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Acute myeloid leukemia (AML) is an aggressive heterogeneous disease

characterized by several alterations of the immune system prompting disease

progression and treatment response. The therapies available for AML can affect

lymphocyte function, limiting the efficacy of immunotherapy while hindering

leukemia-specific immune reactions. Recently, the treatment based on

Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in

combination with hypomethylating agents (HMAs) or low-dose cytarabine, has

emerged as a promising clinical strategy in AML. To better understand the

immunological effect of VEN treatment, we characterized the phenotype and

immune checkpoint (IC) receptors’ expression on CD4+ and CD8+ T cells from

AML patients after the first and second cycle of HMA in combination with VEN.

HMA and VEN treatment significantly increased the percentage of naïve CD8+ T

cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-

suppressive T regulatory cells (Tregs). Of note, a comparison between AML

patients treated with HMA only and HMA in combination with VEN revealed

the specific contribution of VEN in modulating the immune cell repertoire.

Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the

increased TIM-3 expression on CD8+ T cells, and the reduced co-expression
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of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific.

Collectively, our study shed light on immune modulation induced by VEN

treatment, providing the rationale for a novel therapeutic combination of VEN

and IC inhibitors in AML patients.
KEYWORDS

acute myeloid leukemia, immune system, venetoclax, hypomethylating agents, immune
checkpoints receptors, immune checkpoint inhibitors (ICIs)
Introduction

Acute myeloid leukemia (AML) is an aggressive heterogeneous

disease. Despite recent advances, the 5-year AML patients’ overall

survival (OS) is still largely unsatisfactory, reaching only 30% and

dropping to 5-10% in the elderly (1). To improve AML patients’

clinical outcomes, novel drugs have entered the clinical stage with

favorable results (2). Although their direct mechanisms of action

are defined, some bystander and/or off-target effects are not fully

elucidated. In particular, the activity of novel drugs in modulating

the immune cell repertoire has been poorly investigated.

The immune microenvironment of AML is characterized by a

broad spectrum of alterations, including a marked dysfunction in

the T cell compartment (3–7), leading to the creation of an

immunosuppressive milieu, which favors immune escape and

alters the response to therapy (8, 9). Furthermore, AML cells can

enhance T cell dysfunction through the expression of ligands

activating immune checkpoint (IC) receptors expressed on T cells

(9, 10), modulating their functionality (11). These findings have

provided the rationale for IC inhibitor (ICI)-based therapies in

AML patients. However, despite the solid preclinical background,

the early clinical results from trials addressing the impact of ICIs in

AML have been globally disappointing (12). These data indicate the

need for a more in-depth understanding of the complex cellular

network operating within the AML immune microenvironment.

Furthermore, considering that many studies have already shown

that chemotherapy can be detrimental to the activity and survival of

immune cells (13–16), a better characterization of the

immunological effects of novel drugs is of utmost importance for

fully exploiting immunotherapy strategies in AML.

The targeting of the anti-apoptotic B-cell lymphoma 2 (BCL-2)

pathway has emerged as an efficacious and well-tolerated clinical

strategy in AML. In particular, the remarkable results of Venetoclax

(VEN), a specific BCL-2 inhibitor in combination with

hypomethylating agents (HMAs) or low-dose cytarabine (17, 18),

have led to the drug approval for the treatment of newly diagnosed

unfit-for-chemotherapy AML patients (19). It is well-known that

VEN causes leukemic cell apoptosis through several characterized

mechanisms (20–23). However, VEN resistance can occur (24) and

biomarkers able to predict response to treatment are still under
02
investigation (25, 26). Furthermore, few studies analyzed the

bystander effect of VEN on immune cells (27–29). In particular, it

has been shown that VEN enhances T cell-mediated activity against

AML cells both in vitro and in vivo through the generation of

reactive oxygen species (ROS), and in parallel, azacitidine increases

AML cell susceptibility to T cell-mediated cytotoxicity through viral

mimicry (28). Furthermore, in AML patients, HMA and VEN

treatment modulates the phenotype of NK and T cells, IFN-g
secretion by CD8+ T cells and Treg proliferation. Finally, an

increased expression of perforin, CD39 and IFN-g production by

T cells as a pre-treatment signature is associated with VEN-

resistance (29).

Despite its recognized importance for therapeutic purposes, the

expression of several IC receptors on T cells has not been evaluated

in AML patients after VEN treatment. In this study, we aimed to

characterize the immunological repertoire of AML patients treated

with VEN in combination with HMA by focusing on the

modulation of IC receptors’ expression.
Material and methods

Patients and sample collection

The whole patient population included 27 patients, including 23

patients treated with the combination of HMAs and VEN and 4

patients with HMAs alone. The research was approved by the

institutional review board of Area Vasta Emilia Centro (AVEC)

Ethical Committee (approval code: 94/2016/O/Tess). Patients with

AML were recruited at IRCCS Azienda Ospedaliero-Universitaria,

Seràgnoli Hematology Institute in Bologna. Clinical samples and

data were collected after written informed consent. According to

normal clinical practice and to the study rationale, peripheral blood

(PB) samples were collected from AML patients before the start of

the treatment (baseline), and at the end of the first and second

treatment cycle. Patients’ characteristics are summarized in Table 1.

PB samples were used for flow cytometry analysis or centrifuged

over a Ficoll-Hypaque gradient (Lympholyte CL5020, Cedarlane,

Burlington, Canada) to collect mononuclear cells (MNCs), and then

cryopreserved for sample collection and storage.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1386517
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Corradi et al. 10.3389/fimmu.2024.1386517
Flow cytometry analysis

Fresh PB was used for multi-parametric flow cytometry analysis.

The monoclonal antibodies (mAbs) used for flow cytometry are listed

in Supplementary Table 1. For the surface marker staining, PB samples

containing at least 0.5x106 white blood cells (WBCs) were labeled with

dye-conjugated antibodies by incubation in the dark for 15 min at

room temperature. Then, the red blood cells (RBC) were lysed, adding

the FACS lysing solution (Beckton Dickinson Biosciences-BD, La Jolla,

CA, USA), according to the manufacturer’s instruction.

The T cell compartment was monitored using the following

markers: CD45, CD3, CD4, and CD8. The expression of CD45RA

and CD197 (CCR7) was used to distinguish T-cell subsets defined as

CD45RA+/CCR7+ (naïve=N); CD45RA+/CCR7- (terminally

differentiated=TD); CD45RA-/CCR7+ (central memory=CM);
Frontiers in Immunology 03
CD45RA-/CCR7- (effector memory=EM) (Supplementary

Figure 1A). Furthermore, we also evaluated the expression of the

following exhaustion/senescent markers: CD279 (PD-1), TIM-3

(CD366), LAG-3, (CD223), CD244 (2B4), and CD57 and activating

co-stimulatory ICs: OX40 (CD134) and ICOS (CD278). The Human

Regulatory T Cell Whole Blood Staining kit (Thermo Fisher

Scientific, Waltham, MA, USA) was used for the intracellular

staining, according to the manufacturer’s instruction. Briefly, PB

samples containing at least 1x106 WBCs were stained for the surface

markers in the dark for 15 min at room temperature. The RBC were

then lysed for 20 minutes at room temperature using the RBC lysing

solution. After 2 washes in PBS, the cells were resuspended in

Fixation and Permeabilization Buffer for 30 minutes at 4°C. After 2

washes, cells were labeled with mAbs listed in Supplementary Table 1

and incubated for 30 minutes at 4°C. Total Tregs were characterized
TABLE 1 Patient characteristics.

Patient ID Sex Age Disease status Therapy Cytogenetics Mutational status

AML 1 M 65 Relapse DEC+VEN Normal Wild Type

AML 2 M 60 Relapse DEC+VEN Complex FLT3-ITD

AML 3 F 70 Onset AZA+VEN Normal Wild Type

AML 4 F 67 MRD AZA+VEN Normal NPM1; IDH1

AML 5 M 67 Relapse AZA+VEN Inv(16) FLT3-TKD

AML 6 M 60 Onset DEC+VEN Complex TP53

AML 7 M 41 MRD AZA+VEN Normal NPM1

AML 8 F 58 MRD AZA+VEN Normal NPM1; FLT3-TKD; IDH1

AML 9 F 68 Onset AZA+VEN Normal NPM1

AML 10 M 69 Onset AZA+VEN Normal IDH2

AML 11 M 81 Onset AZA+VEN Trisomy (19) Wild Type

AML 12 F 74 Onset AZA+VEN Monosomy (7) Wild Type

AML 13 F 65 Onset (secondary to MDS) AZA+VEN Complex TP53

AML 14 M 76 Onset AZA+VEN Complex TP53

AML 15 M 79 Onset AZA+VEN Normal FLT3-ITD

AML 16 M 71 Onset AZA+VEN Normal Wild Type

AML 17 M 60 Onset AZA+VEN Complex IDH2

AML 18 M 66 Onset AZA+VEN Normal NPM1

AML 19 F 67 Onset AZA+VEN Normal NPM1; FLT3-ITD

AML 20 F 69 Onset AZA+VEN Monosomy (7) Wild Type

AML 21 F 80 Onset AZA+VEN Del (5q) Wild Type

AML 22 M 70 Onset DEC+VEN Normal NPM1; FLT3-ITD

AML 23 M 73 Onset AZA+VEN Normal FLT3-TKD

AML 24 M 72 Onset DEC Normal Wild Type

AML 25 M 86 Onset AZA Monosomy (7) Wild Type

AML 26 M 84 Onset AZA Not Evaluable Wild Type

AML 27 M 85 Onset AZA Normal Wild Type
AML, acute myeloid leukemia; MRD, measurable residual disease; DEC, Decitabine; VEN, Venetoclax; AZA, Azacitidine.
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as CD45+CD3+CD4+CD25+/highCD127low/- cells. The following

evaluation of CD25 and CD45RA expression dichotomizes

FOXP3+ Tregs into 3 populations: CD25+/CD45RA+/FOXP3+ as

naïve, CD25high/CD45RA-/FOXP3high as effector and CD25+/

CD45RA-/FOXP3+ as secreting non Tregs (Supplementary

Figure 1B). Moreover, the expression of further markers, including

ICOS, OX40, PD-1, and TIM-3, was assessed in the effector Treg

population (30). Analysis was performed on a Cytoflex flow

cytometer from Beckman Coulter, and results were obtained using

the software analysis Kaluza 2.1 (Beckman Coulter, Brea, CA, USA).
Statistical analysis

Statistical analyses were performed using GraphPad Prism

software (v6.0). T-test and one-way ANOVA followed by Tukey’s

multiple comparison post hoc test were used for comparison of

groups. P value <0.05 was considered significant.
Results

Patients’ characteristics

To analyze VEN-dependent immune cell repertoire

modifications, a group of 23 patients treated with the

combination of VEN and HMAs (azacitidine or decitabine),

hereafter defined as HMA plus VEN treatment and a control

subgroup of 4 patients who received HMAs alone, were

considered. Within the first group, 3 patients were enrolled and

started therapy at relapse; 3 more patients received therapy in the

phase of persistent MRD positivity, and 17 patients were included at

disease onset. In the second group, the 4 patients were also enrolled

at onset. Of note, regarding cytogenetics evaluation, 15 out of 27

patients had normal karyotype; 9 patients had high-risk

cytogenetics; one was at low risk; one had trisomy 19, and one

was not evaluable. Regarding molecular status, 7 patients were

NPM1 mutated, 4 had FLT3-ITD mutations, and 3 were TP53

mutated (Table 1). The NGS analyses was used and performed

using a 30 myeloid-related gene capture-based panel (Myeloid

Solution, Sophia Genetics, Switzerland) on a Miseq instrument

(Illumina, San Diego, California). The following genes and exons

are included in the panel: ABL1 (4-9), ASXL1 (9,11,12,14), BRAF

(15), CALR (9), CBL (8,9), CEBPA (all), CSF3R (all), DNMT3A (all),

ETV6 (all), EZH2 (all), FLT3 (13-15,20), HRAS (2,3), IDH1 (4),

IDH2 (4), JAK2 (all), KIT (2,8-11,13,17,18), KRAS (2,3), MPL (10),

NPM1 (10,11), NRAS (2,3), PTPN11 (3,7-13), RUNX1 (all), SETBP1

(4), SF3B1 (10-16), SRSF2 (1), TET2 (all), TP53 (2-11), U2AF1 (2,6),

WT1 (6-10), ZRSR2 (all). The platform Sophia DDM (Sophia

Genetics) was used for bio-informatic data analysis. Intronic and

synonymous variants were filtered out and variants present with a

minor allele frequency (MAF) >1%, according to population

databases (ExAc, 1000 genomes), were considered polymorphic

changes. Variants were also filtered according to the variant allele

frequency (VAF): all variants with VAF ≥5% were reported.

COSMIC and VARSOME databases, as well as in silico functional
Frontiers in Immunology 04
predictors (SIFT, PolyPhen) were used for variant interpretation;

only variants described as pathogenic or potentially pathogenic

were reported.

Eighteen patients received azacitidine, while 5 patients were

treated with decitabine. Furthermore, 7 patients from the first

group, treated with HMA plus VEN, were consolidated with

allogeneic hematopoietic stem cell transplant (HSCT).
HMA plus VEN modifies T cell subsets

To evaluate the effects of the treatment of HMA plus VEN on

circulating immune cell repertoire, we first analyzed CD4+ and

CD8+ T cell subsets in the PB of AML patients during treatment,

compared to PB examined before treatment (baseline). Total T

lymphocytes were slightly increased, although not significantly,

after the first and second cycles of HMA plus VEN treatment,

compared to baseline (Supplementary Figure 2A). Focusing on T

cell subsets, we found that the percentage of CD4+ and CD8+ T cells

did not change during HMA plus VEN treatment (Supplementary

Figures 2B, C). A more detailed analysis of effector CD4+ T-cell

subpopulations, identified as naïve/central memory/effector

memory/terminally differentiated by CD45RA and CCR7

expression, did not show significant changes during HMA plus

VEN treatment, compared to baseline (Figure 1A). Interestingly,

regarding CD8+ T-cell subpopulations, we found a significant

increase of CD8+ naïve T cells during the first and second cycles

of HMA plus VEN treatment (mean ± SEM, baseline: 11.56 ± 2.07;

cycle 1: 20.04 ± 2.89; cycle 2: 20.14 ± 3.18; baseline vs cycle 1,

*P=0.037; baseline vs cycle 2, *P=0.034), while the memory subsets

were not modified (Figure 1B left panel). Finally, we also studied the

Treg population, and found that total Tregs, identified as

CD4+CD25+CD127low/- T cells, tended to decrease after HMA

plus VEN treatment (Figure 1C left panel). A more detailed

analysis of Treg subsets revealed that the HMA plus VEN only

slightly affected the naive and effector Treg distribution

(Supplementary Figures 2D, E). On the contrary, the percentage

of cytokine-secreting non-suppressive Tregs, which includes Th17

cells, was significantly decreased after the first cycle of HMA plus

VEN treatment, compared to the baseline (mean ± SEM, baseline:

4.51% ± 0.855%; cycle 1: 2.63% ± 0.34%; cycle 2: 3.28% ± 0.40%;

baseline vs cycle 1, *P=0.041; Figure 1C right panel).

These data suggest that HMA plus VEN treatment induces a

redistribution of immune cell subsets towards a more naïve

phenotype for CD8+ T-cell subsets. On the contrary, HMA plus

VEN treatment does not significantly modify the Treg

compartment, while it induces a decrease in the percentage of

cytokine-secreting non-suppressive Tregs.
HMA plus VEN treatment alters the
expression of PD-1 and TIM-3 on CD4+

and CD8+ T cells

Then, we evaluated the effects of HMA plus VEN treatment on

the expression of IC inhibitory receptors, such as PD-1, TIM-3, and
frontiersin.org
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LAG-3, and activating co-stimulatory molecules, including ICOS

and OX-40. Interestingly, we found that HMA plus VEN treatment

induced changes in the percentage of PD-1+ and TIM-3+ CD4+ T

cells compared to baseline (Figure 2). In particular, the percentage

of PD-1+ CD4+ T cells was slightly reduced after the first cycle of
Frontiers in Immunology 05
HMA plus VEN treatment, while TIM-3+ CD4+ T cells were

significantly increased after the first cycle (mean ± SEM, baseline:

11.32% ± 1.63%; cycle 1: 19.33% ± 2.55%; cycle 2: 15.86% ± 2.97%;

Baseline vs cycle 1, *P=0.041), as shown in Figures 2A, B,

respectively. PD-1+/TIM-3+ T cells showed a statistically
B

C

A

FIGURE 1

Distribution of T cell subsets during HMA plus VEN treatment. All the samples were analyzed by flow cytometry and data are represented as mean ±
SEM. (A) CD4+ T cell subsets. Frequencies of CD45RA+/CCR7+ cells (naïve=N, upper left panel), CD45RA-/CCR7+ cells (central memory=CM, upper
right panel); CD45RA-/CCR7- cells (effector memory=EM, lower left panel), CD45RA+/CCR7- cells (terminally differentiated=TD, lower right panel).
Baseline, at least n=11; cycle 1 at least, n=16; cycle 2, n=12. (B) CD8+ T cell subsets. Cells were analyzed as described for A). Baseline, at least n=11;
cycle 1, at least n=17; cycle 2, n=12. For naïve CD8+ T cells (upper left panel): baseline vs cycle 1, *P=0.037; baseline vs cycle 2, *P=0.034. (C)
Frequencies of Tregs (CD3+CD4+CD25+CD127low/- cells) before treatment (n=12), after first (n=17), and second (n=12) cycle of HMA plus VEN (left
panel). Frequencies of cytokine secreting non-suppressive Tregs (CD45RA-CD25highFOXP3+ cells; right panel) within the
CD3+CD4+CD25+CD127low/- Treg population, expressed as a percentage of CD4+ cells, in patients before treatment (baseline, n=12), after first
(n=17), and second (n=12) cycle of HMA plus VEN; baseline vs cycle 1 *P=0.041.
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significant decrease after the second cycle of HMA plus VEN

treatment, compared to baseline (mean ± SEM, baseline: 5.07% ±

1.06%; cycle 1: 5.39% ± 0.74%; cycle 2: 2.70% ± 0.37%; baseline vs

cycle 1, *P=0.017; Figure 2C). Of note, VEN plus HMA treatment

did not change the expression of LAG-3, OX40 and ICOS on CD4+

T cells (data not shown).
Frontiers in Immunology 06
We next analyzed the expression of IC receptors on CD8+ T

cells, and we found a slight not significant increase in PD-1

expression after the second cycle of HMA plus VEN treatment

(Figure 2D). Similar to what we found for CD4+ T cells, TIM-3+

CD8+ T cells resulted significantly increased after the first cycle of

HMA plus VEN treatment, compared to baseline (mean ± SEM,
B

C

D E

F

A

FIGURE 2

Analysis of ICs on T cells during HMA plus VEN treatment. All the samples were analyzed by flow cytometry and data are represented as mean ±
SEM. (A) Percentage of CD4+PD-1+ T cells before treatment (n=12), after first (n=18), and second (n=12) cycle of HMA plus VEN. (B) Percentage of
CD4+ TIM-3+ T cells before treatment (n=12), after first (n=17) and second (n=12) cycle of HMA plus VEN (baseline vs cycle 1, *P=0.041. (C)
Percentage of PD-1+/TIM-3+ CD4+ T cells before treatment (n=12), after first (n=18), and second (n=11) cycle of HMA plus VEN, baseline vs cycle 1,
*P=0.017. (D) Percentage of CD8+PD-1+ T cells before treatment (n=12), after first (n=18), and second (n=12) cycle of HMA plus VEN. (E) Percentage
of CD8+ TIM-3+ T cells before treatment (n=12), after first (n=17), and second (n=12) cycle of HMA plus VEN. Baseline vs cycle 1, *P=0.039. (F)
Percentage of PD-1+/TIM-3+ CD8+ T cells before treatment (n=12), after first (n=17), and second (n=12) cycle of HMA plus VEN.
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baseline: 18.17% ± 1,70%; cycle 1: 24.60% ± 2.18%; cycle 2: 21.31% ±

3.78%; baseline vs cycle 1, *P=0.039; Figure 2E). At the same time,

we found a trend toward a decrease in the PD-1+/TIM-3+ CD8+ T

cells after the first treatment cycle (Figure 2F).

To further characterize the expression of markers involved in T

cells’ exhausted and senescent status in AML patients treated with

HMA plus VEN, we analyzed the expression of CD244 and CD57 on

CD4+ and CD8+ T cells. No significant differences were found after

HMA plus VEN treatment (Figures 3A, B). Regarding Tregs, the

expression of CTLA-4, OX-40, ICOS, PD-1 and TIM-3 was analyzed

in the effector Tregs, known to have the highest suppressive potential

among Treg subsets (30), but we did not find any differences in their

expression after treatment (Supplementary Figure 3).

Overall, these findings indicate that HMA plus VEN modify the

expression of ICs on CD4+/CD8+ T cells but not in Treg cells.
VEN specifically decreases cytokine-
secreting non-suppressive Tregs and
regulates TIM-3 expression on CD8+ and
PD-1/TIM-3 expression on CD4+ and CD8+

T cells

To dissect the specific contribution of VEN in modulating the

immune cell repertoire of AML patients treated with HMA plus

VEN, we considered pair-matched samples comparing the time

points before treatment (baseline considered as 1), treated only with

HMA and treated with the combination of HMA plus VEN.

Focusing on T lymphocyte subsets, we found that VEN did not

change the distribution of CD8+ naïve T cells (Figure 4A). In

contrast, VEN specifically induced a significant reduction in the

percentage of cytokine-secreting non-suppressive Tregs (mean ±

SEM, HMA+VEN cycle 1: 0.62% ± 0.1%; baseline vs cycle 1 HMA

plus VEN, **P=0.008; Figure 4B).

Next, we analyzed the IC expression and, interestingly, in

contrast to what was observed considering the entire group of

patients, we found that the expression of PD-1 on CD4+ T cells was

slightly decreased by VEN treatment for matched patients

(Figure 4C). A similar pattern was observed for TIM-3 expression
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on CD4+ T cells, whose expression was not affected by VEN and

seemed to decrease after HMA treatment (Figure 4D). On the

contrary, we observed a significant decrease of CD4+ T cells

expressing TIM-3 and PD-1 only in patients treated with the

combination HMA plus VEN after one cycle of HMA (mean ±

SEM, HMA+VEN cycle 1: 0.58% ± 0.14%; baseline vs cycle 1 HMA

plus VEN, *P=0.025; Figure 4E). Next, we analyzed the expression

of ICs on CD8+ T cells, and we found that PD-1 expression is not

influenced by VEN (Figure 4F). Conversely, the expression of TIM-

3 remained stable after HMA treatment only, but was significantly

increased after HMA plus VEN treatment indicating a VEN-specific

effect (mean ± SEM, HMA+VEN cycle 1: 1.47 ± 0.15%; *P=0.020;

Figure 4G). Interestingly, VEN treatment specifically and

significantly decreased the expression of PD-1/TIM-3 on CD8+ T

cells (Figure 4H; mean ± SEM, HMA+VEN cycle 1: 0.68 ± 0.08%;

baseline vs cycle 1 HMA plus VEN, **P=0.007). Importantly, we

found a statistically significant difference between the percentage of

CD8+Tim-3+ T cells at baseline and therapy response after the first

cycle (Supplementary Figure 4). In particular, the increased

percentage of Tim-3+CD8+ T cells was positively correlated with

complete remission (CR) compared to the patients which did not

achieve CR (Supplementary Figure 4A). The population of CD8+ T

cells co-expressing PD-1 and Tim-3, strongly associated with

exhaustion status, was not correlated with therapy response

(Supplementary Figure 4B).

Overall, an in-depth analysis performed comparing samples

collected after HMA only and at the first cycle of HMA plus VEN

treatment with respect to the baseline, suggested a specific role of

VEN in modulating the expression of inhibitory IC receptors on

both CD4+ and CD8+ T cells. In particular, VEN induces an

increase of the TIM-3+ CD8+ T cell population and a reduction

of PD-1+/TIM-3+ CD4+ and CD8+ T cells.
Discussion

In this study, we analyzed the immune cell repertoire of 23 AML

patients treated with HMA plus VEN. We focused on the

modulation by treatment of IC receptors’ expression on T cells.
BA

FIGURE 3

Expression of CD244 and CD57 on CD8+ T cells during HMA plus VEN treatment. All the samples were analyzed by flow cytometry and data are
represented as mean ± SEM. (A) Percentage of CD8+CD244+ T cells before treatment (n=12), after first (n=18), and second (n=12) cycle of HMA plus
VEN. (B) Percentage of CD8+ CD57+ T cells before treatment (n=12), after first (n=18), and second (n=12) cycle of HMA plus VEN.
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FIGURE 4

Analysis of pair-matched patients. All the samples were collected from patients during only 1 cycle of HMA (grey) or 1 cycle of HMA plus VEN
treatment (black), and were analyzed by flow cytometry. Fold change percentages (FCH) were calculated normalizing the baseline value to 1 shown
as the red line (cycle 1/baseline), and data are represented as mean ± SEM. (A) FCH of CD45RA+/CCR7+ cells (naïve) CD8+ T cells before and after
first treatment cycle (HMA, n=4; HMA plus VEN, n=7). (B) FCH of cytokine secreting non-suppressive Tregs (CD45RA-FOXP3+ cells) within the
CD3+CD4+CD25+CD127low/- Treg population, expressed as a percentage of total CD4+ T cells (HMA, n=4; HMA plus VEN, n=7; baseline vs cycle 1
HMA plus VEN, **P=0.008). (C) FCH of CD4+PD-1+ T cells before and after first treatment cycle (HMA, n=4; HMA plus VEN, n=8). (D) FCH of CD4+

TIM-3+ T cells before and after first treatment cycle (HMA, n=4; HMA plus VEN, n=8). (E) FCH of CD4+ PD-1+TIM-3+ T cells before and after first
treatment cycle (HMA, n=4; HMA plus VEN, n=7; baseline vs cycle 1 HMA plus VEN, *P=0.025). (F) FCH of CD8+PD-1+ T cells before and after first
treatment cycle (HMA, n=3; HMA plus VEN, n=8). (G) FCH of CD8+TIM-3+ T cells before and after first treatment cycle (HMA, n=4; HMA plus VEN,
n=7; baseline vs cycle 1 HMA plus VEN, *P=0.020). (H) FCH of CD8+PD-1+TIM-3+ T cells before and after first treatment cycle (HMA, n=4; HMA plus
VEN, n=7; baseline vs cycle 1 HMA plus VEN, **P=0.007).
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Our data unravel the ability of VEN to modulate the immune cell

compartment and the expression of ICs.

While the HMA plus VEN treatment is becoming the backbone

for AML therapy, new combinatorial drug strategies, including

immunotherapies, have been considered to improve the survival

of AML patients. For this reason, increased knowledge of the

immunological effects of VEN treatment is fundamental for fully

exploiting new immunotherapy strategies in AML.

VEN is a specific BCL-2 inhibitor. Interestingly, various T cell

subsets depend on BCL-2 for their survival to varying degrees and,

thus, may be influenced by the treatment with VEN (31). In

particular, naïve and memory T cells require BCL-2 for survival

and/or homeostasis (32, 33). In our study, after HMA plus VEN

treatment, we did not find a modulation of either the total

percentage of CD3+, CD4+ and CD8+ T cells nor the percentage

of CD4/CD8 immune T cell subsets, except for an increase of naïve

CD8+ T cells. This finding contrasts with previous works showing

that BCL-2 inhibition in different settings led to a reduction of total

and naïve T cells and to an increase in the proportion of memory T

cells (34–36). In particular, in AML patients treated with HMA and

VEN a depletion of total T, B and NK cells and an increase of the

CD4+ and CD8+ T-cell frequencies with an effector memory

phenotype at the expense of naïve T cells have been observed

(29). However, despite a decrease in the total number of CD4+ and

CD8+ T cells, their differentiation status did not change after 1 year

of VEN-based therapy in patients with chronic lymphocytic

leukemia (27). The discrepancy in these findings could be due to

different reasons:1) the different timing of blood collection during

the therapy; 2) the analysis of percentages compared to the absolute

numbers, and 3) the different cell surface markers used to identify

the T cell immune subsets. Furthermore, it must be considered that

our particular and previously unexplored setting, i.e. the paired

analysis conducted on patients treated with HMA plus VEN or

HMA only, may have allowed us to distinguish a VEN-dependent

effect from an HMA-dependent effect. In our hands, VEN did not

alter the percentage of CD8+ naïve T cells.

Next, we found that HMA plus VEN treatment did not affect

total Tregs and their subsets, according with a previous study (29).

These results are corroborated by the demonstration that Tregs are

relatively resistant to apoptosis induced by BCL-2 inhibition

compared to other T cells. Indeed, BCL-2 is not required for Treg

survival, as opposed to MCL-1, another member of the BCL-2

pathway, the loss of which leads to fatal autoimmunity in a mouse

model (37). Interestingly, by analysing Tregs’ subset after HMA plus

VEN treatment, we found a decrease in the CD25+/CD45RA-/

FOXP3+ T cells, which represent a cytokine-secreting and non-

suppressive population with Th17 cell potential (30). Of note, we

did not observe such reduction in patients treated with HMA only,

suggesting a putative-specific role of VEN.

To our knowledge, this is the first study reporting the effect of

VEN treatment on this cell population. The plasticity of CD4+ T cell

subsets is well-known, and in particular, the plasticity between Th17

and Tregs has been described (38). The Th17 and Treg

differentiation networks play a critical role in the development of

autoimmune diseases (39). Interestingly, Th17 cells are considered a
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double-edged sword in solid tumors, promoting at the same time

tumor progression, angiogenesis, and anti-tumor response, and

immune cells’ recruiting (40, 41). In line with this, Th17 cells can

promote both pro- and anti-tumor immunity in hematological

malignancies. An increase in Th17 cells was associated both with

better and worse clinical outcomes in AML patients (42–44).

Moreover, an increase in Th17 cells population was found in not

responding relapsed/refractory AML patients, compared to

responders treated with HMA and the anti-PD-1 Nivolumab (45).

By specifically addressing the expression of inhibitory and

stimulatory IC receptors, we found a significant increase in TIM-

3+CD4+ T cells after the first cycle of treatment. However, when we

paired patients to dissect the contribution of VEN, this finding was

not confirmed. On the contrary, we found a VEN-specific increased

expression of TIM-3 on CD8+ T cells after the first cycle. As

previously mentioned, TIM-3 expression has been associated with

exhaustion and dysfunction of T cells, and with immune evasion in

AML (46). Interestingly, AML cells can enhance the expression of

inhibitory receptors, including TIM-3, thus determining CD4+ T

cell exhaustion in vitro (47), and TIM-3 expression on immune cells

has been correlated to both a better and a poor prognosis in AML

patients (48–50). Besides its expression on immune cells, TIM-3 has

been found in AML leukemia stem cells but not in their normal

counterparts (51, 52), and increased levels of Galectin- 9, a TIM-3

ligand, were found in AML patients’ serum (53). However, despite

its implications in cell survival and disease progression, the role of

TIM-3 on AML cells is still unknown and the blockade of TIM-3 as

a single agent did not show a substantial clinical benefit. However,

our finding showing the increased TIM-3 expression on CD8+ T

cells after VEN treatment could support on-going clinical trials

based on the use of TIM-3 inhibitor (NCT03066648,

NCT04150029, NCT04623216) in combination with VEN.

Of note, we found a significant VEN-dependent decrease of PD-

1+TIM-3+ CD4+ and CD8+ T cells after the first treatment cycle. PD-

1+TIM-3+ double-positive T cells have been indicated as prognostic

in different settings. The exhausted T cell population PD-1highTIM-3+

was shown to be functionally deficient and was associated with AML

relapse after allogeneic HSCT (54). A higher proportion of PD-

1+TIM-3+ CD3+ T cells in the bone marrow and of PD-1+ TIM-

3+ CD4+ T cells in the PB of non-complete remission versus CR

patients after first-cycle chemotherapy were observed (55). In mouse

model, the PD-1 and TIM-3 co-expression on CD8+ T cells was

increased during AML progression (56). Within the CD8+ PD-1+ T

cells, the TIM-3 expression identifies the most dysfunctional T-cell

population in human chronic viral infections (57, 58). This finding

could indicate a beneficial effect of VEN on functional T-cell response

confirming a previous study showing that VEN, leading to increased

ROS generation, enhances T cell-mediated cytotoxicity against AML

cells in vitro and in vivo (28).

In conclusion, our study had new evidence in support of the

ability of VEN to modulate immune cell composition and

phenotype. In particular, we identified two significant VEN-

specific effects 1) a decrease of cytokine-secreting non-suppressive

Tregs with Th17 cell potential, the clinical significance of which

deserves to be explored; 2) a decrease of the PD-1+/TIM-3+ CD4+
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and CD8+ T cells, which may have a beneficial effect. Furthermore,

we also found an enhanced expression of TIM-3 on CD8+ T cells.

Understanding the immunological microenvironment under the

action of the selective BCL-2 inhibition can potentially reveal both

novel mechanisms of resistance and new treatment combinations.
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12. Gómez-Llobell1 M, Andrés Peleteiro R, Medina Climent J, Centurión Gómez I,
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