
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhihui Zhang,
Chinese Academy of Medical Sciences and
Peking Union Medical College, China

REVIEWED BY

Afshan Fathima Nawas,
University of Texas Southwestern Medical
Center, United States
Pengpeng Zhang,
Nanjing Medical University, China

*CORRESPONDENCE

Xiaojing Wang

wangxiaojing8888@163.com

Chaoqun Lian

lianchaoqun@bbmc.edu.cn

†These authors have contributed equally to
this work

RECEIVED 15 February 2024
ACCEPTED 15 July 2024

PUBLISHED 31 July 2024

CITATION

Wang Z, Zhang J, Zuo C, Chen H, Wang L,
Xie Y, Ma H, Min S, Wang X and Lian C (2024)
Identification and validation of tryptophan-
related gene signatures to predict prognosis
and immunotherapy response in lung
adenocarcinoma reveals a critical
role for PTTG1.
Front. Immunol. 15:1386427.
doi: 10.3389/fimmu.2024.1386427

COPYRIGHT

© 2024 Wang, Zhang, Zuo, Chen, Wang, Xie,
Ma, Min, Wang and Lian. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 31 July 2024

DOI 10.3389/fimmu.2024.1386427
Identification and validation of
tryptophan-related gene
signatures to predict prognosis
and immunotherapy response in
lung adenocarcinoma reveals a
critical role for PTTG1
Ziqiang Wang1,2†, Jing Zhang3†, Chao Zuo4, Huili Chen2,
Luyao Wang3, Yiluo Xie5, Hongyu Ma5, Shengping Min1,
Xiaojing Wang1* and Chaoqun Lian2*

1Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular
Diagnosis Center, Joint Research Center for Regional Diseases of Institute of Health and Medicine
(IHM), First Affiliated Hospital of Bengbu Medical University, Bengbu, China, 2Research Center of
Clinical Laboratory Science, Bengbu Medical University, Bengbu, China, 3Department of Genetics,
School of Life Sciences, Bengbu Medical University, Bengbu, China, 4Department of Clinical
Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China, 5Department of Clinical
Medicine, Bengbu Medical University, Bengbu, China
Introduction: Tryptophan metabolism is strongly associated with

immunosuppression and may influence lung adenocarcinoma prognosis as

well as tumor microenvironment alterations.

Methods: Sequencing datasets were obtained from The Cancer Genome Atlas

(TCGA) and the Gene Expression Omnibus (GEO) database. Two different clusters

were identified by consensus clustering, and prognostic models were established

based on differentially expressed genes (DEGs) in the two clusters. We investigated

differences in mutational landscapes, enrichment pathways, immune cell

infiltration, and immunotherapy between high- and low-risk scoring groups.

Single-cell sequencing data from Bischoff et al. were used to identify and quantify

tryptophan metabolism, and model genes were comprehensively analyzed. Finally,

PTTG1 was analyzed at the pan-cancer level by the pan-TCGA cohort.

Results: Risk score was defined as an independent prognostic factor for lung

adenocarcinoma and was effective in predicting immunotherapy response in

patients with lung adenocarcinoma. PTTG1 is one of the key genes, and

knockdown of PTTG1 in vitro decreases lung adenocarcinoma cell proliferation

and migration and promotes apoptosis and down-regulation of tryptophan

metabolism regulators in lung adenocarcinoma cells.

Discussion: Our study revealed the pattern and molecular features of tryptophan

metabolism in lung adenocarcinoma patients, established a model of tryptophan

metabolism-associated lung adenocarcinoma prognosis, and explored the roles of

PTTG1 in lung adenocarcinoma progression, EMT process, and tryptophanmetabolism.
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Introduction

Lung cancer is the cancer with the highest incidence and

mortality rate worldwide and remains the leading cause of cancer

deaths (1, 2). Lung adenocarcinoma (LUAD) is the most common

pathologic subtype of lung cancer, accounting for approximately 40%

of all lung cancer cases (3). In most cases, tumors are found to be

locally advanced or metastatic disease, and despite significant

advances in combination treatment strategies for LUAD, the

average 5-year survival rate for LUAD is approximately 15% (4). In

recent years, the clinical use of immunotherapies targeting immune

checkpoints has been shown to improve survival in advanced non-

small cell lung cancer (NSCLC), but only some patients respond to

them (5). Various biomarkers such as tumor mutational burden

(TMB), PD-L1 expression, microsatellite instability (MSI), mismatch

repair defects (dMMR), mutations in cancer driver genes, and

immunogenetic signatures are widely used in clinical practice (6,

7). Novel markers such as circulating tumor cells (CTCs) and

circulating tumor DNA (ctDNA) are also expected to be used to

assess the efficacy of immune checkpoint inhibitors (ICIs) (8, 9).

However, LUAD has molecular heterogeneity and diverse tumor

microenvironment (TME) compositions, making it difficult to fully

reflect the heterogeneous TME and thus predict immunotherapy

efficacy (10, 11). Therefore, it is necessary to develop predictive

models and identify new biomarkers to predict prognosis and

treatment efficacy. Altered cellular metabolism is considered a

hallmark of cancer, and previous studies have shown that

glutamine and arginine metabolism are closely associated with

macrophage activation and immunomodulation. And tumor-

associated macrophages (TAMs), the most abundant immune

component of TME, not only support tumor progression and

metastasis but also cause further immunosuppression (12, 13).

However, the molecular alterations and metabolic patterns of

tryptophan in lung adenocarcinoma have not been fully investigated.

Tryptophan (TRP) is an essential amino acid. Tryptophan and its

metabolites play key roles in a variety of physiological processes,

ranging from cell growth and maintenance to coordinating the

body’s response to the environment and diet (14). There is growing

evidence that tryptophan catabolism is involved in immune tolerance

and promotes responses to other antitumor agents through the

Kynurenine (KYN) pathway (15). Indoleamine 2,3-dioxygenase

(IDO) and tryptophan-2,3-dioxygenase (TDO) catalyze the same

reaction and are rate-limiting enzymes in the kynurenine pathway

(16). IDO has been shown to have immunosuppressive effects (17),

and inhibition of IDO expression enhances antitumor immunity (18).

Studies have shown that IDO has an immunosuppressive effect, and

anti-tumor immunity can be enhanced by inhibiting the expression of

IDO. Similar immunosuppressive effects of TDO have been

demonstrated by inhibiting T cell proliferation and blocking

immune cell infiltration (19, 20). IDO activity induces tryptophan

depletion, leading to GCN2 activation and mTOR inhibition, which in

turn leads to effector T cell incompetence. IDO expression is not only

associated with a decrease in tumor-infiltrating lymphocytes (TILs) but

also inhibits the antigen presentation response of T cells to dendritic

cells (DCs) (21, 22). In patients with advanced NSCLC, higher IDO

activity (kyn/trp ratio) predicts resistance to anti-PD-1 therapy (23).
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In addition, tryptophan degradation is thought to suppress immune

cells through the formation of immunosuppressive tryptophan

catabolic metabolites and tryptophan depletion (24). These studies

suggest that tryptophan plays an important role in tumor progression

and antitumor immune processes and that tryptophanmetabolism has

potential implications for immunotherapy of LUAD.

Pituitary tumor transforming gene 1 (PTTG1) is considered a

proto-oncogene that promotes cell cycle progression, maintains

chromosomal stability, and mediates in vitro transformation and in

vivo tumorigenesis (7, 25). PTTG1 is highly expressed and

associated with poor prognosis in a variety of cancers, including

lung adenocarcinoma, hepatocellular carcinoma, breast cancer, and

glioma, and its expression is positively correlated with tumor

oncogenicity and significantly affects the ability of tumors to

proliferate, migrate, and invade by upregulating cellular markers

of epithelial-mesenchymal transition (EMT) and transcriptional

factors that induce a malignant phenotype in tumors (26–29). In

Zhou et al.’s study, PTTG1 was found to promote hepatocellular

carcinoma cell proliferation and hepatocellular carcinoma

progression by upregulating asparagine synthase (ASNS)-

mediated asparagine metabolism and activating the mTOR

pathway. While in LUAD, PTTG1 has been preliminarily shown

to promote LUAD progression and inhibit LUAD growth and

invasion by regulating TGFB1/SMAD3 signaling (30, 31). In

LUAD, the association between PTTG1 and tryptophan

metabolism and the potential mechanism during epithelial

mesenchymal transition (EMT) have not been investigated.

In this study, we comprehensively analyzed the Cancer Genome

Atlas (TCGA), the Gene Expression Omnibus (GEO) database, and

the single-cell sequencing data from Bischoff et al. (32). in the LUAD

dataset to explore the expression patterns and predictive potential of

the tryptophan-related genes (TRPRGs). First, two distinct subtypes

were identified by consistent clustering, with significant differences in

metabolic alterations, biological processes, and immune characteristics

between the subtypes. Next, we constructed TRP-associated

prognostic features by Lasso Cox regression and validated them in

multiple GEO cohorts. Then, we identified five independent

immunotherapy cohorts to validate the predictive performance of

immunotherapy efficacy. In addition, a comprehensive analysis of the

five prognostic features was conducted, and finally, we identified a

specific role in the tumor microenvironment based on the tryptophan

metabolism-associated hub gene, PTTG1, and conducted a series of

cellular experiments to validate the correlation between PTTG1 and

tryptophan metabolism, as well as its promotional role in the process

of proliferation, migration, EMT and apoptosis in LUAD.
Methods

Data collection and processing

Transcriptomic data, single nucleotide mutations (SNVs), and

copy number mutations (CNVs) in LUAD patients were

downloaded from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/), selecting lung adenocarcinoma samples

with complete survival information (n=500). In addition, we
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downloaded the GSE31210 (n=226), GSE50081 (n=127), and

GSE30219 (n=278) datasets from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) as a

validation cohort. To comprehensively investigate the metabolic

pattern and predictive potential of tryptophan metabolism for

LUAD, TRPRGs selected in this study were obtained from the

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb) database

(33) including KEGG_TRYPTOPHAN_METABOLISM,

REACTOME_TRYPTOPHAN_CATABOLISM and WP_TRY

PTOPHAN_METABOLISM. After removing duplicate genes, a

total of 51 TRPRGs were included in this study (Supplementary

Table 1). Based on the patient’s overall survival (OS), we performed

univariate Cox regression analysis using the “survival” R package to

assess the prognostic value of the 51 TRPRGs in LUAD patients.

Fourteen TRPRGs associated with OS were screened according to

P<0.05 for subsequent analysis. Similarly, the pan-cancer analysis

was based on RNA-seq data for 33 cancer types in the TCGA

database and corresponding clinical information. The RNA-seq

data type for processing TCGA was log2(TPM+1).
Collection and processing of data for
single-cell RNA-seq analysis

We used single-cell RNA sequencing data (50,093 transcriptomes

after quality control and filtering) from 10 LUAD samples (5 normal

lungs and 5 lung adenocarcinoma samples) from the single-cell

sequencing data of Bischoff et al. Single-cell sequencing data were

analyzed using the “Seurat” software package. Quality control (QC)

was performed by retaining cells with less than 10% of mitochondrial

genes and genes with expression ranging from 100 to 8000 in at least

three cells. We then identified highly variable genes and set the

number of highly variable genes to 2000 for subsequent analysis.

The “Harmony” software package was used to remove batch effects.

We constructed cell clusters using the “FindClusters” and

“FindNeighbors” functions and visualized them using the “t-SNE”

method. Finally, we performed cellular annotation based on the

marker genes of different cell types.

The built-in function “AddModuleScore” in the Seurat package

was used to quantify the activity of a specific set of genes in each cell.

To analyze the differentially expressed genes (DEGs) between the

two groups, we used the “FindMarkers” function in the Seurat

package. The statistical significance of DEGs was calculated using

the Wilcoxon test (p.adj<0.05), and other parameters were set to

default values. Genes differentially expressed between cells with

high and low TRP scores were considered to be involved in

tryptophan metabolism at the single-cell transcriptome level.
Consensus clustering of tryptophan-
related genes

In this study, we used the 14 prognostically relevant tryptophan-

related genes described above. We used the “ConsensusClusterPlus”
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package for consistent clustering (reps = 1000, pItem = 0.8, pFeature

= 1, clusterAlg = “pam”), and the optimal number of clusters was

evaluated by the cumulative distribution function (CDF) plot and the

consensus heatmap with an optimal K-value of 2. We used the

“survival” package to evaluate the clinical survival outcomes of LUAD

samples in molecular subtypes based on TRPRGs. Principal

component analysis (PCA) was used to investigate the distribution

patterns of molecular isoforms based on TRPRGs using the R

package “ggplot2”. Finally, we used “ggplot2” R to analyze the

distribution pattern of molecular subtypes based on TRPRGs.

Finally, we used the “pheatmap” R package to visualize the

relationship between TRPRGs expression, clinical survival status,

and clinicopathological features.
Enrichment analysis and
functional annotation

To further investigate differentially expressed genes (DEGs)

between subgroups defined by TRPs, we identified DEGs using

the “limma” R package with screening criteria of |logFC|> 1 & p <

0.05 and followed up with further analysis of genes associated with

prognosis. To explore the underlying mechanisms of the two

tryptophan metabolism subtypes involved in LUAD, we

performed gene set enrichment analysis (GSEA) in different

clusters constructed based on tryptophan metabolism-related

genes. The “h.all.v7.4.Hs.symbols” and “c2.cp.kegg.v7.4.

symbols.gmt” gene sets downloaded from MsigDB were used as

the reference gene sets, while the “GSVA” package was used to

calculate the enrichment scores of the relevant pathways. We

calculated the differentially expressed pathways between the two

subgroups, where P < 0.05 was considered significant. The gene sets

for GSVA and GSEA were downloaded from the Molecular

Signatures Database (MSigDB) v7.4 database.
Characterization of the LUAD
immune profile

In this study, the ESTIMATE algorithm was utilized to estimate

immune cell abundance between high and low-risk groups using

expression data from the TCGA database. The relative proportions

of the 22 immune cell types in each tumor tissue were estimated

using the CIBERSORT algorithm based on the TPM values of the

TCGA-LUAD patients, and samples with P > 0.05 in the results

were excluded and the remaining samples were analyzed further

(34). In addition, we determined the level of immune cell

infiltration in LUAD TME by using the single sample gene set

enrichment analysis (ssGSEA) algorithm (35), and unique

combinations of characterized genes for each immune cell

subtype were obtained from the most recent literature (36, 37). In

addition, this study used the TIDE (http://tide.dfci.harvard.edu/)

(38) algorithm to calculate immune escape scores between the

two subgroups.
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Construction and validation of TRP-related
prognostic risk profiles

To explore the prognostic value of LUAD based on TRPRGs, we

performed univariate Cox regression analyses (P < 0.0001) and least

absolute shrinkage and selection operator (LASSO) regression analyses

of DEGs between subgroups (39) and stepwise multifactor Cox

regression analyses identified independent characteristic prognostic

factors to establish the prognostic profile of LAUD. The tryptophan

risk score (TRPRS) was then calculated for each LUAD patient based on

the risk coefficients and LUAD expression profiles obtained in the

multifactorial Cox regression analysis using the formula: TRPRS =

0.039*DLGAP5 + 0.148*ANLN + 0.083*PTTG1 + 0.118*RHOV +

0.129*FAM83A. Subsequently, we used LUAD patients from the TCGA

cohort as the training set and GSE31210, GSE50081, and GSE30219

from the GEO database as the validation set, and categorized the LUAD

patients into two groups, low-risk and high-risk, based on the median

risk score. Kaplan-Meier survival curves and Log-Rank tests were used

to assess whether there was a significant difference in OS between the

low-risk and high-risk groups. Finally, we validated the prognostic

predictions of the risk model using time-dependent ROC curves to

calculate 1-, 3-, and 5-year AUC values in the validation cohort.
Genomic alteration analysis

Somatic mutation and copy number variation (CNV)

profiles were obtained from the TCGA data portal (https://

portal.gdc.cancer.gov/). Somatic mutation and CNV (GISTIC

output) data were visualized using the R package “maftools” (40).

The Significant amplification or deletion of copy number was

detected using GISTIC 2.0 with a threshold FDR Q < 0.05.
Immunotherapy response prediction and
independent cohort validation

Tumor mutational burden (TMB), a potential biomarker of

immunotherapy response, is calculated based on somatic non-

synonymous mutations. In addition, Tumor Immune Dysfunction

and Exclusion (TIDE), a computational algorithm that assesses T-cell

dysfunction characteristics, can be predicted by immunotherapy

response in patients with expression profiles LUAD. and has shown

greater efficiency in predicting anti-PD1 or anti-CTLA4 treatment

responses (38). In addition, tumor immunophenotype scores, another

biomarker of immunotherapy response, were obtained from The

Cancer Immunome Atlas (TCIA) and analyzed. The prediction of

immunotherapy efficacy was validated using risk modeling using five

immunotherapy cohorts: advanced uroepithelial carcinoma, an anti-

PD-L1 antibody (IMvigor210 cohort) (41). Melanoma treated with

adoptive T-cell therapy (ACT) (GSE100797) (42); anti-CTLA4 and

anti-PD1 therapy (GSE91061) (43); Melanoma cohort treated with

MAGE-A3 antigen immunotherapy (GSE35640) (44); NSCLC

treatment with pembrolizumab, anti-PD-1 antibody (GSE126044)

(45); TCGA cohort responses and gains are based on the

TIDE algorithm.
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Comprehensive analysis of five
prognostic signatures

First, we analyzed the mRNA expression levels of RHOV,

PTTG1, FAM83A, DLGAP5, and ANLN from the TCGA and

GEO database in LUAD patients and the normal group, and then

grouped LUAD patients into high and low groups by the median of

the expression values of the transcript levels for survival curve

analysis. We then explored the expression differences of the five

genes in lung adenocarcinoma at the single-cell level. In addition,

scMetabolism, a recently developed computational pipeline for

quantifying single-cell metabolism, was applied to visualize and

quantify the metabolic diversity of individual cells in each cluster

(46). The Metabolic activity was quantified at single-cell resolution

by the “scMetabolism” R package, using the “VISION” function and

KEGG as the reference gene set. Subsequently, we analyzed staging

expression differences in five prognostic signatures and performed

correlation analyses with TME and metabolic pathways.
Drug sensitivity analysis

Drug sensitivity data were obtained from Genomics of Drug

Sensitivity in Cancer (GDSC2, https://www.cancerrxgene.org/) by

downloading GDSC2 gene expression profiles and corresponding

drug response information. Ridge regression models that can be

applied to lung adenocarcinoma and sensitivity data for 198 drugs

were generated. Lower 50% inhibitory concentration (IC50) values

indicate increased sensitivity to compound response. Using the

“oncoPredict” R package, we calculated drug sensitivities for the

TCGA-LUAD cohort.
Cell culture and transfection

Human lung adenocarcinoma cell lines A549 and H1299, and

human normal lung epithelial cell BEAS-2B were mainly purchased

from the cell bank of the Chinese Academy of Sciences (Shanghai,

China). We used A549 and H1299 cells for in vitro culture

experiments in DMEM medium and RPMI 1640 medium (Gibco,

ThermoFisher Scientific, United States) supplemented with 10%

fetal bovine serum, 1% penicillin and streptomycin (Gibco). Small

interfering RNA (siRNA) targeting PTTG1 and interfering RNA

control were purchased from Gemma Genetics (Shanghai, China).

For transient transfection, A549 and H1299 cells were transfected

with siRNA using a transfection reagent (Lipofectamine 2000) for

12 h, followed by functional assays and subsequent experiments.
Immunohistochemistry

All experiments involving human tissues were performed

following the principles of the Declaration of Helsinki and

approved by the Institutional Review Board of Guilin Medical

University Hospital (No. 2022YJSLL-78). We collected a total of

17 lung tumor tissues (15 lung adenocarcinoma tissues, one case
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each of squamous lung cancer as well as small cell lung cancer

tissues) and 7 peripheral lung tissues from patients with lung

adenocarcinoma. Baseline data on the patients were collected in

Supplementary Table 6. The following primary antibody and

antigen recovery protocol was used: PTTG1 (Proteintech, 18040-

1-AP, China). Immunohistochemical histologic scoring criteria:

Positive cells were defined by the presence of brownish-yellow

granules in the cytoplasm and nucleus of the cells. Scoring was

based on the intensity of staining of the cells counted under high

magnification, with blue color being 0, tan color being 1, and brown

color being 2; scoring was also based on the percentage of positive

cells, with 0- 10% being 1, 11- 30% being 2, 30- 50% being 3, and

greater than 50% being 4. The product of two scores greater than 3

was scored as PTTG1(+). Embedded wax blocks were sliced and

deparaffinized with a gradient of xylene and alcohol. After rinsing

with water, endogenous peroxidase interference was removed by

hydrogen peroxide immersion, followed by antigen repair by

adding EDTA in an autoclave. After cooling at room temperature,

it was rinsed with PBS buffer, closed by adding serum, and

incubated in an incubator at 37 degrees Celsius for 30 min.

Primary and secondary antibodies were incubated separately, and

then color was developed using DAB and background stained

with hematoxylin.
RT-qPCR and western blotting

RNA was extracted from lung adenocarcinoma cell lines (A549,

H1299) that interfered with si-PTTG1 and NC as a control. SYBR

Green qPCR mix (Vazyme, China) was used to synthesize cDNA for

real-time PCR. protein blotting analysis RIPA lysis buffer (Servicebio,

China) containing PMSF (Servicebio, China) was used to collect

proteins from A549 and H1299 cells. 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) was used to separate

the protein samples, and polyvinylidene difluoride (PVDF)

membranes (Immobilon-P, Carlsbad, Ireland) were used to transfer

the separated proteins. The membrane was blocked for 15 min using

a rapid blocking solution and then incubated with primary

antibodies: PTTG1 (Proteintech, 18040-1-AP, 1:1,000) and b-actin
(Proteintech, 66009-1-Ig, 1:20,000) overnight at 4°C, followed by 2 h

of incubation with secondary antibodies.
Proliferation and clone
formation experiments

Cell proliferation and colony formation assay A549 and H1299

cells were cultured in 96-well plates (3,000 cells/well) 24 hours after

transfection with PTTG1 siRNA. The proliferative capacity of the

treated cells was assayed at 4, 24, 48 and 72 hours. 10% Cell

Counting Kit-8 (CCK8) reagent (Bio-sharp, Hefei, China) was

added to each plate according to the kit instructions, and the

OD450 values were analyzed by an enzyme marker (BioTek,

United States). Regarding colony formation experiments, 2000

cells were inoculated in cell culture plates and allowed to grow

until visible colonies were formed. Then we fixed the clones with
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paraformaldehyde for 15 min, stained the clones with 1% crystal

violet for 20 min, and counted the number of clones (>50 cells).
EDU staining experiment

Cell proliferation was detected using a 5-ethynyl-2′-
deoxyuridine (EdU) assay (BeyoClick™ EdU-555 Cell

Proliferation Detection Kit, Beyotime, China). First, siRNA-

transfected LUAD cells were collected and uniformly replanted in

glass-bottomed dishes containing 10% FBS (2×104 cells/well). After

24 hours of incubation, 100 mL and 50 mmol/L EdU labeling

solution diluted with complete DMEM was then added to each

dish and incubated with the cells for 2 hours at 37°C. Experiments

were then performed according to the instructions in the kit

operation manual. Finally, the images were visualized by

fluorescence microscopy.
Transwell migration experiments

Transwell migration and wound healing assay A549 and H1299

cells were transfected with PTTG1 siRNA for 24 h and cultured in

24-well culture plates with 8 mm pore membrane inserts to measure

cell migration capacity. 4 × 104 cells were inoculated in the upper

chamber of a transwell with 200 ul of serum-free medium, and 800

ml of medium containing 10% FBS was added to the lower chamber.

After 48 h of incubation, cells migrating across the membrane were

fixed with paraformaldehyde, stained with 1% crystal violet, and

counted under a light microscope (50×).
Apoptosis assay

A549 or H1299 cells were inoculated in 6-well plates and treated

for transfection for 24 h after cell adhesion. Cells were digested with

trypsin without ethylenediaminetetraacetic acid (EDTA) and

washed with pre-cooled PBS. The collected cells were suspended

in 100 mL of binding buffer (1×) and then incubated with 5 mL of

Annexin V-FITC and 5 mL of PI for 25 min in the dark (37°C)

before adding 400 mL of binding buffer (1×). Finally, the stained

cells were measured with a FACSVerse flow cytometer (BD

Biosciences, USA) within 1 h after staining and then analyzed

with FlowJo software (version 7.6.1; Treestar, USA).
Statistical analysis

Statistical analysis and plotting were performed using R

software (version 4.0.1) and GraphPad software. The Wilcoxon

test was used for the test between the two paired groups, categorical

variables were compared by Chi-square test or Fisher exact test, and

the statistical significance of the cell line experiment was assessed by

t-test in GraphPad Prism version 9 software. Differences were

considered statistically significant at *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001.
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Results

Research Flowchart

The flow chart of this study is shown in Figure 1. A total of 51

TRPRGs were first obtained from the MSigDB database. Univariate

Cox regression analysis showed that 14 of the 51 TRPRGs were

associated with OS prognosis in LUAD patients. Therefore, this

study used these 14 prognostically relevant TRPRGs for subsequent

analysis. Initially, single-cell sequencing data was employed to evaluate

the activity of the aforementioned 14 genes, categorizing certain

immune cells in individual cells into two expression categories, high

and low, and performed difference analysis and pathway analysis on

the high and low groups to demonstrate that tryptophan metabolism

pathway was significantly up-regulated in the high expression group.

Then, consensus clustering using the above 14 genes was performed to

categorize LUAD patients into two clusters and predict the survival

outcomes of the two subgroups. We performed differential and

pathway enrichment analyses of the two subgroups using “limma”,

“GSVA” and “GSEA”, and characterized the TME between the
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subgroups. Next, we performed univariate Cox analysis and lasso

analysis on the differential genes to screen five key genes for

constructed risk modeling. The high and low-risk groups were

characterized by pathway enrichment, genomic alterations, and

immunotherapy response prediction, respectively. In addition, we

performed a comprehensive analysis of the five prognostic

characteristics to determine their correlations with prognosis, clinical

features, immunity, and metabolism, and finally, we performed a series

of experimental validation of PTTG1, demonstrating that knockdown

of PTTG1 reduced the proliferation and migration ability of lung

adenocarcinoma cells while increasing apoptosis, and found that the

transcription of the key enzyme of tryptophanmetabolism, TDO2, was

down-regulation after PTTG1 down-regulation (Figure 1).
Genetic variation and expression of
prognosis-related TRPRGs in LUAD

In this study, we included a total of 51 TRPRGs. In lung

adenocarcinoma patients, we used univariate Cox regression
FIGURE 1

Flowchart of this study.
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analysis to obtain 14 prognostic genes associated with OS, which

were demonstrated with a forest plot (Figure 2A). In LUAD

patients, TRP gene mutations were found in 10.43% (60/575).

Among them, KYNU was the gene with the highest mutation

rate, followed by OGDH and ASMT (Figure 2B). We then

examined somatic copy number variation (CNV) in TRPs and

found prevalent copy number alterations in 14 TRPs. Among them,

IDO2, INMT, OGDH, and SLC3A2 showed extensive CNV

amplification and CNV depletion was present in some TRPs

(Figure 2C). Figure 2D demonstrates the location of CNV

alterations in tryptophan metabolism-related genes on the

chromosome. We further explored the differential expression of

tryptophan metabolism-related genes. By comparing the expression

levels between LUAD tumors and normal tissues, we found that

multiple TRPRGs showed low expression in tumors, except IDO2,

GCDH, SLC7A5, and SLA3A2 (Figure 2E).
Features related to tryptophan metabolism
in the single-cell transcriptome

We collected single-cell RNA sequencing data from 10 LUAD

patients using the single-cell sequencing data from Bischoff et al.

Using marker genes for different cell types, we labeled cells into 10

major clusters, i.e., tumor cells, T cells, fibroblasts, macrophages,

dendritic cells, mast cells, endothelial cells, epithelial cells, NK cells,

and B cells (Figure 3A). Enrichment heatmaps showed the marker

genes for each cell population (Figure 3B). To quantify the activity of

tryptophan metabolism (TRP) in different cell types, we used the

“AddModuleScore “ function in the Seurat software package to

calculate the expression levels of the set of 14 genes associated with

TRP in all cells (Figure 3C). Among these 10 cell types, we observed

significantly elevated TRP activity in macrophages, dendritic cells,

and B cells (Figure 3D). Based on TRP activity, we classified the cells

into high and low TRP groups and identified differentially expressed

genes (DEGs) between the two groups for GSEA enrichment analysis.

The results showed enrichment to tryptophan metabolism pathway,

cytokine receptor interaction, and chemokine signaling pathways in

the high TRP group (Figures 3E-G), as well as antigen presentation

and processing Nod-like receptor signaling pathways (Supplementary

Figures 1A, B).
Recognition of TRP-related clusters and
altered biological processes

To further explore the profiles and characteristics of 14

tryptophan metabolism-related genes in LUAD, this study applied

a consensus clustering algorithm to classify LUAD patients based

on the expression of the 14 TRPs. To obtain the optimal number of

clusters (k-value), we calculated the consistency coefficient and

found that k = 2 was the best choice for classifying the entire

cohort into clusters C1 (n = 256) and C2 (n = 244) (Figures 4A, B).

Principal component analysis (PCA) showed that LUAD patients

were well-distributed in both clusters (Figure 4C). Kaplan-Meier

survival analysis showed that C2 had a superior OS in LUAD (p <
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0.0001) (Figure 4D). In addition, we obtained consistent results on

the GSE30219 cohort (Supplementary Figures 1C-H), where we

compared the clinicopathologic features and expression of

tryptophan metabolism-related genes in the two subtypes. Some

TRPs were highly expressed in C2, such as INMT, ALDH2, MAOA,

and MAOB, while some TRPRGs, including SLC7A5, SLC3A2,

ACAT2, and KYNU, were highly expressed in C1 (Figure 4E). We

then used univariate and multivariate Cox regression analyses to

confirm cluster grouping as an independent prognostic factor for

LUAD (Figures 4F, G).

To investigate the biological characteristics of the two subtypes,

gene set variation analysis (GSVA) results showed that multiple

amino acid metabolic pathways (tryptophan, histidine,

phenylalanine, and tyrosine metabolism) were significantly

enriched in C2 (Figure 5A), and the different pathway

relationships between the two subtypes were next compared. We

performed a GSVA based on the tumor Hallmark gene set to

investigate the molecular biological functions of TRP isoforms,

and the heatmap demonstrated the pathways with significant

differences. The results showed that C1 was significantly enriched

in pathways significantly associated with oncogenic activation and

highly proliferative features, such as MYC target V1/V2, G2M

checkpoint, E2F target PI3K/AKT/mTOR, unfolded protein

response, glycolysis, and DNA repair. And C2 is highly expressed

in immune pathways, such as IL2/STAT5 signaling pathway, IL6/

JAK/STAT3 signaling pathway, allograft rejection, and

inflammatory response. Also oncogenic pathways, such as TGFb
signaling pathway, NOTCH signaling pathway, and Hedgehog

signaling pathway were highly enriched in C2 (Figure 5B).

Next, we also performed functional enrichment analysis of

DEGs between subgroups to study the biological behavior of TRP.

The results showed that biological processes (BP) indicated the

enriched functions of nuclear division and chromosome segregation

regulation. Cellular components (CC) showed that TRP was mainly

associated with lamellipodia, spindle, and chromosomal regions.

For molecular function (MF), it was mainly enriched for

microtubule protein binding, microtubule motility activity, and

cytoskeleton motility activity (Figure 5C). Then, pathway analysis

showed that these genes were frequently involved in cell cycle,

substance metabolism, viral infection, and cancer-related

pathways (Figure 5D).

Finally, in the GSEA analysis based on the REACTOME gene

set, we observed that the C1 subgroup was significantly enriched for

cell cycle and DNA repair-related pathways, and the enrichment of

polyamine metabolism and tryptophan catabolic pathways also

caught our attention. Polyamine metabolism has been shown to

support malignant tumor proliferation and maintain oncogenic

phenotype (47, 48) and in addition tryptophan catabolism is

thought to be closely associated with immune response and

linked to PD-1 blockade (49). PD-1 signaling, interferon gamma

signaling, and metabolic disease pathways were further enriched in

subgroup C2 (50, 51). The combination of these results suggests

that the activation of tryptophan and related metabolism is closely

associated with immunosuppression in LUAD patients and that the

C2 subgroup has a stronger potential for immunotherapy (52)

(Figures 5E, F).
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TME characteristics between subgroups

To explore the role of TRP in the LUAD tumormicroenvironment,

first using the ESTIMATE algorithm, we assessed the overall immune

infiltration between the two subgroups, which included stromal scores,

estimate scores, and immune scores. The C2 subgroup exhibited higher

stromal scores and immunity scores (Figure 6A). In addition, using the

ssGSEA algorithm, we obtained immune cell and associated pathway
Frontiers in Immunology 08
scores. the C2 subgroup showed significantly greater activity in type I/II

interferon response and APC co-stimulation pathways. At the same

time, multiple dendritic cells (aDCs, DCs, and iDCs), mast cells,

neutrophils, T helper cells, and TILs had a higher infiltration

abundance in C2 (Figure 6B). Using the CIBERSORT algorithm we

found that the C1 subgroup of lung adenocarcinoma patients had

higher plasma cells, CD8+ T cells, and M1-type macrophages, and the

C2 subgroup had a higher infiltration of M2-type macrophages
B
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A

FIGURE 2

Genetic variation and expression of TRPs in LUAD. (A) Forest plot of univariate regression analysis of LUAD patients in the TCGA-LUAD dataset; (B)
Distribution and mutation frequency of 14 TRPs in the TCGA-LUAD cohort. (C) CNV alteration frequencies of TRPs in LUAD, and the height of the
bar represent the mutation frequency. (D) Location of CNV alterations in TRPs on chromosomes. (E) Expression of 14 TRPs genes in LUAD tumors
and normal tissues. *p < 0.05. **p < 0.01. ***p < 0.001. ns, p > 0.05.
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(Figure 6C). The relationship between the two subgroups and 28

immune cells was then assessed by the ssGSEA method. The results

showed that the infiltration levels of eosinophils, immature dendritic

cells, mast cells, and natural killer cells were significantly higher in the

C2 subgroup, while the infiltration levels of activated CD4 T cells,

CD56dim natural killer cells, and memory B cells were significantly

overexpressed in the C1 subgroup, in addition, we found that MDSC

were higher in C2 than in C1, and Activated CD8 T cells and Effector

memory CD8 T cells were not significant in the subtypes (Figure 6D).

Next, we found that most antigen presentation-related genes were
Frontiers in Immunology 09
significantly highly expressed in C2 between subgroups, so we further

investigated the immune checkpoint profiles between the two

subgroups, and we found that most of the immune checkpoints were

differentially expressed between the two groups including IDO1, LAG3,

PDCD1 (PD-1), and HAVCR2 (TIM-3), suggesting that tryptophan

metabolism-related isoforms play a potential role in immunotherapy

(Figures 6E, F). In addition, this feature set was shown to differ between

the C1 and C2 subgroups in a variety of biological functions by using a

follow-up analysis byMariathasan et al. Angiogenesis and EMT activity

were enhanced in C2, and C1 exhibited higher CD8T cell effector
B
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FIGURE 3

Features related to tryptophan metabolism in the single-cell transcriptome. (A) t-SNE plot showing the cell types identified by marker genes.
(B) Heatmap showing the 5 most important marker genes in each cell cluster. (C) Tryptophan metabolism score for each cell; (D) Tryptophan
metabolism score of different cell types. (E-G) Enrichment analysis of GSEA in the high TRP group including tryptophan metabolic pathway (E);
cytokine receptor interaction pathway (F) and chemokine signaling pathway (G).
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capacity (Figure 6G). Finally, we compared the immune escape scores

of the two subgroups using the TIDE algorithm, and we found that the

TIDE score was higher in C1, i.e., the likelihood of immune escape was

higher in the C1 subgroup, and thus the C2 subgroup may have better

immunotherapy efficacy (Figure 6H). In summary, 500 LUAD patients

were classified into two different patterns based on survival-related

tryptophan metabolism genes, and the biological processes and

immune infiltration characteristics between subgroups showed

complexity: C2 had higher immune score and stromal score, as well

as high levels of tryptophan metabolism and immune-related pathway

activation, and its antitumor activity and immunosuppression showed

higher levels; C1 showed poorer prognosis and oncogenic activation
Frontiers in Immunology 10
and highly proliferative features, along with higher CD8T cell

infiltration and immune escape features.
Construction and validation of TRP-related
prognostic features

To further assess the impact of DEGs on survival prognosis, we

used lasso, univariate, and multivariate regression to screen for five

gene signatures with strong prognostic associations. We first used

univariate Cox regression analysis (p < 0.001) and found that 25

genes were significantly associated with OS (Supplementary
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FIGURE 4

Identification of TRP molecular isoforms. (A) Consensus heatmap matrix and correlation region (k = 2) for two clusters (B) indicates that the
clustering results are best at K = 2. (C) PCA analysis indicates significant differences between the two isoforms. (D) Survival analysis indicated a better
prognosis for C2. (E) Differences in clinicopathologic features and TRG expression levels between the two subtypes, with red markers representing
differentially expressed genes, p < 0.05. (F) Univariate demonstration of clinicopathologic factors and TRP subtypes. (G) Multivariate demonstration of
clinicopathologic factors and TRP subtypes.
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Table 2). Next, a 10-fold cross-validated LASSO regression analysis

was performed on these 25 genes, and five genes (DLGAP5, ANLN,

PTTG1, RHOV, FAM83A) were screened out for further analysis,

The tryptophan-associated risk score (TRPRS) for each LUAD

patient was calculated according to the following formula: TRPRS

= 0.039*DLGAP5 + 0.148*ANLN+0.083*PTTG1 + 0.118*RHOV

+0.129*FAM83A (Figures 7A, B). We assigned LUAD patients to
Frontiers in Immunology 11
the high-risk or low-risk group based on the median risk score.

Kaplan-Meier analysis showed that patients in the high-risk group

had worse OS (p<0.0001; Figures 7C, H), and analysis of subject

work characteristics (ROC) curves showed that the area under the

TRPRS curve (AUC) for the TCGA training set at 1, 3, and 5 years

respectively reached 0.71, 0.7, and 0.65, indicating good prognostic

diagnostic efficacy, and the validation set GSE31210 was
B
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A

FIGURE 5

Clinicopathological characterization, enrichment analysis, and mutational landscape of the two TRP clusters. (A) GSVA demonstrates the HALLMARK
pathway in different subtypes, yellow represents promotion and blue represents suppression; (B) GSVA demonstrates the immune part of the
pathway in different subtypes; (C) GO enrichment analysis of differential genes between the two clusters; (D) KEGG enrichment analysis of
differential genes; (E, F) GSEA enrichment analysis; (E) GSEA demonstrates the cancer pathway in C1; (F) GSEA demonstrates the immune pathway of
C2 subtype. *p < 0.05. **p < 0.01. ***p < 0.001.
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0.85,0.73,0.77 (Figures 7D, I). In addition, to further validate the

accuracy and reliability of the five-gene model, we performed

supplementary validation in the GSE50081 and GSE30219

cohorts, with 0.83, 0.7, and 0.69 for validation cohort GSE50081,

and 0.74, 0.74, and 0.66 for validation cohort GSE30219

(Supplementary Figures 2A-F), and the TRP-associated

prognostic characteristics showed superior performance. In
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addition, we further compared our features with two other

metabolism-related prognostic models: in Zhou et al.’s study, they

modeled the prognosis of lipid metabolism-related mRNAs for

LUAD patients, and the ROC curves of the AUC values of the

OS-related prognostic subgroups for the 1-, 3-, and 5-year survivals

were 0.753, 0.650, and 0.580, respectively (53); in Tang et al.’s study,

they constructed a prognostic model for metabolism-related genes
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FIGURE 6

Immune microenvironment of different molecular subtypes. (A) Immunity score, ESTIMATE score, and stroma score were used to quantify the
different immune status between different subtypes. (B) The activity of immune-related pathways differed significantly between C1 and C2 (C, D) The
abundance of each TME-infiltrating cell type was quantified by the CIBESORT algorithm and the ssGSEA algorithm in different subtype populations.
(E) Differential expression of HLA molecules in C1 and C2. (F) Differential expression of various immune checkpoints in C1 and C2. (G) Box line plot
demonstrating the differential expression of the Mariathasan et al. gene set in the pathway between the two subtypes; (H) TIDE scores of the two
subtypes. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001. ns, p > 0.05.
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predicting response to immunotherapy in lung adenocarcinoma,

and the ROC analysis showed that the AUC values of MRG for the

TCGA cohort for 1, 2, and 3 years were 0.659, 0.669, and 0.674 (54).

Overall, our TRP signature showed better performance in

predicting the prognosis of LUAD patients.
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To make the TRPRS more suitable for clinical applications, we

constructed nomogram based on the TRPRS and clinical features

(Figure 7E). The calibration curves showed good agreement

between the nomogram predictions and the actual observations

(Figure 7F). Decision curve analysis (DCA) showed that the
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FIGURE 7

Construction and validation of TRP-related prognostic features. (A) Ten-fold cross-validation of parameter selection adjusted by LASSO regression.
(B) Screening of coefficients under LASSO analysis. A vertical line is plotted at the value selected by 10-fold cross-validation of overall survival.
(C) KM curves comparing LUAD patients in the TCGA-LUAD high- and low-risk groups (D) Time-dependent ROC curve analysis in the TCGA-LUAD
cohort. (E) Nomogram combining age, gender, N stage, total stage, and risk score. (F) Calibration curves of constructed 1-, 3-, and 5-year survival
column plots. (G) DCA decision curve analysis. (H) KM curves demonstrating survival status between high and low-risk groups for GSE31210
(I) Time-dependent curves for GSE31210. (J, K) Distribution of risk scores and patient survival between low and high-risk groups in the TCGA-LUAD
(J) cohort, and the GSE31210 (K) cohort. (L) Univariate and (M) multivariate COX regression analyses for characteristics and different clinical features.
*p < 0.05. **p < 0.01. ***p < 0.001.
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nomogram had better clinical benefits than other clinical features

(Figure 7G), and AUC demonstrated the stable predictive ability of

the nomogram, which was superior to other clinical features in

predicting OS from 1 to 5 years (Supplementary Figure 1I). In

addition, we constructed heat maps demonstrating the distribution

of risk scores, survival status, and risk factors, which showed that

there were more deaths and more significant gene expression in the

high-risk group (Figures 7J, K). To assess whether TRPRS was an

independent prognostic factor for LUAD, we performed univariate

and multivariate Cox regression analyses of OS in the TCGA-

LUAD dataset (Figures 7L, M).
Mutational landscape and drug sensitivity
prediction of TRP-related
prognostic features

First, there was a significant difference in tumor mutation

burden (TMB) between high-risk and low-risk scores, with the

high-risk score group having a significantly higher tumor mutation

burden than the low-risk score group (Figure 8A), and then the

correlation between TRPRS and TMB was explored, and using

Spearman’s correlation analysis, it was found that the risk scores

had a significant positive correlation with TMB (R = 0.37, P< 0.001)

(Figure 8B). After integrating the TMB scores, LUAD patients in

TCGA were categorized into four groups. Survival analysis showed

that patients with high TMB and low risk had a significant survival

advantage, and the low TMB and high-risk groups exhibited a

significant survival disadvantage (Figure 8C). In the TCGA-LUAD

cohort, changes in the distribution of somatic mutations between

the low-risk and high-risk groups were investigated (Figures 8D, E).

Compared with patients with low-risk scores, patients in the high-

risk group had significantly higher frequencies of somatic mutations

(95.49% vs. 86.25%), especially TP53 (65% vs. 32%), TTN (53% vs.

32%), MUC16 (47% vs. 31%), CSMD3 (47% vs. 30%), RYR2 (41%

vs. 29%), LRP1B (38% vs 28%) and ZFHX4 (36% vs 24%). In

addition, the association of co-occurring and mutually exclusive

mutations in the top 25 mutated genes in the high-risk and low-risk

groups was also investigated, and the results showed that the high-

risk group (TRPRS-high group) exhibited a higher frequency of co-

occurring mutations, and a specific case of EGFR mutually exclusive

mutations was observed in the low-risk group (TRPRS-low group)

(Figure 8F). We subsequently analyzed somatic copy number

variation (SCNV) using GISTIC 2.0 (55) that detected significant

amplifications and deletions in each risk group, setting the threshold

FDR < 0.05. In contrast, we observed more regions altered in the

TRPRS high cohort (Figures 8G, H). We further performed the drug

sensitivity analysis to predict the semi-inhibitory concentrations of

198 chemotherapeutic drugs (Figure 8I). Our results showed that 46

drugs had lower semi-inhibitory concentration values (IC50) in the

high-risk group, suggesting sensitivity. In addition, patients in the

low-risk group were sensitive to 67 drugs. The results suggest that

risk scores can be used as a potential predictor of chemotherapy

sensitivity, providing a new understanding of tumor treatment and

drug resistance prevention.
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Comprehensive analysis of TRPRS with
clinical features, enrichment pathways,
and immunotherapy

We first assessed the correlation between TRPRS and various

clinical characteristics. In the TCGA-LUAD dataset, we observed

significant differences between the high-risk group and the low-risk

group in terms of age, stage, and N stage (p < 0.001, chi-square test)

(Figure 9A). The Sankey diagram demonstrates the differences in

the 2 TRP clusters, 2 APRGs clusters (56), and the distribution of

patients diagnosed with LUAD in 2 risk groups (Figure 9B). We

noted a higher proportion of the C1 subgroup and high-risk in the

arginine-associated immune escape cluster (CLUSTER2) in the

previous study, and the distribution of patients in the C1

subgroup versus the high-risk group, and the C2 subgroup versus

the low-risk group, tended to be consistent. We then performed

GSVA enrichment analysis on the high and low-risk groups, and

the results showed that various oncogenic pathways were activated

in the high-risk group, such as glycolysis, PI3K-AKT-mTOR

signaling, DNA repair, MYC signaling, and E2F targets, hypoxia,

and significant activation of epithelial-mesenchymal transition

(EMT) pathway. In addition, fatty acid metabolism, bile acid

metabolism, and heme metabolism were significantly upregulated

in the low-risk group (Figure 9C). In addition, we performed GSEA

enrichment analysis to identify signaling pathways that were

differentially activated between TRPRS high- and low-risk group

phenotypes (Supplementary Figures 2G, H). The results showed

that samples from the high-risk group were significantly enriched

for cancer-related signaling pathways such as cell cycle, DNA

replication, mismatch repair, and P53 signaling pathway; and the

low-risk group was enriched for a variety of metabolism-related

pathways such as butyrate metabolism, primary bile acid

biosynthesis, and metabolic pathways such as leucine and

isoleucine degradation. Figure 9D demonstrated the top 20

enriched pathways between each risk group, and the high-risk

group showed stronger activity in pathways related to Cell cycle,

Mismatch repair, and P53 signaling pathway, while the low-risk

group showed stronger activity in metabolism-related pathways

such as Tryptophan metabolism and Fatty acid metabolism. In

addition, previous studies have shown that tryptophan metabolites

of the kynurenine (Kyn) pathway (KP) exhibit distinct neural

activity (24), whereas the activities of Neuroactive ligand-receptor

interaction and PPAR signaling pathway were significantly up-

regulated in the low-risk group, which is in line with previous

studies. The activity scores of 14 cancer-related pathways were also

analyzed, and the results showed that patients in the high-risk

group had significantly higher scores of EGFR, hypoxia, and other

characteristics (Figure 9E), suggesting that TRPRS is closely related

to cancer-related biological processes and metabolic pathways. In

addition, the Estimate algorithm and TIDE algorithm also obtained

similar results with TRP clusters (Figure 9F). In addition, we further

analyzed the differential abundance of immune cells and immune

functions to characterize the TME landscape. In the low-risk group,

the presence of various immune cells involved in antigen

presentation, processing, and tumor killing was at higher levels,
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such as aDCs, B cells, DCs, iDCs, T helper cells, and TILs.

accordingly, the low-risk group also exhibited active antigen

recognition, processing, and presentation signaling and antitumor

effects, including APC co-stimulation, HLA, and type II IFN

responses (Supplementary Figure 2I). The cancer immune cycle

was divided into seven sequential processes, and we further assessed

the anticancer immune function of the seven-step cancer immune

cycle between the high- and low-risk groups by TIP. While the

high-risk group presented high activity at step 1 (antigen release by
Frontiers in Immunology 15
tumor cells) and step 6 (tumor cell recognition by T cells), the low-

risk group showed high activity at multiple other steps (Figure 9G).

In addition, correlation analysis of risk scores supported these

results; risk scores were positively correlated with multiple signals

such as mismatch repair, cell cycle, DNA replication, base excision

repair, and viral oncogenic effects (Supplementary Figure 2J).

Finally, the low-risk group exhibited higher immunophenotypic

scores (IPS), which suggests that low-risk-scoring patients may be

more sensitive to immunotherapy (Figure 9H).
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FIGURE 8

Mutational landscape and drug sensitivity prediction for TRP-related prognostic modeling. (A) Box plot graphs demonstrating TMB differences
between high and low-risk groups. (B) Correlation between TMB and riskscore. (C) Kaplan-Meier curve analysis of OS combining TMB score and risk
score. (D) Waterfall plot of the high-risk group showing mutations. (E) Waterfall plot showing mutations in the low-risk group. (F) Heatmap showing
the relationship between co-occurring and exclusive mutations in the top 25 mutated genes in the high- and low-risk groups. (G, H) Copy number
variation (SNV) between the two groups (G) SNV mutations in the high-risk group; (H) SNV mutations in the low-risk group. (I) Drug sensitivity
analyses between low-and high-risk groups.
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TRPRS predicts immunotherapy response

To further assess the accuracy of risk scores for predicting

response to immunotherapy, we selected multiple independent

published immunotherapy cohorts for validation. First, we analyzed

a cohort of uroepithelial cancers treated with anti-PD-L1

(IMvigor210), and the low-risk group had a significant survival

advantage compared with the high-risk group (Figure 10A). Also,

patients with low-risk scores were more sensitive to immunotherapy

(Figures 10B, C). In addition, stronger predictive ability was
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demonstrated in Stage III & IV patients (Figures 10D, E). In

addition, SubMap analysis was used to assess the response to anti-

PD-1 immunotherapy in lung adenocarcinoma patients in high and

low-risk groups. The results showed that the low-risk score predicted

complete and partial responses (CR, PR) to anti-PD-1

immunotherapy, while the high-risk score predicted resistance (SD)

to anti-PD-1 immunotherapy (Supplementary Figure 3A). Next, in

the melanoma cohort treated with adoptive T-cell therapy (ACT)

(GSE100797), the low-risk score also had a strong ability to predict

prognosis and immunotherapy benefits (Figures 10F, G). Then in the
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FIGURE 9

Combined analysis of TRPRS with clinical features, enrichment pathways, and immunotherapy. (A) Correlation of low-risk and high-risk groups with
clinical features. (B) Sankey diagram showing the distribution of LUAD patients. (C, D) GSVA analysis of high and low-risk groups. (E) Box-and-line
plot demonstrating the differences of 14 cancer-related pathways between high- and low-risk groups. (F) Differences in the Estimate algorithm and
TIDE algorithm between the two groups. (G) Differences in the immune seven-part cycle in the high- and low-risk groups. (H) Difference of IPS
score between the two groups. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001. ns, p > 0.05.
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melanoma cohort treated with anti-CTLA4 and anti-PD1

(GSE91061), the melanoma cohort immunotherapeutically treated

with the MAGE-A3 antigen (GSE35640), and the NSCLC cohort

treated with nilumab (anti-PD-1 antibody) (GSE126044), we found

that the low-risk group still showed better immune response, i.e., the

high-risk group had less benefit for immunotherapy (Figures 10H-J).

In the TCGA cohort, we used the TIDE algorithm to predict patients’

responses to anti-PD1 and anti-CTLA4 treatments, and the results

showed that the low-risk group was more sensitive to

immunotherapy, and TRPRS was significantly positively correlated

with the TIDE score (Figures 10K-M). Overall, the relevant

prognostic features constructed based on tryptophan metabolism

were effective in predicting the prognosis and response to

immunotherapy in patients with LUAD.
Frontiers in Immunology 17
A comprehensive analysis of five
tryptophan-related prognostic features

First, we compared the differential expression of five tryptophan-

associated signatures (ANLN, DLGAP5, FAM83A, PTTG1, RHOV)

in tumors versus normal tissues in LUAD (Figure 11A), with

concordant results in the GSE31210 cohort (Supplementary

Figure 3B). FAM83A has been shown to correlate with prognosis

and immune infiltration in several previous studies and is closely

associated with oncogenic phenotype. and is strongly associated with

oncogenic phenotypes (57) and is also involved in the construction of

multiple LUAD prognostic characteristics (58, 59). FAM83A was

significantly overexpressed in lung adenocarcinoma tissues and

showed strong diagnostic ability (Supplementary Figure 3C). We
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FIGURE 10

TRPRS predicts immunotherapy response. (A) Survival curves for the HR and LR groups in the IMvigor210 cohort. (B) Box line plots depicting the
difference in risk scores between CR/PR patients and SD/PD patients in the IMvigor210 cohort. (C) The proportion of CR/PR or SD/PD patients
receiving immunotherapy in the high and low-risk groups of the IMvigor210 cohort. (D, E) km curves for the high and low-risk groups of the
IMvigor210 staging. (D) Stage I-II (E) Stage III-IV. (F) Survival curves for HR and LR in the GSE100797 cohort. (G, H) The proportion of patients with
CR/PR or SD/PD receiving immunotherapy in the high and low-risk groups. (G) GSE100797; (H) GSE91061. (I-K) The proportion of patients with R or
NR receiving immunotherapy in the high and low-risk groups. (I) GSE35640; (J) GSE126044; (K) TCGA-LUAD. (L) Box line plots depicting the
difference in risk scores between R and NR patients in the TCGA-LUAD cohort. (M) Correlation between TIDE score and risk score. **p < 0.01.
****p < 0.0001.
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then performed survival analysis of individual genes (Figure 11B),

which showed that all five genes demonstrated strong predictive

potential, with ANLN showing the most excellent predictive ability (P

< 0.0001). We then continued to analyze the expression differences of

the five genes at the single-cell level, and Figure 11C demonstrates the

immune cell and tumor cell occupancy of the 10 selected LUAD

sequencing samples, with PTTG1 showing widespread expression in

macrophages and T cells, while the other genes were highly expressed

in only some macrophages (Figure 11D). This may represent a

specific role of PTTG1 in the tumor microenvironment. In

addition, we calculated the metabolic differences between different

immune cells and tumor cells by the scMetabolism algorithm. The

results showed that the level of tryptophan metabolism was higher in

dendritic cells, macrophages, and NK cells (Figures 11E, F).

Next, we proceeded to explore the relationship between the

expression of RHOV, ANLN, PTTG1, DLGAP5, and FAM83A with

pathological stage and lymph node metastasis, and the results

showed that the transcriptional expression of the five prognostic
Frontiers in Immunology 18
features progressively increased with the stage (Figures 12A, B).

Next, we assessed the correlation between the TME score and the

five prognostic features and found that all of them tended to be

negatively correlated with the TME score and that PTTG1 was

significantly negatively correlated with the stromal score

(p<0.0001), and the immune score did not have a significant

association (Figure 12C). In addition, we explored the correlation

of the five prognostic features with the immune checkpoints. It was

clear that PTTG1, DLGAP5, and ANLN were positively correlated

with most of the immune checkpoints (PD-1, PD-L1, LAG3,

CTLA4), whereas RHOV and FAM83A had similar trends

(Figure 12D). Then, the correlations between the five prognostic

features and multiple metabolic pathways were explored, and we

found that not only was there a significant negative correlation with

tryptophan metabolism, but all of them were negatively correlated

with multiple metabolic pathways such as taurine and taurine

metabolism, propionate metabolism, fatty acid metabolism, and

b-alanine metabolism (Figure 12E). This may represent that the
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FIGURE 11

Comprehensive analysis of five tryptophan-related prognostic signatures. (A) Violin plots demonstrating the expression of the five prognostic
features in cancer and paracancer. (B) KM survival curves for the TRPRS gene. (C) Single cell occupancy graph. (D) Expression level of TRPRS gene in
single cells. (E) TSNE plot demonstrating tryptophan metabolism levels in single cells. (F) Distribution of tryptophan metabolism scores in different
cell types. ****p < 0.0001.
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relevant prognostic features based on tryptophan constructs may

affect the prognosis and immunotherapeutic response of LUAD by

influencing multiple metabolic pathways. We further investigated

the relationship between the five prognostic features and immune-

infiltrating cells. We observed a consistent trend for all five

prognostic features to be significantly positively associated with

activated CD4 T cells and type II helper T cells. and significantly
Frontiers in Immunology 19
negatively associated with follicular helper T cells, which contribute

to CD8-dependent antitumor immunity and anti-PD-L1 efficacy

(60) (Figure 12F). In addition, based on the correlation analysis

between risk score and tryptophan metabolism ssGSEA score,

tryptophan metabolism showed a significant negative correlation

with TRPRS (R=0.32, p=6.1e-13), while tryptophan catabolism

exhibited a significant positive correlation (R=0.36, p<2.2e-16)
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FIGURE 12

Correlation analysis of five tryptophan-related prognostic features. (A) Box plot depicting the correlation of five prognostic features expression with
N stage. (B) Box plot depicting the correlation of five prognostic features expression with pathologic stage. (C) Correlation of five prognostic
features with TME score. (D) Correlation of five prognostic features with immune checkpoints. (E) Correlation of five prognostic features with
metabolic pathway score. (F) correlation between five prognostic features and 28 specific immune cells. (G, H) Correlation of TRPRS with tryptophan
metabolism-related pathways. (I) Correlation between TRPRS and immune cells. *p < 0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001.
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(Supplementary Figure 3D) (Figures 12G, H). Based on the

Cibersort algorithm, we found that TRPRS was positively

correlated with M1-type macrophages and negatively correlated

with M2-type macrophages. And dendritic cells resting and

memory CD4T cells resting were significantly negatively

correlated with TRPRS (Figure 12I).
PTTG1 promotes lung adenocarcinoma
progression and affects tryptophan-related
gene expression

In the above analysis, we identified a specific role for PTTG1 in

the TME, and that has not been fully investigated in LUAD. Next,

we performed a series of cell experiments on lung adenocarcinoma.

Cell line RT-qPCR results showed that PTTG1 was overexpressed

in LUAD cells (A549 and H1299) compared to control cells

(Figure 13A). The knockdown effect of PTTG1 is shown in

Figures 13B, C. Interference 2 exhibited higher knockdown

efficiency. We performed PTTG1 immunohistochemical staining

of lung cancer tissues and peripheral lung tissues of 17 samples from

the Guilin lung cancer cohort. The results showed that the lung

cancer tissues (lung adenocarcinoma, lung squamous carcinoma,

and small cell lung cancer) were all (+) and the surrounding lung

tissues were (-) (Figure 13D) (Supplementary Figure 3E). Some of

the lung adenocarcinoma tissues were also subjected to Ki-67 and

PD-1 for verification of protein level expression. We found that the

degree of PTTG1 (+) positivity correlated with Ki-67 (+) and PD-1

(+) (Supplementary Figure 3F). suggesting a correlation between

PTTG1 and tumor tissue proliferation and PD-1 therapeutic targets

in LUAD patients. CCK8 assay showed that inhibition of PTTG1

may significantly inhibit the proliferative capacity of LUAD cells,

and the inhibitory effect of Interference 2 was even more significant

(Figures 13E, F). The same trend was verified by colony formation

assay (Figure 13G). The results of the Transwell assay showed that

knockdown of PTTG1 significantly inhibited the migration ability

of LUAD cells (Figure 13H). In addition, we observed a lower

percentage of EdU-positive cells in PTTG1 knockdown cells

(Figure 13I). To further assess the role of PTTG1 in EMT, we

examined the mRNA levels of EMT marker genes, which showed

elevated E-cadherin mRNA levels and significantly lower mRNA

levels of mesenchymal genes (N-cadherin and Vimentin) in A549-

interacting cells compared to A549 control cells, as well as a

significant reduction in the mRNA levels of the EMT-related

transcription factors Snail, ZEB1 and MMP2 were also attenuated

in A549 cells with knockdown of PTTG1 (Figure 13J). In the TCGA

cohort, we found that PTTG1 gene expression showed a significant

positive correlation with EMT features constructed by Mariathasan

et al (Figure 13K). Meanwhile, knockdown of PTTG1 resulted in

increased levels of E-cadherin protein, decreased levels of N-

cadherin protein, and no significant changes in Vimentin protein

levels. In addition, the pro-apoptotic protein Bax was upregulated,

and the anti-apoptotic protein Bcl-2 was downregulated.

(Figure 13L). Flow cytometry results showed that knockdown of

PTTG1 significantly increased the apoptosis rate of LUAD cells

(Figures 14A, B). GSEA showed that high PTTG1 levels were
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positively correlated with the pathway of cellular response to

amino acid starvation in the TCGA-LUAD dataset (Figure 14C).

RT-qPCR results demonstrated that knockdown of PTTG1 resulted

in a significant downregulation of the key tryptophan regulator,

TDO2, which may represent a certain degree of PTTG1 influencing

tryptophan metabolic processes (Figure 14D). Then, we analyzed

the expression of PTTG1 in TCGA pan-cancer. The results showed

that PTTG1 was highly expressed in 27 tumors and lowly expressed

only in TGCT. As in CESC, OV showed significant overexpression

(Figure 14E). Univariate Cox regression analysis showed that

PTTG1 was expressed as a risk factor in most of the tumors,

which was a significant risk factor for patients with ACC, KIRC,

KIRP, LGG, LIHC, LUAD, and MESO (Figure 14F). To explore the

relationship between PTTG1 expression and immune cell

infiltration, we performed an immune correlation analysis using

the Cibersort algorithm. In LUAD, the major anti-tumor immune

cells: both CD8T cells and M1-type macrophages showed a

significant negative correlation, as well as a consistent trend in

KIRC, KIRP, and LGG tumors (Figure 14G). This represents a

significant immunosuppressive role of PTTG1 in TME. In addition,

we analyzed the single-cell sequencing data on the overall

characterization of T cells by Guo et al. (61), we found that

PTTG1 was highly expressed in CD4_CTLA4 and CD8_LAYN

cell subsets, which may suggest that high PTTG1 expression is

highly correlated with immunosuppression of tumor-infiltrating

Tregs and depleted CD8+ T cell formation (Supplementary

Figures 3G-I). Finally, GSEA showed that many immune-related

pathways, such as the T-cell receptor signaling pathway and the

chemokine signaling pathway, were enriched in patients with low

PTTG1 expression in most of the cancer types (Figure 14H).
Discussion

Although various anticancer strategies such as surgery,

radiotherapy, and targeted therapy are available for the treatment

of LUAD, there is an urgent need for effective strategies to cure or

control LUAD, especially in patients with advanced LUAD.

Immune checkpoint inhibitors (ICIs) have significant advantages

in terms of efficacy and safety, bringing new hope for NSCLC

treatment (62). Tumor immune escape evades recognition and

attack by the immune system through multiple mechanisms (63).

The immune escape mechanism of tumors plays an important role

in the treatment of tumors, especially in immunotherapy (64).

Tumors have various immune escape mechanisms to avoid the

monitoring, recognition, and attack of the immune system, such as

loss or alteration of tumor antigenicity, weakening of tumor

immunogenicity, non-immune-mediated expression of tumor PD-

L1, and suppression of immune cell function (65). Immune escape

mechanisms help explain the intrinsic and acquired resistance of

NSCLC to immunotherapy targeting immune checkpoints (66).

Tryptophan metabolism is directly or indirectly regulated by

gut microorganisms, and its metabolites have immune, metabolic,

and neuromodulatory functions, and have become therapeutic

targets for various diseases (67, 68). Its metabolites have immune,

metabolic and neuromodulatory functions and have become
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therapeutic targets for various diseases. Its main metabolic pathway

is the kynurenine pathway (KP), catalyzed by indoleamine 2,3-

dioxygenases (IDO1 and IDO2) and tryptophan 2,3-dioxygenase

(TDO2). Immune cells are involved in the degradation of

tryptophan to kynurenine: first, tryptophan metabolism depletes

tryptophan from the local microenvironment and inhibits T cell

proliferation and activity (69). Second, by producing kynurenine, it
Frontiers in Immunology 21
inhibits the proliferation and activity of T cells and natural killer

cells and promotes the differentiation of regulatory T cells (70).

However, tryptophan metabolism has not been adequately

studied in lung adenocarcinoma and its association with

immunotherapeutic efficacy has not been addressed.

In this study, we revealed the molecular features and TME

landscape of tryptophan metabolism in lung adenocarcinomas
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FIGURE 13

PTTG1 promotes lung adenocarcinoma progression and affects tryptophan metabolism. (A) RT-qPCR to verify PTTG1 expression. (B, C) RT-qPCR
screening for suitable interferences. (D) Representative image of IHC (20x). (E, F) CCK8 assay. (E) A549, (F) H1299. (G) Clonal spots of A549 and
H1299. (H) Transwell migration assay. (I) EDU staining assay. (J) RT-qPCR to verify the effect of knockdown of PTTG1 on key EMT genes from mRNA
expression level. (K) Correlation analysis of EMT characteristics with PTTG1. (L) Western blot verified the effect of knockdown of PTTG1 on EMT and
apoptosis markers from the protein level. *p < 0.05. **p < 0.01. ***p < 0.001.
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through a comprehensive characterization of tryptophan-related

genes, with 14 prognostically relevant TRPRGs clinically grouped

into two clusters exhibiting different OS and immune profiles.

Notably, the C1 subtype had poor OS and dendritic cell

infiltration and showed overall strong tumor proliferation and

malignant phenotype. In contrast, the C2 subtype exhibited good

OS and immune infiltration with a low TIDE score and activation of

immune response pathways such as interferon gamma, but C2 also
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had high levels of infiltration of M2-type macrophages, MDSC,

and regulatory T cells, demonstrating a high level of

immunosuppression. Next, we screened TRP-related prognostic

features and constructed a stable and reliable TRP-related

prognostic signature including five TRP-related prognostic

signatures (ANLN, DLGAP5, FAM83A, PTTG1, and RHOV.)

The TRPRS not only has a strong predictive ability in prognosis

but also may possess strong predictive efficacy for LUAD
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FIGURE 14

PTTG1 promotes lung adenocarcinoma progression and affects tryptophan metabolism. (A, B) Flow cytometry demonstrating knockdown of PTTG1
on apoptosis rate of LUAD cells. (C) GSEA analysis showing the correlation of PTTG1 expression with the gene set of GCN2 in response to amino
acid deficiency (D) Effect of knockdown of PTTG1 on tryptophan key genes. (E) Box line plot demonstrating the expression level of PTTG1 in pan-
cancer. (F) Forest plot demonstrating the prognosis of PTTG1 in pan-cancer. (G) Immunological infiltration of PTTG1 in pan-cancer. (H) GSEA
enrichment analysis demonstrating the pathway of PTTG1 in pan-cancer. *p < 0.05. **p < 0.01. ***p < 0.001.
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immunotherapy response. In TRPRS-based risk grouping, we found

a high degree of concordance between patient stratification based

on TRP-associated clusters and high- and low-risk groups, with the

low-risk group mainly exhibiting better OS, high immunogenicity,

activation of tryptophan metabolism, and lower TMB. Follow-up

analyses of the modeled genes also demonstrated that TRPRS was

significantly associated with TME and multiple metabolic processes.

In addition, we explored the relationship between TRP-related

prognostic features and TME and revealed strong correlations

between ANLN, DLGAP5, FAM83A, PTTG1, and RHOV with

tumor immune infiltration, immune checkpoints, and substance

metabolism pathways. The role of PTTG1 in lung adenocarcinoma

is unknown, which prompted us to explore the role of PTTG1 as a

potential prognostic biomarker for lung adenocarcinoma. In follow-

up experiments, we found that PTTG1 promoted the proliferation,

migration, and EMT of lung adenocarcinoma cells, as well as

inhibited apoptosis of lung adenocarcinoma cells. We also

observed a down-regulation of the transcriptional level of TDO2

in A549 cells, suggesting that PTTG1 may affect the level of

tryptophan metabolism in lung adenocarcinoma cells.

Interestingly, PTTG1, DLGAP5, and ANLN were also included in

the metabolically relevant prognostic and immunotherapeutic

profiles of lung adenocarcinoma in a recent study (71),

suggesting that the relevant prognostic profiles that we

constructed do indeed reflect the metabolic profiles of lung

adenocarcinoma at the transcriptional level to some extent.

However, PTTG1 at the metabolic level has only been reported in

hepatocellular carcinoma (27), and its specific mechanism in lung

adenocarcinoma needs to be further investigated. Finally, by

analyzing the Pan-TCGA dataset, we identified that PTTG1 was

significantly up-regulated in a variety of cancers and was

significantly associated with poor prognosis; and that high

PTTG1 expression was associated with poor infiltration of CD8 T

cells and M1-type macrophages in the majority of cancers.

Interestingly, we found a potential link between arginine and

tryptophan metabolism during previous studies. In TME, arginine

and polyamines can be taken up by dendritic cells, thereby

increasing intracellular polyamine content. This induces IDO1

expression and leads to an immunosuppressive phenotype, and

Arg1 and IDO1 may be closely related to tumor immunotherapy

(72). We observed a correlation between arginine metabolism and

immune escape in our previous study and that dendritic cell

deletion and impaired T-cell activation were the main features of

Cluster 2, which showed similar immune features in the

tryptophan-associated cluster. In addition, when KRAS mutations

were associated with STK11/LKB1 deficiency, tumors exhibited a

“cold” phenotype and were associated with reduced PD-L1

expression (73). This is consistent with the results of the arginine-

related cluster. In the tryptophan-associated cluster, we found

higher levels of memory CD8T cell infiltration and higher EMT

scores in Cluster 2, which may represent that Cluster 2 is closer to

an immunosuppressed or immune-excluded phenotype and may

reverse its immunosuppression by high levels of dendritic cell and

TIL infiltration. In addition, we noted that tryptophan metabolic

activity, as quantified by the scMetabolism algorithm, was
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significantly higher in macrophages, while PTTG1 was also highly

expressed in macrophages. In a previous study, Hezaveh et al. found

that tryptophan-derived microbial metabolites in pancreatic ductal

adenocarcinoma (PDAC) activated the aryl hydrocarbon receptor

(AhR) in tumor-associated macrophages (TAMs) and suppressed

CD8 T cell-mediated anti-tumor immunity (74). TAMs in TME

can promote cancer progression through immune evasion.

However, the involvement of tryptophan metabolism in the

immunosuppressive function of TAMs in lung adenocarcinoma

needs to be further investigated.

In recent years, various metabolism-related prediction models

such as those based on glutamine metabolism (75), glycolysis (76),

sphingolipid metabolism (77), lipid metabolism (53), and others

have demonstrated the ability to predict the prognosis and

immunotherapy of LUAD patients to some extent. Metabolic

reprogramming plays an important role in tumorigenesis and

development. In addition to using the Warburg effect generated

by glycolysis to supply energy for themselves, tumor cells can also

use metabolic reprogramming to obtain energy substances by

pathways such as glutamine catabolism and fatty acid oxidation.

In the study of XU et al., three subtypes were revealed by

proteomics, which was associated with clinical and molecular

features; among them, type I was closely related to cell

metabolism and tumor microenvironment, which was mainly in

the early clinical stage and had the most favorable prognosis (78).

This represents a correlation between metabolic activation and

good prognosis in lung adenocarcinoma, which coincides with the

results of the GSVA-enriched correlation analysis of the five

prognostic features we obtained. In addition, prognostic modeling

has evolved rapidly in recent years, exploring the predictive power

of cancer prognosis and immunotherapy at different levels, such as

mining the potential predictive power of immunogenic death (ICD)

(79), Treg cells (80), and purine metabolism (81) from single-cell

sequencing data.

Taken together, our results suggest that TRP-associated

prognostic modeling can be used to classify the prognosis of LUAD

patients, contributing to a better understanding of the molecular

mechanisms of LUAD and providing new insights into targeting

and immunotherapy. As a hub gene associated with tryptophan

metabolism, PTTG1 plays a promotive role in lung adenocarcinoma

progression and is a potential predictive biomarker for clinical

outcomes and immunotherapy response in lung adenocarcinoma,

which requires further prospective studies and larger populations. Our

study has potential shortcomings: first, “tryptophan metabolism” in

this studymainly focuses on the expression level of tryptophan-related

genes rather than tryptophan metabolizing enzyme activities or

tryptophan fluxes, which is a limitation of the study of tryptophan

metabolism in lung adenocarcinomas; second, it is a retrospective

study, and multicenter cohort studies are needed to validate the

predictive value of this TRP-associated prognostic model as a

predictive biomarker of immunotherapeutic response in lung

adenocarcinoma. In addition, further animal experiments are

needed to explore the functional role of PTTG1 in lung

adenocarcinoma, as well as to detect the specific effects of PTTG1

on tryptophan metabolism by methods such as liquid
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chromatography-tandem mass spectrometry (LC-MS/MS), which

could help to provide stronger clues to guide the clinical application.
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