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between HCMV serostatus and
outcomes in COVID-19 sepsis
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Background: Sepsis, a life-threatening condition caused by the dysregulated host

response to infection, is a major global health concern. Understanding the impact

of viral or bacterial pathogens in sepsis is crucial for improving patient outcomes.

This study aimed to investigate the human cytomegalovirus (HCMV) seropositivity

as a risk factor for development of sepsis in patients with COVID-19.

Methods: A multicenter observational study enrolled 95 intensive care patients

with COVID-19-induced sepsis and 80 post-surgery individuals as controls.

HCMV serostatus was determined using an ELISA test. Comprehensive clinical

data, including demographics, comorbidities, and 30-day mortality, were

collected. Statistical analyses evaluated the association between HCMV

seropositivity and COVID-19 induced sepsis.

Results: The prevalence of HCMV seropositivity did not significantly differ

between COVID-19-induced sepsis patients (78%) and controls (71%, p =

0.382) in the entire cohort. However, among patients aged ≤60 years, HCMV

seropositivity was significantly higher in COVID-19 sepsis patients compared to

controls (86% vs 61%, respectively; p = 0.030). Nevertheless, HCMV serostatus

did not affect 30-day survival.

Discussion: These findings confirm the association between HCMV seropositivity

and COVID-19 sepsis in non-geriatric patients. However, the lack of an

independent effect on 30-day survival can be explained by the cross-reactivity

of HCMV specific CD8+ T-cells towards SARS-CoV-2 peptides, which might
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confer some protection to HCMV seropositive patients. The inclusion of a post-

surgery control group strengthens the generalizability of the findings. Further

research is needed to elucidate the underlying mechanisms of this association,

explore different patient populations, and identify interventions for optimizing

patient management.

Conclusion: This study validates the association between HCMV seropositivity

and severe COVID-19-induced sepsis in non-geriatric patients, contributing to

the growing body of evidence on viral pathogens in sepsis. Although HCMV

serostatus did not independently influence 30-day survival, future investigations

should focus on unraveling the intricate interplay between HCMV, immune

responses, and COVID-19. These insights will aid in risk stratification and the

development of targeted interventions for viral sepsis.
KEYWORDS

viral sepsis, COVID-19 risk stratification, human cytomegalovirus, cross-reactive CD8+

T-cells, COVID-19 survival
Introduction

Sepsis is an acute, life-threatening syndrome with millions of

incidences each year (1). Up to 2020 the main pathogen inducing

sepsis were bacteria (2, 3). However, similarly to bacterial

pathogens, viruses are also capable of inducing critical conditions

resulting in organ dysfunction and an increased Sequential Organ

Failure Assessment (SOFA) Score (4) fulfilling the recent definition

of sepsis [Sepsis-3 (5)]. During the COVID-19 pandemic up to 80%

of sepsis cases were virally induced (6). In the post-pandemic era,

the rate of virally sepsis has decreased; however, COVID-19 sepsis

remains prevalent in ICUs worldwide, and it has guided the interest

of clinicians towards virally induced sepsis, that was most likely

underdiagnosed before (7).

In response to invasive bacterial pathogens, the human immune

reaction initially involves the activation of the innate immunity.

This consists of the complement-system as a non-cellular

component as well as macrophages and neutrophile granulocytes

and others as a cellular component, which opsonize, engulf and

destroy bacteria. This is followed by the activation of a slower but

more specific adaptive immune response. During the adaptive

immune response, B-cells start the production of highly specific

antibodies. Furthermore, T-cells that specifically target the invading

bacteria are expanded.

In contrast, viral pathogens are intracellular and can partly

evade from detection by the immune system. Thus, the immune

response to viral infections involves the production of cytokines and

specific interferons leading to
1. auto- and paracrine cellular effects, inhibiting intracellular

viral replication (8) and
02
2. an activation of cytotoxic T-cells (CD8+) to eliminate

infected cells.
Therefore, a virus-specific cascade following an interferon-

driven network with type 1 interferon (e.g. IFN-a) leading

towards an inhibition of viral replication (9) is described. An

inhibition of IL-10 and an upregulation of IL-16 (10) is observed

but still incompletely understood and most probably not

homogenous in different viral entities. During the pre-pandemic

era, influenza was the predominant pathogen, associated to viral

sepsis (2, 3).

The virus’ ability to evade the host’s immune defense and cause

continuous inflammatory damage is accompanied by high levels of

TNF-a and IL-6 as well as reduced IFN-g expression (7). However,

different viruses will most likely show different approaches to

evading the immune defense (7).

In SARS-CoV-2-sepsis, the initially described cytokine storm

turned out to be less pronounced, with moderate levels of IL-6 (11,

12) compared to bacterial sepsis.

Furthermore, an imbalance and predominance of non-type-1

cytokines (such as IL-4, or IL-17) is capable to draw the immune

system towards an inappropriate response, leading to exhaustion of

T-cells with ineffective clearance of viral-infected cells (7).

The immune response in COVID-19 sepsis is believed to differ

significantly from bacterial immunity, characterized by a delayed

and less severe response, as indicated by IL-6 serum concentrations

(11, 12). When compared to Influenza, COVID-19-sepsis also

develops with delayed symptoms and a prolonged inflammatory

phase (12). The intricate immunological landscape involves a

nuanced interplay of cytokines and key immunomodulatory

elements, including Type 1 and Type 2 interferons, thereby

demarcating a distinct divergence between bacterial and viral
frontiersin.org
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immune responses (12). Specifically, the interferon response in

severe COVID-19 is released later and less pronounced than

in Influenza-induced sepsis, leading to longer disease duration

(12). In this multifaceted milieu, various host-related factors

exert influence on immune defenses, encompassing age, genetic

predisposition (13) and comorbidities such as pulmonary

diseases (14), cardiovascular diseases (15, 16) and obesity (17).

Notably, the identification of human cytomegalovirus (HCMV)

serostatus as an independent predictor of survival in bacterial sepsis

has added a significant layer to our understanding of sepsis risk

factors (18).

HCMV is a herpes virus that, subsequent to the primary active

infection, remains in the host’s body in a latent form detected by

seropositivity. The virus re-activates frequently during life priming

the immune system towards the anti-viral response. Reactivation of

HCMV is mainly recognized during impaired immunity like

transplant-related immunosuppression or during severe infection,

often focused on sepsis. Here, reactivation is considered as a

worsening factor regarding mortality, ICU-and hospital-duration

and other secondary complication (19–23). Clear evidence

for antiviral prophylaxis in these circumstances is still missing

(24). A potential worsening effect of HCMV-reactivation on

the clinical course of patients is also described in severe SARS-

CoV-2, but this did not impact on patient’s mortality (25)

except in the very elderly (26). As a mechanistic link between

HCMV-reactivation and a propagated SARS-CoV-2 infection,

an upregulation of the ACE2-receptor in lung epithelial cells

driven by HCMV is discussed (27). Furthermore, a study by

Choi et al. (28) describes CD8+ T-cell exhaustion following

HCMV-reactivation.

Apart from HCMV-reactivation, HCMV in a controlled stage

(latency) continuously concerns the human immunity and, in fact,

HCMV seropositive patients have been reported to frequently have

up to 20% of CD8+ T-cells specific for HCMV (29–31) a number

that only increases with age.

The narrative, however, extends further. In the context of

COVID-19, HCMV emerges as a consequential player, associated

with heightened hospitalization (32) and ICU admission,

particularly in individuals under the age of 60 (33). Despite the

relatively modest cohort size in which the association regarding

ICU-admission was observed, the findings suggest a complex

interplay between SARS-CoV-2 and HCMV.

Moreover, HCMV has the ability to disrupt the antigen

presentation process of T- and NK-cells and affect the surface

maintenance of TLR4 and TLR5 on HCMV-infected cells,

consequently altering immune system cascades (34). Therefore,

HCMV-induced impairment of the immune system may have

a significant impact on the host’s immunity during a subsequent

COVID-19 infection and contribute to the development of

secondary infections. Additionally, latent HCMV infection may

alter the host’s response to SARS-CoV-2 vaccination, as has been

observed with other viral vaccinations such as influenza (35).

In view of these intriguing observations, our study endeavors to

elucidate the impact of HCMV serostatus on 30-day survival and
Frontiers in Immunology 03
immune response in COVID-19 sepsis, drawing parallels with the

established association between HCMV and bacterial sepsis.
Materials and methods

Patient recruitment and study design

This multicenter study was registered at the DRKS

(DRKS00026184) and approved by the local ethics board of the

Medical Faculty of Ruhr-University Bochum (Protocol No. 18-6606-

BR) and the corresponding ethics boards of each study site. As part of

the CovidDataNet.NRW project, we enrolled 95 intensive care

patients with COVID-19-induced sepsis (severe COVID-19) from

three different centers when SEPSIS-3 criteria were met. The

recruitment period was from August 1, 2021, to March 31, 2022,

and clinical data were collected in an observational approach. To be

included in this study, patients had to meet the following criteria:

evidence of infection with SARS-CoV-2 and evidence of underlying

sepsis with an increased SOFA score of at least two points.

Additionally, patients had to be aged 18 or above and provide

informed consent. Beyond that, we selected 80 patients who had

undergone abdominal surgery as a control group. Blood samples have

been collected within 36 h after sepsis diagnosis at the University

hospital Knappschaftskrankenhaus Bochum (KKB), University

hospital Münster (UKM), and University hospital Bonn (UKB).
Determination of CMV serostatus (IgG)
via ELISA

The SERION ELISA classic Cytomegalovirus IgG Kit (Institut

Virion\Serion GmbH, Würzburg, Germany) was used to determine

the IgG concentration in the patients’ blood sera. According to the

manufacturer’s instructions, 100 µL of diluted samples (1:100) and

respective controls were added to microtiter test wells and incubated

for 60 minutes at 37°C in a wet chamber. After four washing steps,

100 µL of IgG conjugate solution was added and incubated for 30

minutes at 37°C. Four more washing steps were conducted, followed

by the addition of 100 µL substrate solution. After 30minutes at 37°C,

the reactions were stopped by adding 100 µL stopping solution to

each well. The optical densities (OD) were determined using a

microplate reader (CLARIOstarPLUS, BMG LABTECH, Germany).

OD values were measured at a wavelength of 405 nm and analyzed by

CLARIOstar Data Analysis software. The values were normalized to a

standard curve, and units were calculated. Samples were classified as

CMV-IgG positive when 35 or more units were detected.
PBMC isolation

PBMCs of COVID-19 patients were isolated by subjecting the

obtained blood samples to Ficoll density gradient centrifugation

(GE Healthcare Europe, Freiburg, Germany). Subsequently, the
frontiersin.org
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phase containing the PBMCs was collected. Following erythrocyte

lysis, the collected PBMCs were stored at -196°C until use.
Immunophenotyping

Upon thawing, PBMCs were stained with 25 µl master mix,

containing the optimal concentrations of each antibody, for 10 min at

room temperature in the dark. Erythrocytes were lyzed using RBC

Lysis Buffer (BioLegend, San Diego) for 10 min at room temperature

in the dark and samples were immediately acquired on a CytoFlex

flow cytometer (Beckman Coulter, Brea). Quality control was

performed daily using the recommended CytoFlex Daily QC

Fluorospheres (Beckman Coulter, Brea). No modification to the

compensation matrix was required throughout the study.
Clinical data

Medical data, including laboratory values, vitals, demographics,

point-of-care diagnostics, and length of ICU stay, were stored in a

comprehensive database (CentraXX software, Kairos GmbH,

Bochum, Germany) and pseudonymized according to the

obligations of the Ethics Committee.
Statistics

Statistical analyses were performed using SPSS software Version

28 (IBM, Canada). Categorical variables were evaluated using Fisher’s

exact test, while continuous variables were first subjected to a

Kolmogorov-Smirnov test to assess normality. If variables were

normally distributed, they were evaluated using Student’s t-test for

independent samples. If variables were not normally distributed, they

were subjected to a Mann-Whitney U test. Kaplan-Meier curves with

subsequent log-rank tests were generated to depict 30-day survival as

a function of CMV serostatus in COVID-19 patients.
Results

Study design

We systematically assessed the impact of HCMV serostatus on

the 30-day mortality in the entire cohort of COVID-19 patients,

comparing them to pre-pandemic post-surgery individuals. An

additional focus was directed towards the non-geriatric sub-

population (patients aged 60 years or younger at study inclusion),

as illustrated in Figure 1.
HCMV serostatus is not different between
patients with severe COVID-19 and pre-
pandemic patients

95 patients suffering from severe COVID-19 with virus induced

sepsis and 80 pre-pandemic, post-surgery individuals without signs
Frontiers in Immunology 04
of infection (controls) were included in this prospective,

observational study. 61% of the COVID-19 patients were male

and the median age was 58 years (IQR 49-74years). This was not

significantly different to the control cohort in which 38% were male

(p=0,112) and the median age was 65 (IQR: 57-76) years (p=0,076).

The median SOFA-score at study inclusion was 9 (IQR 5-12) for

the COVID-19 cohort. The 30-day mortality was 42%. Co-

morbidities were assessed when available. Comparing the

frequency of relevant co-morbidities between the COVID-19 and

post-surgical patients, we find diabetes (22% vs. 12% respectively,

p=0.023) and obesity (37% vs. 21%, p=0.001) to be more frequent in

COVID-19 patients. Malignant diseases (5% vs. 80% p=0.001),

alcohol abuse (1% vs. 11%, p=0.017) and nicotine addiction (6%

vs. 36% p=0.001) were more frequent in controls. 78% of the

COVID-19 patients were seropositive for HCMV-IgG at study

inclusion. This was not significantly different than the control

cohort (71%, p = 0.382, Figure 2A).

Additional baseline characteristics are presented in Table 1 and

immune phenotyping with regard to HCMV-serostatus is shown in

Supplementary Table 1.
In patients 60 years or younger, the
frequency of HCMV seropositivity is
significantly higher than in comparable
control patients

The non-geriatric sub-population of these cohorts (i.e. patients

under or equal 60 years of age) consisted of 51 patients with severe

COVID-19 and 23 post-surgery individuals. In this cohort, 65% of

the COVID-19 patients were male, compared to only 39% in the

control cohort (p=0.047). The median age in COVID-19 patients

and controls was almost equal (49 [IQR:45-56] vs. 50 [IQR: 35-57]

years respectively, p = 0.935). The 30-day survival in these COVID-

19 patients was 59%. The median SOFA score at study inclusion was

9 (IQR: 5.5 – 12). When comparing co-morbidities, we find

significantly more malignant diseases (5% vs. 87%, p=0.001) as

well as a higher frequency of nicotine-abuse in post-surgery patients

(10% vs. 30%, p=0.043), which aligns with the general cohort. At the
FIGURE 1

Grouping of patients with COVID-19 induced sepsis (left) and control
subjects without infection (right) according to their CMV serostatus on
day 1 and subsequently according to age (<= vs >60 years).
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time of admission, 86% of the non-geriatric COVID-19 patients

presented sero-positive for HCMV-IgG, while only 61% of the post-

surgery controls did so (p=0,030, Figure 2B).

Table 2 depicts patients characteristics of the non-

geriatric patients.
HCMV serostatus does not affect 30-
day mortality

We assessed the effect of the HCMV serostatus on 30-day

mortality in the entire cohort of patients with severe COVID-19.

We could not identify HCMV seropositivity as a prognostic factor

in this cohort. The Kaplan Meier Analysis (Figures 3A, B) shows no

significant effect (survival: 57% vs. 58% for HCMV seronegative vs.

seropositive respectively, p = 0.721, log rank test).
Discussion

In our study, we observed no significant impact of HCMV

serostatus on the 30-day mortality in COVID-19 sepsis. This

finding contrasts starkly with bacterial sepsis, where HCMV

serostatus was an independent risk factor for mortality (18). The
Frontiers in Immunology 05
intriguing divergence prompts contemplation on the nuanced

interplay between HCMV, T-cel l dynamics , and the

heterogeneous landscape of COVID-19 sepsis.

The association of HCMV seropositivity with a specialized T-cell

pool and diminished naïve T-cell reservoirs, known as T-cell inflation

(36), has been postulated to render HCMV-seropositive patients

more susceptible to heterologous infections, as their T-cell

repertoire is significantly diminished (37). This might well be an

explanation for the effects of HCMV on bacterial sepsis patients (18).

However, why does this not translate to COVID-19 sepsis?

Interestingly, HCMV specific CD8+ T-cells have been shown to

react to SARS-CoV-2 peptides (38) just as SARS-CoV-2 T-cell

reacted to HCMV (33). This would grant HCMV seropositive

patients a certain protection from COVID-19 induced death, as

T-cell function is an important factor when it comes to SARS-CoV-

2 immunity (39).

But how does this fit to the findings of others, that have reported

that HCMV might be a risk factor for severe COVID-19 in non-

geriatric patients (34)? This is especially interesting as we find the

same effect of COVID-19 patients under the age of 60 more

frequently being HCMV seropositive than post-surgical control

patients of the same age group.

We assume, the explanation lies in the characteristic timeline of

T-cell inflation, which unfolds over a longer lifetime due to
B

A

FIGURE 2

Proportion of CMV-seropositive (red) versus -seronegative (blue) patients in the (A) total cohorts (COVID-19 versus controls) and (B) in the subgroup
of non-geriatric patients (COVID-19 versus controls).
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TABLE 1 Baseline characteristics of COVID-19 ICU patients and post-
surgery control patients.

COVID-19
induced
sepsis n=95

post-
surgery
patients;
n=80

p-
value

gender male 58 (61%) 35 (48%); 0.117

CMV-IgG positive at
day one

74 (78%) 57 (71%); 0.382

age in years median (IQR) 58 (49-74) 65 (57-76); 0.076

SOFA score at day one
median (IQR)

9 (5-12) n.a. n.a.

Median Oxygenation-Index
(paO2/FiO2) day 1 (median
± IQR)

157 (115-191)
n=49

n.a. n.a.

Mean arterial blood
pressure (MAP)
day 1 (median ± IQR)

84 (79-92)
n=53

n.a. n.a.

Number of patients
receiving adrenalin on
day 1

1 n.a. n.a.

Number of patients
receiving dobutamin on
day 1

3 n.a. n.a.

Number of patients
receiving noradrenalin on
day 1

27 n.a. n.a.

Platelet count day 1 (lowest
value, median ± IQR)

217 (130-283)
n=58

n.a. n.a.

Serum creatinin (mg/dl)
day 1 (highest value,
median ± IQR)

0,54 (0,34-0,78)
n=58

n.a. n.a.

Serum bilirubine (mg/dl)
day 1 (highest value,
median ± IQR)

0,88 (0,73-1,33)
n= 56

n.a. n.a.

Co-Morbidities

- pulmonal (non copd) 10 (11%) 11 (15%) 0.818

- copd 5 (5%) 12 (16%) 0.076

- nicotin 6 (6%) 26 (36%) 0.001

- diabetes 21 (22%) 9 (12%) 0.023

- hypertension 42 (44%) 46 (63%) 0.502

- obesity 35 (37%) 15 (21%) 0.001

- cardiovascular 16 (17%) 23 (32%) 0.195

- malignant 5 (5%) 58 (80%) 0.001

- alcohol 1 (1%) 8 (11%) 0.017

- transplantation 7 (7%) 1 (1%) 0.063

- Kidney (non rrt) 11 (12%) 4 (6%) 0.100

- renal replacement
therapy (rrt)

0 (0%) 0 (0%) n.a.

length of stay on ICU days
median (IQR)

18 (6-29,5) n.a. n.a.

(Continued)
F
rontiers in Immunology
 06
TABLE 2 Baseline characteristics of COVID-19 ICU patients and post-
surgery control patients aged 18-60years.

COVID-19
induced
sepsis
<60years;
n=51

postoperative
patients
<60years;
n=23

p-
value

gender male 33 (65%) 9 (39%) 0.047

CMV-IgG positive at
day one

44 (86%) 14 (61%) 0.030

age in years
median (IQR)

49 (45-56) 50 (35-57) 0.935

SOFA score at day one
median (IQR)

9 (5,5-12) n.a.

Co-Morbidities

- pulmonal
(non copd)

3 (7%) 3 (13%) 0.657

- copd 2 (5%) 4 (17%) 0.174

- nicotin 4 (10%) 7 (30%) 0.043

- diabetes 11 (26%) 3 (13%) 0.345

- hypertension 18 (43%) 9 (39%) 0.799

- obesity 24 (57%) 6 (26%) 0.021

- cardiovascular 4 (10%) 2 (8%) 1.000

- malignant 2 (5%) 20 (87%) 0.001

- alcohol 1 (2%) 3 (13%) 0.123

- transplantation 3 (7%) 1 (4%) 1.000

- Kidney (non rrt) 5 (12%) 1 (4%) 0.411

- renal
replacement therapy

0 (0%) 0 (0%) n.a.

length of stay on ICU
days median (IQR)

21 (6-35) n.a. n.a.

length of stay in hospital
median (IQR)

23 (10,5-42,5) 13 (6-22) 0.025

30-day survival 30 (59%) 23 (100%) 0.001
front
n.a., not applicable.
TABLE 1 Continued

COVID-19
induced
sepsis n=95

post-
surgery
patients;
n=80

p-
value

Co-Morbidities

length of stay in hospital
median (IQR)

21 (12-31,5) 11 (6-21) 0.001

30-day survival 55 (57,9%) 80 (100%) 0.001

Leukocyte count
(cells*1000/µl) median
(IQR) day 1

10,3 (7,2-13,7) 8,5 (6,3-12,5) 0.225
n.a., not applicable.
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recurrent HCMV reactivations (37). Consequently, any discernible

effects on the immune system may be more pronounced in older

patients, thereby explaining the association of HCMV with

COVID-19 sepsis in younger adults.

Crucially, our study’s design deviates from previous works, such

as Weber et al. (34), by contrasting severe COVID-19 cases with a

pre-pandemic cohort of post-surgery patients devoid of infection or

sepsis development. This approach enhances the generalizability of

our findings beyond specific COVID-19 patient subsets, thereby

augmenting the external validity of our results. This becomes

particularly crucial when considering potential interventions or

preventive measures based on our observations. What needs to be

discussed at this point, is the main and obvious condition,

distinguishing our post-surgery cohort from the COVID-19

patients under the age of 60 years: One main reason for surgery

were malignant diseases. Thus, we cannot exclude that the known

association between HCMV and malignancies (40) (41) plays
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further role. In this light the association does not contradict our

interpretation, as we find even higher rates of HCMV-seropositivity

in the COVID-19 patients than in the post-surgery cohort.

Future investigations should delve into the intricate interactions

among HCMV, the immune system, and the pathogenesis of

COVID-19-induced sepsis, with a specific focus on delineating

the role of T-cell function and its implications for disease

outcomes. By unraveling the underlying mechanisms, exploring

associations in diverse patient populations, and scrutinizing

potential interventions, we can deepen our understanding of

HCMV’s impact on COVID-19 and potentially enhance patient

management strategies.

Nevertheless, our study harbors limitations that warrant

acknowledgment. Despite a relatively larger COVID-19 cohort

compared to previous studies, the sample size remains modest,

particularly when undertaking subgroup analyses. Thus, we

advocate for retrospective assessments of HCMV serostatus in
B

A

FIGURE 3

30-day survival (Kaplan-Meier curve) based on HCMV serostatus in (A) the overall cohort and (B) in the subgroup of non-geriatric patients.
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larger observational COVID-19 trials to validate our findings

rigorously. The prevalence of HCMV seropositivity in the non-

geriatric COVID-19 cohort introduces another constraint,

diminishing the size of the seronegative cohort. As such, caution

is warranted, and we refrain from definitively ruling out an effect of

HCMV serostatus on the 30-day mortality in the non-geriatric

cohort, given our limited statistical power.

In conclusion, our investigation unveils that HCMV

seropositivity does not exert a discernible effect on the 30-day

mortality in COVID-19 patients. However, a nuanced association

surfaces, suggesting HCMV as a potential risk factor for severe

disease, particularly in younger patients. This dichotomy

underscores the complexity of viral-bacterial interactions within

the immune landscape and underscores the need for further

extensive studies to refine our comprehension.
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