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome.
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cytokines, 13 are considered proinflammatory cytokines. Although

these 17 cytokines are linearly correlated with ME/CFS increasing

severity, they did not differ significantly between control and ME/

CFS groups. This correlation of cytokine levels with severity may

indicate that severity is a useful way to subgroup ME/CFS, as well as

a dose-response defect in the metabolism or excretion of cytokines

(231). A summary of the interactions between circulating

inflammatory molecules can be found in Figure 6.
Redox imbalance and oxidative stress

Inflammation is bidirectionally linked to redox imbalances

(248) as inflammation produces ROS and reactive nitrogen

species (RNS), whilst redox imbalances cause cellular damage,

evoking an inflammatory response (249, 250). Redox imbalances

(251, 252), oxidative stress (182, 187, 253–255), nitrosative stress

(182), and chronic ischaemia-reperfusion injury (256) have all been

found to be central to ME/CFS. Markers of oxidative stress have

been found in ME/CFS and, importantly, correlate with symptom

severity (251) (Table 1).

Nitrosative stress is also present, as illustrated by markers of

nitrosative stress such as increased NOS and NO (182, 297),

peroxynitrite (182, 297), elevated NF-kb production (182), and

nitrate after exercise (182, 297). Even though NO is physiologically
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critical to vasodilation and neurotransmission (251), excess NO and

RNS are damaging as they directly attack antioxidant enzymes such

as catalase (298), promoting redox imbalance.

When muscle afferents are triggered by muscle fatigue, this

triggers the production of heat shock proteins (HSPs) (299). HSPs

protect muscle cells against any deleterious effects of ROS generated

during exercise by activation of antioxidants (300, 301). In turn, the

elevated antioxidant levels elevate the levels of plasma HSPs.

However, prolonged activation of muscle afferents by oxidative

stress due to low-grade exercise results in reduced HSP production

(266). The formation of HSPs in ME/CFS individuals is reduced

(302), and the responses of plasma HSP27 and HSP70 are delayed

or lowered, while resting levels of plasma HSP70 are also decreased

(303). Hence, this impaired HSP production (302) combined with

oxidative and nitrosative stress, and low-grade inflammation could

explain the exercise intolerance and muscle dysfunction seen in

ME/CFS patients (303, 304).
Dysfunction of the vasculature,
endothelium, and coagulation

Since persistent inflammation and immune cell activation is

present in ME/CFS (305), vascular changes and endothelial damage

(306, 307) will coexist due to the interplay between inflammation
FIGURE 6

Examples of how dysregulated inflammatory molecules could play a pathological role in ME/CFS (113, 137, 225, 231, 235–247). Molecules highlighted
in red represent pro-inflammatory molecules, whereas those written in green represent anti-inflammatory molecules. Created with Biorender.com.
COX-2, cyclooxygenase-2; IL, interleukin; ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; NK, natural killer; PBMC, peripheral blood
mononuclear cell; PGE2, prostaglandin-endoperoxide synthase 2; TGF-b, transforming growth factor-b; TNF-a, tumour necrosis factor-a; Treg,
regulatory T cell; VEGF, vascular endothelial growth factor.
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and vascular alterations. The altered autoregulation of blood flow

cannot meet the metabolic demand of tissues in ME/CFS, leading to

tissue hypoxia and subsequent ischaemia/reperfusion injury with its

associated symptoms and signs (29).
Endothelial damage

Endothelial cells are important regulators of the immune

system (308); endothelial dysfunction can promote oxidative

stress and inflammation (309). The abnormal immune responses

present in ME/CFS are thought to impact endothelial cell function

(29) and patients show signs of endothelial dysfunction (306, 310).

Endothelial dysfunction has been demonstrated in vivo (306, 311),

in the large vessels of ME/CFS patients (307, 311) through flow-

mediated dilation (FMD) and in the microcirculation through post-

occlusive reactive hyperaemia.
TABLE 1 Markers of oxidative stress present in ME/CFS (adapted from
Paul et al., 2021) (188, 257–296).

Biomarkers
illustrating
elevated
oxidative
stress

Levels in
ME/CFS

Effect in ME/CFS

Peroxide

Elevated and
increases with
symptom
severity (257).

Hydrogen peroxide is produced
by vascular and inflammatory
cells, inducing oxidative
stress (258).

Superoxide and
superoxide
dismutase (SOD)

Elevated and
increases with
symptom severity
(257) and decreased
SOD activity and
expression (259).

The mitochondrial electron
transport chain produces
superoxide under physiological
conditions, elevating oxidative
stress (260). SOD protects cells
against oxidative stress in
mitochondria (261). Hence, this
beneficial mechanism is reduced
in ME/CFS.

Malondialdehyde
(MDA)

Increased (188,
262–264).

Increased free radicals causing an
excess production of MDA (265).

Thiobarbituric
acid reactive
substances
(TBARs)

Increased (263, 264,
266) and correlate
with symptom
severity (267).

TBARs are generated through
lipid peroxidation (268).

Iron and
heme metabolism

Elevated heme and
lowered serum
transferrin (263, 269).

Heme catalyses the formation of
ROS (270). Decreased transferrin
indicates excess iron (271).

Homocysteine
Increased
cerebrospinal fluid
levels (272).

Elevated homocysteine promotes
oxidative stress in vascular cells
through ROS formation (273).

Nitric
oxide (NO)

Elevated NO (259,
274) and heightened
citrulline (a product
of arginine
metabolism by nitric
oxide synthase
(NOS)) (275).

During inflammation, the over
production of NO by the
vasculature contributes to
oxidative stress (276).

Oxidised LDL Increased (188, 263).
Oxidation of LDL particles and
excessive ROS generation are
present in oxidative stress (277).

Neutrophil
response

In ME/CFS, an initial
aggressive neutrophil
response occurs,
followed by
neutropenia and a
lowered oxidative,
ending off with
neutrophil exhaustion
burst (278).

Neutrophils generate ROS and
RNS in an ‘oxidative burst’ to
induce neutrophil extracellular
traps (NETs) (279–282).

Glutathione
(GSH)

Lowered GSH levels
in the cortex of the
brain and plasma
(188, 283), catalase
(259), glutathione
peroxidase (259), and
glutathione reductase
activities in
erythrocytes (259).

GSH prevents cell damage during
oxidative stress (284, 285),
meaning this beneficial
mechanism is reduced in
ME/CFS.

Vitamin
C/ ascorbate

Low plasma levels
(267, 286).

Vitamin C usually behaves as a
ROS scavenger (287), but this

(Continued)
TABLE 1 Continued

Biomarkers
illustrating
elevated
oxidative
stress

Levels in
ME/CFS

Effect in ME/CFS

mechanism is lowered in
ME/CFS.

Vitamin E

Reduced serum levels
of vitamin E (188,
263, 264) correlating
with severity of
symptoms and the
levels increase with
remissions (264, 288).
Vitamin E is also
lowered in paediatric
cases (286).

Vitamin E usually behaves as a
ROS scavenger (289), but this
mechanism is lowered in
ME/CFS.

Alpha-tocopherol
Decreased levels
(288, 290).

Alpha-tocopherol acts as a free
radical scavenger, but these
mechanism is lowered in ME/
CFS (291).

Cysteine

Low levels of cysteine
and oxidized cysteine
in ME/CFS, but
elevated levels of
cysteine and
methionine
(methionine
sulfoxide) in the
PBMCs of ME/CFS
individuals (292).

Cysteine directly scavenges free
radicals (293), meaning this
beneficial mechanism is reduced
in ME/CFS.

NAD metabolism

Nicotinamide
phosphoribosyl
transferase levels
increased (294).

NAD is phosphorylated by NAD
kinase to form NADP (295).
From there, it is reduced to
NADPH by NADP
dehydrogenase. NADPH acts as
an antioxidant to neutralise high
levels of ROS (296). Interestingly,
this beneficial mechanism is
increased in ME/CFS.
LDL, low-density lipoprotein; ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue
Syndrome; PBMC, peripheral blood mononuclear cell; ROS, reactive oxygen species.
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FMD measures the dilation of blood vessels triggered by the

release of NO from endothelial cells in response to shear stress (307,

311). It was also found that ME/CFS patients are unable to dilate

their vessels adequately by endothelium-independent vasodilation

when given sublingual nitroglycerin to promote relaxation of the

vessels. Additionally, myocardial infarction associated transcript

(MIAT) was found to be upregulated in PBMCs of ME/CFS

patients, indicating endothelial dysfunction (312). Additionally,

microclot presence (313) in ME/CFS may also cause damage to

the endothelium. However, the endothelial damage observed in

ME/CFS patients does not appear to correlate with the usual

markers of endothelial dysfunction seen in cardiovascular disease

such as increased levels of symmetric dimethylarginine (SDMA),

asymmetric dimethylarginine (ADMA), and high-sensitivity C-

reactive protein (hs-CRP), and reduced levels of arginine and

homoarginine (311). This may suggest that a different mechanism

is at play, which could relate to the abnormal immune response

present in ME/CFS (311). Endothelial dysfunction can result in

capillary leakage, accelerated inflammation, hypercoagulation,

platelet aggregation, and decreased vascular tone (314).

MicroRNAs (miRNAs) are important to maintain endothelial

function and altered miRNA profiles are often used to predict,

diagnose, and monitor diseases (315). Studies have revealed

interesting miRNA changes in ME/CFS. Silent information

regulator 1 (Sirt1), an anti-inflammatory and anti-oxidative

protein (316), increases the production of NO by activating

endothelial NOS (eNOS) in endothelial cells in response to shear

stress (317). The NO released by endothelial cells controls the

vascular system to ensure sufficient blood and oxygen reaches

tissues throughout the body. During inflammation and oxidative
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stress, eNOS uncoupling or reduction can occur (318), as well as

decreased activity or expression of Sirt1 (316). In ME/CFS, a set of

plasma miRNAs known to modulate the Sirt1/eNOS axis were

analysed, showing elevation in miR-21, miR-34a, miR-92a, miR-

126, and miR-200c (305). These five miRNAs have also been found

increased in PBMCs from different cohorts. The functions of these

miRNAs are illustrated in Figure 7; they relate to endothelial

function signalling pathways, including oxygen regulation and

oxidative stress. Hence, miRNAs may serve as a potential

biomarker in ME/CFS, although they do not correspond with

disease severity (305).
Autonomic dysfunction, vasoconstriction,
and hypoxia

Many ME/CFS patients have a unique cardiovascular situation

(58) and changes indicative of autonomic dysfunction (329–331).

One cluster analysis of 131 ME/CFS patients diagnosed according to

the Fukuda criteria revealed that 34% of patients experienced

sympathetic symptoms with dysautonomia (and were associated

with more severe disease severity), 5% from sympathetic symptoms

alone, 21% parasympathetic, and 40% struggled with sympathovagal

balance (331). However, studies assessing autonomic dysfunction in

ME/CFS are equivocal (329). Since heart rate parameters often reflect

changes in autonomic function, one meta-analysis analysed 64

studies to assess differences in heart rate parameters in ME/CFS

(329). It was concluded that, in comparison with controls, patients

with ME/CFS have a higher resting heart rate, lower maximal/peak

heart rate, higher heart rate responses to head-up tilt testing and
FIGURE 7

Elevated MicroRNAs in ME/CFS and how they influence endothelial cell functioning (305, 316, 319–328). Created with Biorender.com. ED,
endothelial dysfunction; eNOS, endothelial nitric oxide synthase; Fox3, transcription factor forkhead box protein 3; IL, interleukin; ME/CFS, Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome; miRNA, micro ribonucleic acid; NF-kB, nuclear factor kappa B; NO, nitric oxide; Sirt1, silent
information regulator 1; TGF-b, transforming growth factor beta; TNF-a, tumour necrosis factor alpha; Treg, regulatory T cell.
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moving from sitting to standing, and a lower heart rate at

submaximal exercise threshold. Moreover, the resting heart rate

variability (HRV) parameters also differed in ME/CFS patients,

with a higher low frequency power of HRV (LFP) and a lower high

frequency power of HRV (HFP). This corresponds with other studies

that suggest a decreased HRV is present in ME/CFS, indicative of a

chronically high sympathetic tone (78, 330, 332–344). Hence, the

results of the meta-analysis may indicate reduced vagal modulation in

ME/CFS, along with increased sympathetic modulation of heart

rate (329).

Autonomic changes in ME/CFS are likely to cause an overall effect

of vasoconstriction and resultant hypoperfusion (58), which is central

to the pathology of ME/CFS (183) (Figure 8). Additionally, vascular

dysfunction, endothelial dysfunction, and microclot presence may also

promote vasoconstriction and tissue hypoxia. When skeletal muscle is

hypoperfused, metabolites accumulate and trigger muscle

metaboreflex activation (MMA) (58) to increase the arterial

pressure. If preload failure exists in ME/CFS, it is likely that MMA

cannot achieve a sufficient rise in perfusion by increasing stroke
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volume; hence the only way to increase the blood pressure is via

further vasoconstriction. This is worsened when ME/CFS patients are

upright, as the baroreflex is activated (345), further promoting

vasoconstriction in skeletal muscle. Additionally, when B2AdR is

dysfunctional, it aggravates the situation by inhibiting vasodilation

in skeletal muscle (58). Therefore, three factors cause excessive

vasoconstriction: B2AdR dysfunction, excessive baroreflex activation

due to hypovolemia, and excessive MMA activation due to the poor

metabolic situation. With a chronically high sympathetic tone, there is

then a need for sympatholysis in skeletal muscles to prevent

vasoconstriction via the a1-adrenegeric receptors (58).

Sympatholysis enhances the release of local endogenous, short-lived

vasodilators such as adenosine, ATP, prostaglandins, prostacyclin,

bradykinin, and protons to act as a compensatory mechanism (58).

However, if these vasodilators enter the systemic circulation, they

could contribute to ME/CFS symptoms such as fatigue, flu-like

symptoms, pain, fever, and sleep disturbances, similar to the effects

observed when vasodilators spill over in dysmenorrhea (346). An

example of this effect can be observed with bradykinin (purple box
FIGURE 8

Vasoconstriction and hypoxia mechanisms in ME/CFS and an example of the potential effect of the local vasodilator bradykinin in ME/CFS (illustrated
in the purple box) (58, 78, 183, 330, 332–348). Created with Biorender.com. B2AdR, beta-2 adrenergic receptor; ED, endothelial dysfunction; HRV,
heart-rate variability; HSP, heat shock protein; IL, interleukin; KKS, kallikrein-kinin system; M3, muscarinic acetylcholine receptor M3; ME/CFS,
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; MMA, muscle metaboreflex activation; RAAS, renin-angiotensin-aldosterone system; SNS,
sympathetic nervous system; SV, stroke volume; TNF, tumour necrosis factor.
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within Figure 8) (347, 348), and preload failure experienced in ME/

CFS may be correlated with the endogenous vasodilator substances

produced in skeletal muscles.
Abnormal coagulation: the role of
microclots and inflammagens in circulation
that cause pathological clotting

It has been hypothesised that hypercoagulation plays a significant

role in ME/CFS (349–351), but there are still discrepancies between

studies (352). Hence, there is a need to investigate this matter in

greater detail. In one study, ME/CFS blood samples displayed

significant hypercoagulability in thromboelastography (TEG)

analyses of both whole blood and platelet poor plasma (313).

Platelet hyperactivation was also observed, as well as the presence of

microclots containing fibrinogen and amyloid proteins. The area of

these “fibrinaloid” microclots was found to be greater in ME/CFS

samples in comparison to healthy controls (313).

As mentioned previously, elevated levels of LPS molecules in

ME/CFS patients have been documented (191) with increased levels

of IgM and IgA antibodies to LPS in serum (205). LPS can directly

and acutely bind to plasma proteins such as fibrinogen to promote

the formation of these “fibrinaloid” microclot deposits (353).

Hence, not only does LPS induce chronic inflammation via

cytokine production; it also has a hypercoagulatory effect by

binding to plasma proteins. Since these “fibrinaloid” microclots

are usually more resistant to fibrinolysis, they are hypothesised to
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linger in the circulation and have extended contact with the

endothelium (313). Hence, the microclots may result in decreased

circulation and blockage of the microcapillaries, resulting in

ischemia and therefore many symptoms of ME/CFS, as seen

in Figure 9.
Neuroinflammation

PET imaging has displayed elevated cytokines in the spinal cord

and brain (46, 354), as well as increased activation of astrocytes (46,

354) and microglia (46, 47, 354). Although cytokines are mainly

produced by the immune system, there is also an unclear link

between neuroinflammation and these peripheral proinflammatory

cytokines (46) and some cytokines may also be produced in the CNS

(201). These cytokines can promote cognitive dysfunction as they are

able to disrupt the blood-brain barrier (BBB), allowing

proinflammatory cytokines (52), cells (such as dendritic, B cells,

and T cells) (52), and gut microbes or toxins (355) to translocate into

the brain and promote inflammation (Figure 10). One in vitro study

found that EBV dUTPase altered the expression of 34 genes with

roles related to BBB integrity (137). Hence, EBV UTPase may alter

the synaptic structure and function in ME/CFS, as well as dysregulate

neuronal communication, influencing cognitive processes.

Such inflammatory changes potentially cause impaired

autoregulation of blood flow (29), hypoperfusion in the brain

stem (356–358), and brain tissue hypoxia (22, 23, 26, 29–101,

103, 109, 113, 127–234, 248–256, 266, 297–318, 329–359).
FIGURE 9

Pathological alterations in the coagulation cascade present in ME/CFS (191, 205, 313, 349–353). Created with Biorender.com. a (2)-AP, alpha-2-
antiplasmin; CRP, C-reactive protein; IL, interleukin; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; ME/CFS, Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome; NK, natural killer; NO, nitric oxide; PAI-1, plasminogen activator inhibitor 1; PBMC, peripheral blood
mononuclear cell; PGE2, prostaglandin-endoperoxide synthase 2; SAA, serum amyloid A; TF, tissue factor; TGF-b, transforming growth factor beta;
TNF-a, tumour necrosis factor alpha; tPA, tissue plasminogen activator; VEGF, vascular endothelial growth factor.
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Tilt tests of ME/CFS patients have shown a reduced cerebral blood

flow (360) and elevated intracranial pressure (361, 362). These changes

may cause disordered sympathetic and parasympathetic activity (158,

360) as well as PEM and cognitive dysfunction (29). Likewise, such

neuroinflammation can interact with neurotransmitters, elevate

procoagulant activity and thrombosis, and cause endothelial damage,

resulting in neurovascular coupling (NVC) dysfunction (363).
Impaired energy metabolism in
ME/CFS

Even though an exact metabolic phenotype has not been

established (185), a stressed metabolism is present in ME/CFS.

When threats to homeostasis occur such as infection, hypoxia, and

starvation (364, 365), they involve immune and inflammatory

processes that influence energetics and metabolism (366, 367). In

the case of ME/CFS, this energy strain may be a consequence of

exertion-sensitive tissue hypoxia, leading to systemic patterns of

metabolic adaptation and compensation (185). It is thought that

over time, the disease shifts from an early hypermetabolic state to a

hypometabolic state with decreased metabolites (251) and reduced

energy production (59), correlating with patient clinical

profiles (185).

Mitochondrial dysfunction is a prominent feature in ME/CFS

(60, 368–375). It is known to exacerbate inflammation and redox

imbalances (251) by triggering the NLR family pyrin domain

containing 3 (NLRP3) inflammasome (251), increasing the release

of inflammatory cytokines such as IL-1b and IL-18 (376).

Additionally, damaged mitochondria release mtDNA into the

cytosol, activating the innate immune system via damage-

associated molecular patterns (DAMPs) (251, 377), modulating

both innate and adaptive immune responses (377–379).

Moreover, mitochondrial damage elevates ROS levels (380),
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which can in turn damage mtDNA and proteins that may be

involved in the electron transport chain (ETC), resulting in

lowered ATP production and decreased energy levels (381).

This mitochondrial dysfunction is a result of structural and

functional changes. Structural mitochondrial abnormalities have

been seen in muscle biopsies from ME/CFS patients (382), but this

is not observed in other studies (383). More condensed

mitochondrial cristae were observed in blood cells from ME/CFS

patients, but the mitochondrial crista length, sise, shape, density,

membrane potential, and enzymatic activities of the complexes

inside the ETC remained intact (384). In CD4+ T cells,

mitochondrial mass was also not altered in ME/CFS (254).

Metabolic abnormalities are evident in ME/CFS, such as reduced

mitochondrial respiratory function inME/CFS neutrophils (371, 375)

and PBMCs (385). Although mitochondrial respiration was noted as

unchanged in resting and stimulated CD4+ and CD8+ T cells, CD8+

T cells were found to have a reduction in proton leak, ATP synthesis,

and mitochondrial membrane potential (254). Decreased ATP

production has also been noted in lymphoblasts (386) and PBMCS

(387). Additionally, decreased glycolysis has been observed in CD8+

T cells at rest and after activation (254), CD4+ T cells at rest (254),

blood and urine samples (187), and PBMCs (388). Similarly, a

decreased glycolytic reserve has been found in NK cells from ME/

CFS patients (389) and metabolomic analyses have revealed

compromised ATP production via the tricarboxylic acid (TCA)

cycle (389). These dysfunctions may arise from impaired pyruvate

dehydrogenase (PDH) function identified in muscle cells (390) and

serum (184), as well as reduced plasma coenzymeQ10 (CoQ10) levels

in ME/CFS blood and plasma (372, 391) that is inversely associated

with fatigue severity (391). Abnormal oxidative phosphorylation may

also occur in neutrophils (371, 375) and PBMCs (388).

If such aerobic metabolism is impaired, the body switches to

anaerobic production which generates nominally 18 times less ATP

per glucose molecule and produces more lactic acid (392). Two-day
FIGURE 10

Disruption of the blood-brain barrier, the translocation of pro-inflammatory cytokines, and chronic activation of various non-neuronal cells
contribute to neuroinflammatory mechanisms in ME/CFS (45, 47, 52, 201, 251, 354, 355). Created with Biorender.com. BBB, blood-brain barrier; IL,
interleukin; iNOS, inducible nitric oxide synthase; ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; NMDA, N-methyl-D-aspartate;
TNF-a, tumour necrosis factor alpha.
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cardiopulmonary exercise tests (CPET) have practically

demonstrated this reduced anaerobic threshold in ME/CFS (393,

394). Some clinical studies have found elevated lactate levels (395,

396) in ME/CFS patient blood, cerebrospinal fluid, and muscles,

suggesting there is reduced oxidative phosphorylation and a switch

to anaerobic glycolysis (392, 397–399). Moreover, elevated serum

lactate dehydrogenase (LDH) has been observed (400), suggestive of

tissue destruction, along with elevated lactic acid levels (47, 397,

401). However, the relationship between lactic acid levels and ME/

CFS is still being investigated, as another study reported reduced

lactic acid levels in urine, along with lower pyruvate and alanine

(187). Additionally, it is worth considering that heightened lactic

production, in conjunction with its clearance during rest and

exercise, may function in a compensatory manner with lactic acid

acting as an energy source. Skeletal muscle acidosis and

dysregulated protons have also been found in patients during or

after exercise (401–404).

On the other hand, there is also altered utilisation of amino

acids and fatty acids as catabolic fuel (184, 186). These studies

hypothesised that this impaired PDH activity in ME/CFS may result

in increased amino acid utilisation as an energy source.

Metabolomic studies have displayed this altered cellular

energetics, but the affected metabolites differ between studies

(186, 269, 405–407). Some affected metabolites link to amino acid

metabolism and changes in key pathways such as amino acid

metabolism has been observed (184, 187, 408, 409). Changes in

blood glucose and lipids indicate a metabolic shift (405, 406, 410,

411) as there are reduced levels of acyl-carnitine and fatty acids

(412), and amino acids from the urea cycle (187, 408). In essence,

energy fuel storage, mobilisation, and utilisation may be altered in

ME/CFS patients.

This energy impairment likely results in a hypometabolic state as

the illness progresses (59, 401, 407, 413), called the “cell danger

response” (414–416). This state may be secondary to a persisting

stressor, such as a redox imbalance (251), persistent infection (201,

251), injury (201), insufficient nutrients (201), cold temperatures

(201), or it could be due to a defect in the “switch” that turns off this

protective state (251). However, the reduced blood flow and resulting

ischaemia may also act as a stressor itself. This cell danger response is

an evolutionary adaptation enabled to protect the cells and host from

harm (414–416). At the level of the organism, this is called the

“integrated stress response” (ISR) (417). In this process, non-essential

energy-consuming mechanisms are reduced, allowing energy

molecules to be used for mechanisms that are crucial for viability.

Neuroinflammation or fever is presumed to also trigger ISR, as

autoantibodies may target neural or immune systems and cause

inflammation elsewhere (418). Since redox imbalance is a mechanism

involved in ME/CFS, it may be an indication of systemic

inflammation in response to persistent infection or injury (251).

Even though mitochondrial dysfunction appears evident in ME/

CFS, the causes of such dysfunction are speculative (251) and there

is inconsistent evidence correlating mitochondrial dysfunction and

ME/CFS (254, 283, 386, 389, 419). In addition, mitochondria

modulate intracellular calcium homeostasis and immune

regulatory pathways (420, 421), which means these pathways may

too be compromised in ME/CFS.
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Hormonal alterations

Since stress has been described as a potential trigger for ME/

CFS (422) and cause of symptom flare-ups (423, 424), it is likely that

the HPA axis- the neurobiological stress system- may be implicated

in ME/CFS (53, 425, 426), as well as abnormalities in growth

hormone (GH) secretion and dysfunctional adrenergic

metabolism (255). Immune and inflammatory responses in the

blood are mediated by the HPA axis to prevent any autoimmune

alterations (63). If the presence of an initial stressor is prolonged,

the HPA axis will become chronically activated and trigger the

overproduction of cortisol which, over time, will result in a

reduction in cortisol levels (427). It is thought that hormonal

changes such as this hypocortisolism may result in symptoms of

fatigue experienced by patients (255, 428, 429). A potential negative

feedback loop, often colloquially referred to as a “stress crash” or

“adrenal burnout”, is likely to develop. However, it is important to

note that “adrenal burnout” is not an official medical diagnosis, and

the mechanisms involved may not directly involve the adrenals

experiencing complete exhaustion (63). Chronic HPA activation

elevates cortisol production, lowering immune responses and the

production of proinflammatory cytokines. However, the HPA axis

will then respond to these heightened cortisol levels by decreasing

the production of cortisol over time. This will reduce the protection

provided by the HPA axis, attenuating immune and inflammatory

changes, and leaving ME/CFS patients more vulnerable to minor

stressors (429). It is also possible that HPA sensitivity rather than

HPA axis dysfunction exists in patients (63).

In one ME/CFS study, significantly lower levels of

adrenocorticotropin (ACTH)/cortisol were found (430). GH peak/

insulin-like growth factor-1 (IGF-1) were also significantly reduced

in severe ME/CFS patients compared to controls and ME/CFS

patients with mild disease. GH/IGF-1, and particularly IGF-1,

play various roles in neurons such as neuroprotection,

mitochondrial protection, antioxidant defence, and reduction in

CNS inflammation (431). Hence, a reduction in these hormones

would result in these beneficial mechanisms being reduced (430).

Similarly, impaired GH release after exposure to dexamethasone

was also found in patients exposed to organophosphates (153). GH

is secreted from somatotrophs in the anterior pituitary gland and is

influenced positively by growth hormone-releasing hormone

(GHRH) and inhibited by somatostatin. Exercise and stress with

B-adrenergic stimuli decrease GH secretion by elevating

somatostatin tone. Hence, impaired release of GH in these toxin-

exposed patients may suggest lowered responsivity of CNS type II

glucocorticoid receptors (153).

Serotonin also plays a role in the CNS and controls many stress

mechanisms such as the HPA axis through stimulation of

corticotropin-releasing hormone (CRH) (432). It is proposed that

the production and recycling of dopamine and serotonin is

implicated in ME/CFS, which could also be triggered by the EBV

dUTPase protein (137). Although an imbalance of these hormones

is likely present in ME/CFS, it is unclear whether they are found in

elevated or lowered concentrations. One article proposed that

excessive serotonin levels could explain classic symptoms of ME/

CFS (433), as it would promote the release of excess CRH, and
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therefore cause chronic reactivation of the HPA axis (434).

Furthermore, this excess serotonin could eventually lead to

dysregulation of its production (435). Excess serotonin can result

in decreased control of various functions, including dysfunctional

muscle contraction, migraines, sleep issues, dyspnea, hyperalgesia,

and cognitive dysfunction (435). Heightened serotonin levels can

also promote the release of dopamine and norepinephrine, resulting

in changes to memory, GI problems, mood, and blood coagulation

(436). However, lowered dopamine levels are associated with fatigue

(437), a commonly present symptom of ME/CFS.

Exposure to toxins such as organophosphates, which are

cholinesterase inhibitors, prolongs and amplifies the effects of

acetylcholine (153). Acetylcholine is responsible for mood

regulation, psychomotor activity, and sleep (438), by activation of

central muscarinic receptors, rather than nicotinic receptors (153).

Acetylcholine is also known to promote GH secretion (439).

However, patients exposed to organophosphates experience a

heightened GH response to pyridostigmine (153). It is possible

that the somatotrophs developed increased sensitivity to GHRH as

pyridostigmine causes intermediate stimulation of GHRH.

Alternatively, the more supported hypothesis is that there could

be hyper-responsivity of the cholinergic receptors at a hypothalamic

level, causing a greater decrease in somatostatin tone, and elevated

GH release from the anterior pituitary gland (153).

Various symptoms seen in ME/CFS, such as changes in body

weight, appetite, fluid retention, and irregular menstruation, are

also observed in hypothalamic dysfunction (440). Dysfunctional

hypothalamic function can be seen in ME/CFS patients in the form

of up-regulation of hypothalamic 5-hydroxytryptamine (5-HT)

receptors (441) and abnormal arginine/vasopressin responses to

deprivation tests and water loading (440). However, when the 5-

HT-releasing agent D-fenfluramine is used in patients experiencing

a neurobehavioral syndrome after exposure to organophosphates,

elevated sensitivity of central 5-HT receptors is observed (442).

It is also possible that hypothalamic/pituitary autoimmunity

may be present in ME/CFS- particularly in the more severe cases- as

antipituitary and antihypothalamic antibodies have been identified

(430). Additionally, if gut permeability is indeed increased in ME/

CFS patients, microbes and antigens may be able to cross the

epithelial barrier into surrounding tissue and blood, potentially

crossing the BBB and altering the HPA axis (443). Hence, GI

dysbiosis may also promote HPA axis activation (63).
Immune dysfunction

Since one of the most supported hypotheses for the origin of

ME/CFS is bacterial or viral (85, 99, 444) infection (94); immune

dysregulation has been linked to ME/CFS patients (201, 255)

(Table 2) (Figure 11), it is possible that infectious organisms

result in chronic symptoms by interfering with host gene

expression, immunity, and metabolism (25). More evidence of an

infectious aetiology can be seen in the alteration of the number and

function of various immune cells, immune profiles, and

autoimmune parameters (294, 486). It has been noted that these

abnormal immune responses may be more pronounced within the
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first three years of the disease; as the disease becomes prolonged,

these abnormalities appear to subside and T-cell exhaustion

becomes evident (225, 254). This suggests that the overactive

immune response eventually becomes exhausted or overcome by

counter-regulatory mechanisms. Since a link between infections

and autoimmune diseases has been well established, this correlation

could explain the presence of autoimmune symptoms in ME/CFS

(487). However, the measurement of the innate and adaptive

immune responses in ME/CFS patients has resulted in conflicting

abnormal results (235). Although immune dysfunction is clear in

ME/CFS, further studies using defined cohorts, standardised assays,

and new technologies are required to determine specific patterns

(30). Furthermore, the use of antiviral drugs to treat ME/CFS has

been unsuccessful (488), contradicting the hypothesis that ME/CFS

could be caused by a clearance failure of the pathogenic microbe

(99, 107). A further hypothesis is that ME/CFS could include

misdirected immune responses to the initial infection, resulting in

a chronic autoimmune disease with molecular mimicry (the “hit

and run” hypothesis) (85).
Autoimmunity

Upregulation of autoimmune genes

As in other chronic disorders, some genes in ME/CFS

patients have been found to be associated with autoimmunity,

such as the HLA alleles (30). In ME/CFS, an increased prevalence

of the class II major histocompatibility complex HLA-DQB*01

allele (88), along with two other variants of HLA-DQB1 in

combination with two RAGE-374A variants (489) was found.

Although some authors have tried to assess the mechanistic

link between HLA-II allele expression and the development of

ME/CFS, the lack of robust data makes it difficult to support this

association (88, 490). Single nucleotide polymorphisms (SNPs) in

receptors, enzymes, and transcription factors are also known to

cause loss or gain of functions (30) that can increase the risk of

autoimmune disease development (491–495). If such changes occur

in T cell development, B cell activation and proliferation, or

cytokine signalling, it may result in the development of

autoimmune diseases. In ME/CFS, SNPs in TLR signalling

pathways, the complement cascade, and cytokines have been

identified (74, 496).

As mentioned, infectious mononucleosis caused by EBV is a

risk factor for various autoimmune diseases (487, 497), and may

play a potential role in ME/CFS (140, 498–500). After being infected

by EBV, some ME/CFS patients have upregulation of the EBV-

induced gene 2– an important gene in immune and CNS function

(25). Hence, such gene induction may correlate with various

neurological and immune-related symptoms of ME/CFS, as an

estimated 38-55% of ME/CFS patients have symptoms that

overlap with other autoimmune diseases (501). Similarly, one

study illustrated an enhanced IgG reactivity against an EBV

repeat sequence, EBNA-6, suggesting that homologous sequences

of various human proteins with this repeat sequence might be useful

targets for antigenic mimicry (85).
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Autoantibody presence

It has been proposed that ME/CFS is a variant of an

autoimmune mechanism (29). Typical autoimmune diseases have

characteristic pathogenic IgGs correlated with inflammation, tissue

injury, and complement activation. Such persistent autoantibodies

are hypothesised to disturb vessel autoregulation, causing secondary

metabolic and autonomic adaptations. Although these typical

changes are not necessarily characteristic of ME/CFS, another

autoimmune mechanism may exist in ME/CFS that affects the

autonomic control of blood vessel tone and flow autoregulation.

Hence, autoimmunity is considered important in the pathology of

ME/CFS (30, 85, 182).

In some ME/CFS patients, autoantibodies have been identified,

including those against antinuclear antibodies (502–505). These

autoantibodies are hypothesised to target nuclear, membrane, and

neurotransmitter receptor structures (30, 255). Double-stranded

DNA antibodies have also been found in 12% of ME/CFS patients

(506), although other studies have failed to find such antibodies in

ME/CFS (0.7%) (507). Single-stranded DNA antibodies have also

been identified (505), along with anti-ganglioside antibodies (508),

autoantibodies against endothelial and neuronal cells (506), and

phospholipid autoantibodies (506, 508, 509). Antibodies against

cardiolipin were also found in 92-95% of ME/CFS patients (509,

510), although they were only 4% in another study (506).

Additionally, antibodies have been identified against human

nuclear dUTPase and nuclear envelope protein lamin B1 (511).

Hence, this autoantibody presence especially targets the autonomic

and central nervous systems (503), which may explain the

dysautonomia and immune dysregulation present in ME/CFS (58).

In other autoimmune diseases, natural antibodies are found

against adrenergic, muscarinergic, and other G protein coupled

receptors (GPCR) (30, 512). In some ME/CFS patients, such

antibodies against neurotransmitter receptors have been identified,

such as against the muscarinic M1AChR (504), M3AChR (58, 359,

503), and the adrenergic B2AdR (58, 359, 503). The presence of these

autoantibodies potentially results in dysfunction in these receptors

(58, 513). However, no difference between ME/CFS patients and

controls was found with respect to autoantibodies against serotonin,
TABLE 2 Immune alterations present in ME/CFS and changes evident in
B cells, T cells, and NK cells (99, 253–255, 278, 445–482).

Cell type Abnormalities Comments

B cells

Increase in B cells (445),
including CD21+, CD19+, and
CD5+ B cells (446, 447), and
antigen-driven clonal B cell
expansion (448).

CD19/CD21 complex:
Promotes BCR signalling
in response to
complement-tagged
antigens (449).
CD5+ B cells: Likely
involved in antigen
presentation, tolerance
induction, the idiotype
network, and
autoantibody
production (450).

Cytotoxic T
lymphocytes

(CD8)

Increase in activated CD8+ T
cells (451–453) expressing
activation markers HLA-DR
(446, 451, 452, 454), CD26 (446),
and CD38+ (451, 452, 454). A
reduction in CD11b levels was
observed (454). Some papers
have illustrated a reduced
response of T cells to mitogens
and antigens (253–255). Also
found decreased CD8 suppressor
cell population (452).

CD38: T cell surface
protein that contributes
to cell activation (455,
456).
HLA-DR: A marker of T
cell activation (457, 458)
that is also increased in
autoimmune
diseases (459).

Decreased cytotoxicity of CD8+
T cells (253, 460, 461, 483).

It is possible that these
changes reflect T-cell
exhaustion in prolonged
disease duration (462).

At rest and upon activation, the
CD8+ T cells had a reduced
mitochondrial membrane
potential (254).
Additionally, one subset of CD8
+ cells had an elevated
mitochondrial mass (254).

Reduced mitochondrial
membrane potential:
This phenotype may be
indicative of T cell
exhaustion and is
typically observed in
chronic viral infection
(463).
Increased mitochondrial
mass: Suggests impaired
mitochondrial and
glycolytic metabolism in
ME/CFS T cell
subsets (464).

Regulatory T
cells (Tregs)

Increased Treg cells in ME/CFS
patients (278, 465–467).
However, some studies did not
take the stages of the illness into
consideration [much as in
ostensibly conflicting accounts of
acute COVID-19 (468)], nor
were they sufficiently powered to
stratify subtypes. As a result,
there is inconclusive literature
around whether Tregs are
increased or decreased in ME/
CFS (451, 467).

Tregs work to suppress
the immune system by
inhibiting T cell
proliferation and
cytokine production,
while also preventing
autoimmunity (469).
Hence, an increase in
Tregs may show
disruption of the
immune system since
this subpopulation
functions to suppress the
immune response.

T-follicular
helper cells
(CD4)

The resting glycolysis of the ME/
CFS CD4+ T cells at rest was
found to be significantly lower
than cells from healthy
controls (254).

In cases of short-term,
rapid fuel production,
remodelling of CD4+ T
cells is possible to elevate
glycolysis and optimise
oxidative
phosphorylation (464).

(Continued)
TABLE 2 Continued

Cell type Abnormalities Comments

Natural killer
(NK) cells

NK cell functioning is reduced in
ME/CFS patients (470–473).
Conversely, an elevation in
CD16+/CD3- NK cells has been
found in some ME/CFS
patients (452).

NK cells form part of the
innate immune system
and control various
microbial infections by
preventing their spread
and subsequent tissue
damage (475). Hence,
this beneficial
functioning is reduced in
ME/CFS.

Reduction in NK cytotoxicity
(446, 451, 476, 477). Conversely,
some studies have not found a
decreased cytotoxic activity of
NK cells (99, 478–482).
BCR, B cell receptor; CD4, T-follicular helper cell; CD8, cytotoxic T lymphocyte; HLA, human
leukocyte antigen; ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; NK,
natural killer cell; Treg, regulatory T cell.
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angiotensin, endothelin, mu-opioid, and dopamine (503, 504).

Although, autoantibodies against serotonin have been associated

with ME/CFS (506, 508).

Various general autoantibodies have also been identified in ME/

CFS, such as those against cellular components including anchorage

molecules (514), HSP-60 (515), microtubule associated protein 2

(516), cardiolipin in 92-95% of ME/CFS patients in two studies

(509, 510) but only 4% in another study (506), and neo-antigens

(517). Moreover, 30% of ME/CFS patients in one study were

identified to have antibodies against endothelial cells (506). If

autoimmunity is present in ME/CFS, it may increase intestinal

permeability (518) and explain the various GI manifestations (190).
Soluble autoimmunity markers

B lymphocyte activating factor (BAFF) has been identified in

many autoimmune diseases (519) as it regulates survival and

maturation of B cells to control the IL-10 production of regulatory

B cells (520, 521). Some ME/CFS patients have displayed elevated

BAFF, but the gene expression of the BAFF receptor (TNFRSF13C)

has been shown to be reduced in ME/CFS patients, suggesting that

the elevated serum BAFF is a compensatory mechanism. However,

the link between BAFF and autoantibodies in ME/CFS is yet to be

investigated (30). Members of the TGF-b family- Activin A and B-

are known to control inflammation and muscle mass (522).

Heightened levels of activin A and B have been found in ME/CFS

with an elevated ratio of activin A or B to the binding protein

follostatin (523). Although no causal role has been established, activin

A is a pleiotropic cytokine known to influence immune regulation

and is altered in various autoimmune and inflammatory diseases

(524). IL-21 is also a pleiotropic cytokine (525) important for

differentiation of follicular helper T cells that are essential for the
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germinal centre antibody response (526). When activin A (527) and

IL-21’s (528) processes are dysregulated, it is hypothesised to

promote autoimmune and inflammatory diseases, although a causal

role is still not shown (527).
Management of ME/CFS

As well as there being insufficient diagnostic testing available for

ME/CFS patients, there are also no effective therapies (12, 26, 60,

488, 529–531) and few established non-pharmacological treatments

for ME/CFS (11, 29). The lack of awareness (60), paucity of

diagnostic tools (60), heterogeneity between patients (26, 60, 529),

disbelief from health care workers (60), unpredictable relapses, and

multiplicity of symptoms have made it difficult to formulate a

treatment for ME/CFS. Hence current advice is aimed at symptom

management and lifestyle changes (11). The current available

treatments/lifestyle modifications are summarised in Figure 12.
Disbelief of doctors

Since not enough is known about the risk factors of ME/CFS, it

makes primary prevention unlikely (53). However, secondary

prevention is possible to reduce diagnostic delay, the incidence of

severe and prolonged disease, and costs of care. One way to minimise

diagnostic delays is to rectify the disbelief of doctors and the

stigmatization around ME/CFS (53, 533, 534). In 1969, the WHO

classified ME/CFS as a neurological disease (44) based on the

neurological features of the disease. Following this, epidemic cases

of ME/CFS were described as “mass hysteria” in 1970 by two

psychiatrists, McEvedy and Beard (535). Although these

psychiatrists were faulted for inadequately investigating the patients
FIGURE 11

Changes in the adaptive immune system in ME/CFS (25, 52, 201, 278, 445–461, 465–467, 469, 483–485). Created with Biorender.com. BCR, B cell
receptor; EBV, Epstein-Barr virus; HLA-DR, human leukocyte antigen- DR isotype; IL, interleukin; ME/CFS, Myalgic Encephalomyelitis/Chronic
Fatigue Syndrome; MHC, major histocompatibility complex; TCR, T cell receptor; TGF-b, transforming growth factor-b; Treg, regulatory T cell.
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they described (536) and their conclusions were discredited (537–

539), this sparked stigmatization of ME/CFS.

Another mistake that doctors sometimes make is to second-

guess their initial diagnosis (39). This scenario may arise when

doctors experience uncertainty or apprehension about their

assessment, potentially leading to ME/CFS patients feeling

neglected. This uncertainty or hesitation may prompt doctors to

seek confirmation from other professionals, which may create a

traumatic experience for the patient and prolong their diagnosis.

Although, since ME/CFS is currently diagnosed based on exclusion

criteria and subjective symptom assessment, it is sometimes

necessary for patients to be referred to other professionals to

exclude other possible diagnoses. For example, referral to

psychiatrists may be helpful since ME/CFS seems to coexist with

anxiety disorders, symptoms of ME/CFS overlap with Major

Depressive Disorder (MDD), and patients with severe ME/CFS

may also be at risk of developing secondary MDD (36, 532).

However, it can also be detrimental referring ME/CFS patients to

psychiatrists (39), not because it excludes other diagnoses, but

rather if patients are labelled as hypochondriacs and their

condition is attributed solely to psychosomatic origins (23).

Hence, validation of the patient’s experiences is important.

Additionally, friends and family must offer support to patients,

such as helping them acquire handicap placards, attain work and

school accommodations, make nutritional adjustments, and apply

for disability and housing benefits (23).
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To manage and live with ME/CFS, it is also important that

patients schedule regular trips to their physician to manage their

symptoms, as well as discuss complementary approaches the patient

may have adopted- such as new supplements (23). This

communication is important to minimise any adverse side effects

or drug interactions that may occur (540). Additionally, the

reassurance of doctors is important, and they should openly

address questions related to a patient’s prognosis. This will help

patients maximise their functioning and enhance their quality of life

(23). It is worth pointing out that more severe patients are likely to

tolerate visits to their doctor poorly, and home visits should be

undertaken for them.
Pacing/energy management

Several guidelines have been established to guide the management

of ME/CFS. However, some of the recommendations have possibly

resulted in more harm than good. One controversial form of self-help

is physical activity. When ME/CFS was still believed by many to be a

psychological disease (23), doctors often prescribed inappropriate

“treatments” such as cognitive behavior therapy (CBT) (39, 530),

graded exercise therapy (GET) (39, 530), or the Lightning Process

(11) to ME/CFS patients. In 2007 for example, the National Institute

for Health and Care Excellence (NICE) released a guideline for

clinicians and patients where GET was recommended as a
FIGURE 12

Pharmacological and non-pharmacological treatments currently available for ME/CFS (11, 23, 60, 532). Created with Biorender.com. GI,
gastrointestinal; PEM, post-exertional malaise.
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treatment (541). GET first establishes a patient’s baseline of physical

activity, and this is then stepped up in fixed increments (11).

However, these “treatment” strategies have now been strongly

criticised for the harm they have caused (542–544), and in October

2021, GET was removed from the revised NICE guidelines (11).

Although, it is important to note that while CBT may not be

appropriate as a cure for ME/CFS itself, it could be applied in ME/

CFS patients to address symptoms or secondary disorders such as

MDD (545).

Furthermore, one misleading and now entirely discredited

study (546) was the 2011 PACE (Pacing, Graded Activity, and

Cognitive Behavior therapy; a Randomised Evaluation) trial (547).

In this paper, the therapies were described as safe with 22% of

participants recovering and 60-61% of patients experiencing

symptom improvement (547, 548). However, there were specific

flaws identified in this paper. Without any clear rationale, the study

outcome measures were purposefully modified midtrial to alter the

findings in favour of their hypothesis (549, 550). Additionally,

patients could worsen during the study and still be classified as

“recovered” and the study was unblinded with subjective outcomes.

Subsequent review of the raw data revealed that the improvement

and recovery rates were not significantly different from the control

participants. Moreover, 54% to 74% of patients revealed that they

experienced harm after GET (543).

Instead, energy management (pacing) is now emphasised for

symptom control (11). Pacing is an individualised approach that

monitors energy expenditure to reduce the occurrence, duration,

and severity of PEM (23). Energy expenditure encompasses

physical, social, cognitive, and emotional activity (11). Avoidance

of PEM can help decrease fatigue, cognitive difficulties, sleep

disruption, and other symptoms of ME/CFS (551). Some patients

use energy monitoring and saving devices such as shower chairs and

heart rate monitors (552). Although many commercially available

trackers such as Fitbit and Garmin encourage exercise and exertion,

the Visible application is a recently designed activity monitor for

those with chronic illness (553). According to the amended NICE

guidelines, an individualised approach is more appropriate for ME/

CFS patients (11). If an ME/CFS patient wishes to incorporate

physical activity, it should be closely monitored by a team of

specialists as over-exertion has the potential to worsen the

symptoms of ME/CFS. Hence, it is the patient’s responsibility to

gauge their activity levels while a physiotherapist or occupational

therapist oversees the activity. Additionally, patients should be wary

of potential relapses or flare-ups to prevent worsening of symptoms.
Nutraceuticals and
pharmacological approaches

Many ME/CFS patients take nutritional supplements (530).

Vitamin D supplementation can help prevent a vitamin D

deficiency (11, 39). If bedbound for extended periods of time,

bisphosphonates can also help reduce the risk of osteoporosis

(39). If toxin exposure is thought to have triggered the

development of ME/CFS, nutritional supplementation of zinc and
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magnesium may be beneficial in the prophylaxis and therapy of

cadmium exposure (154). More research is required around

nutraceuticals to optimise their dosages.

Despite there being no U.S. Food and Drug Administration

(FDA)-approved treatments for ME/CFS (40), in many cases the

symptoms and comorbidities experienced by patients can be treated

(24). However, it is important that any medication should be

introduced at low dosages as many ME/CFS patients are

extremely drug sensitive (23), making them vulnerable to adverse

side effects. Since ME/CFS was psychologised at first, many patients

were initially treated with antidepressants (60). This misdiagnosis

resulted in adverse side effects and dependence on the drug.

However, antidepressants are still sometimes prescribed to help if

patients are experiencing depression (39).
Treating comorbidities

ME/CFS displays an overlap with several autoimmune or immune-

mediated diseases that also have chronic fatigue as a main symptom,

such as Hashimoto’s thyroiditis (530), fibromyalgia (FM) (532, 554–

557), Mast Cell Activation Disorder (532), sleep apnoea (532), IBS

(532), secondary depression or anxiety (532), Ehlers-Danlos syndrome

(532), and PoTS (532, 558–563). One ME/CFS speciality clinic found

84% of 960 patients presented with at least one other comorbid

condition, often resulting in worsened health (3). Hence, more

research on ME/CFS is required to separate it from other diseases

that are also associated with chronic fatigue. Treating some of these

comorbidities will not cure ME/CFS but might alleviate some of their

symptoms and improve some quality of life (23).
Potential therapies

Although some researchers have attempted to establish a

treatment for ME/CFS and no reproducible results have been

found (60), some treatments seem promising in ME/CFS

(Figure 13). Additionally, not many trials meet the clinical design

standards to be considered credible. Although no causation has

been established for ME/CFS, as the knowledge around the disease

expands, so will the potential treatment avenues. Hence, pathways

and mechanisms need to be investigated for possible

pharmacological intervention. Considering the heterogeneity

among ME/CFS patients, however, it is unlikely that one

treatment will suit all ME/CFS patients.
Future research recommendations

Most of the research and clinical studies conducted on ME/CFS

have inconsistent outcomes and use different study parameters,

making the results difficult to compare or combine (11). Most

studies are limited owing to their insufficient sample sises, short

follow-up times, high dropout rates, inappropriate definitions of

recovery, and inclusion of patients with varying conditions (581,
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582). Additionally, the small cohort in many studies along with

limited comparison groups with other fatiguing illnesses cause

inconsistent findings (201). To improve their reproducibility,

studies need to use uniform clinical and research criteria,

standardise sample collection, and use thorough statistical

analyses (305).

Although the research surrounding ME/CFS has increased in

the last decade (29), there is still a significant lack of funding for

research surrounding ME/CFS (60). In the U.S., the National

Institutes of Health (NIH) receives an overall budget of 42 billion

dollars. However, in 2019, they only budgeted 15 million dollars

towards ME/CFS research, whereas 111 million dollars and 94

million dollars was donated to MS and RA research, respectively

(both of which already have drugs on the market). More research is

required to define and diagnose ME/CFS as a serious chronic illness

(25), as it is uncertain how many patients diagnosed with ME/CFS

have an accurate diagnosis (57). Not only does the diagnosis of ME/

CFS need to be more accurate, but it also needs to be timely to

ensure an earlier diagnosis before a prolonged disease progression
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occurs (11). Standardisation in diagnosis and disease severity is

required to create robust and reproducible results. In combination,

more effort needs to be made to include correctly matched controls.

For example, since age, lifestyle, medication, geography, and diet are

all able to impact microbiome function and composition (583–585),

detailed descriptions of food consumption at least 48 hours before

the sample collection should be included. Moreover, no defined

clinical criteria for ME/CFS makes it even more complicated to

compare various study results (52). Additionally, a large GWAS in

ME/CFS is desperately needed to assess the biomolecular

mechanisms of ME/CFS (56). One study aiming to achieve this is

the DecodeME study that launched September 2022 (586). This

study aims to pinpoint genetic causes of ME/CFS by testing more

than 25,000 DNA samples (586), as a large cohort will help achieve

statistical power with reproducible and rigorous results (52).

Similarly, identifying microbiomes in ME/CFS blood and brain

tissue should be prioritised in ME/CFS research (193). Since some

of the main components of ME/CFS include redox imbalance,

chronic inflammation, and defective energy metabolism, it is also
FIGURE 13

Potential therapies that could be beneficial in the treatment of ME/CFS (22, 29, 29, 30, 84, 193, 530, 564–580). Created with Biorender.com. IgG,
immunoglobulin G; ME/CFS, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; NK, natural killer; NO, nitric oxide; PPAR, peroxisome
proliferator-activated receptor; TLR3, toll-like receptor 3; VDR, vitamin D receptor.
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important to investigate how these components interact

bidirectionally (201).

One thing to consider is that because ME/CFS is a severely

disabling disease, many patients are house or bedbound and are

unable to visit the clinics multiple times for follow-up analyses (39),

even though these very severe cases are estimated to be around 25%

of the ME/CFS cases (11, 39, 587). It is important to make research

more available for this percentage of ME/CFS cases, since they are

the most severely affected by the disease and these severe cases are

rarely studied (10). It is likely that as the condition worsens, so the

probability of identifiable biomarkers for the disease increases,

making it crucial to study severely ill patients. ME/CFS needs to

be more patient-centered, involving patients in clinical decisions

regarding their treatment (11, 53). There is also concern that the

COVID-19 pandemic may increase the number of people suffering

fromME/CFS (588). Similarly, with the growing emergence of Long

COVID cases, many Long COVID symptoms are coinciding with

those present in ME/CFS (29). More research is required to

determine whether these symptoms are caused by subtle organ

damage from the viral infection, or whether these Long COVID

patients have a postinfectious immune disturbance whose

pathomechanisms is like that in ME/CFS.

It is also important to break the negative stigma that is

associated with ME/CFS. ME/CFS is a remarkably misunderstood

disease, and many patients have experienced judgement, prejudice,

and disbelief from healthcare professionals (11, 39) as some refuse

to view ME/CFS as an indisputable clinical entity (39) and question

its legitimacy (25). This disbelief and misjudgment (40, 58) delays

any possible early diagnosis for the patients and has also resulted in

psychologisation of the disease (11, 40, 53). Health and social care

professionals need to acknowledge that their patients are living with

ME/CFS, and how they have symptoms that severely affect them

(11). Hence, they should take time to build empathetic relationships

with their patients.

Finally, it is imperative to provide increased support to the ME/

CFS community, a necessity that is steadily growing alongside the

establishment of research groups and charitable organisations

dedicated to aiding ME/CFS patients. One multidisciplinary team

consisting of ME/CFS researchers and health professionals, the

European Network on ME/CFS (EUROMENE), aims to evaluate

healthcare for ME/CFS in Europe, improve research and services in

the field, and grasp socioeconomic and clinical dimensions of the

disease to issue recommendations accordingly (589). The Open

Medicine Foundation is another collaborative effort dedicated to

advancing medical research on ME/CFS, fostering engagement

within the patient community, and promoting education about

the condition (590). The Charité Fatigue Centre in Berlin not only

conducts clinical research, but also offers support to both patients

and doctors in diagnosing and treating ME/CFS, making it an

invaluable interdisciplinary network (591). Additionally, registered

charities such as the Austrian “WE&ME” Foundation are dedicated

to financing ME/CFS research endeavors and raising awareness

about the condition (592). Similarly, “Action for M.E.” in England
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and Wales aim to spread awareness and education around ME/CFS

and raise funds to support these patients and their families. They

have also recently worked together with the James Lind Alliance

non-profit organisation, ME/CFS clinicians, and ME/CFS sufferers

and caretakers to identify ME/CFS research priorities (593). The top

three research priorities were found to be (1) understanding the

biological mechanism behind PEM and how this can be treated or

managed (2), which existing drugs used for other conditions would

be useful in treating ME/CFS, and (3) finding accurate and reliable

diagnostic testing for ME/CFS. Hence, future research should

include recommendations such as these with personal input from

ME/CFS sufferers.
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371. Castro-Marrero J, Cordero MD, Sáez-Francas N, Jimenez-Gutierrez C, Aguilar-
Montilla FJ, Aliste L, et al. Could mitochondrial dysfunction be a differentiating marker
between chronic fatigue syndrome and fibromyalgia? Antioxid Redox Signal (2013)
19:1855–60. doi: 10.1089/ars.2013.5346

372. Myhill S, Booth NE, McLaren-Howard J. Targeting mitochondrial dysfunction
in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)-a
clinical audit. Int J Clin Exp Med (2013) 6:1.

373. Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/
chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and
nitrosative stress pathways. Metab Brain Dis (2014) 29:19–36. doi: 10.1007/s11011-
013-9435-x

374. Missailidis D, Annesley SJ, Fisher PR. Pathological mechanisms underlying
myalgic encephalomyelitis/chronic fatigue syndrome. Diagnostics (Basel). (2019) 9.
doi: 10.20944/preprints201907.0196.v1

375. Maes M, Twisk FNM, Ringel K. Inflammatory and cell-mediated immune
biomarkers in myalgic encephalomyelitis/chronic fatigue syndrome and depression:
inflammatory markers are higher in myalgic encephalomyelitis/chronic fatigue
syndrome than in depression. Psychother Psychosomatics. (2012) 81:286–95.
doi: 10.1159/000336803

376. Sadatomi D, Nakashioya K, Mamiya S, Honda S, Kameyama Y, Yamamura Y,
et al. Mitochondrial function is required for extracellular ATP-induced NLRP3=
inflammasome activation. J Biochem (2017) 161:503–12. doi: 10.1093/jb/mvw098
Frontiers in Immunology 30
377. Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity.
Nat Immunol (2017) 18:488–98. doi: 10.1038/ni.3704

378. Breda CNS, Davanzo GG, Basso PJ, Saraiva Câ mara NO, Moraes-Vieira PMM.
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