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Introduction: Peripartal cows are susceptible to a negative energy balance due

to inadequate nutrient intake and high energy requirements for lactation.

Improving the energy metabolism of perinatal dairy cows is crucial in

increasing production in dairy cows.

Methods: In this study, we investigated the impact of rumen-protected branched-

chain amino acid (RPBCAA) on the production performance, energy and lipid

metabolism, oxidative stress, and immune function of primiparous dairy cows using

metabolomics through a single-factor experiment. Twenty healthy primiparous

Holstein cows were selected based on body condition scores and expected calving

date, and were randomly divided into RPBCAA (n = 10) and control (n = 10) groups.

The control group received a basal diet from calving until 21 d inmilk, and the RPBCAA

group received thebasal diet and44.6 g/d RPLeu, 25.14 g/dRPIle, and 25.43 g/dRPVal.

Results: In comparison to the control group, the supplementation of RPBCAA

had no significant effect on milk yield and milk composition of the dairy cows.

Supplementation with RPBCAA significantly increased the concentrations of

insulin, insulin growth factor 1, glucagon, and growth hormones, which are

indicators of energy metabolism in postpartum cows. The very low density

lipoprotein, fatty acid synthase, acetyl coenzyme A carboxylase, and hormone-

sensitive lipase contents of the RPBCAA group were significantly greater than

that of the control group; these metrics are related to lipid metabolism. In

addition, RPBCAA supplementation significantly increased serum glutathione

peroxidase and immunoglobulin G concentrations and decreased

malondialdehyde concentrations. Liquid chromatography–mass spectrometry

(LC-MS) analysis revealed 414 serum and 430 milk metabolic features.

Supplementation with RPBCAA primarily increased concentrations of amino

acid and lipid metabolism pathways and upregulated the abundance of

serotonin, glutamine, and phosphatidylcholines.
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Discussion: In summary, adding RPBCAA to the daily ration can influence

endocrine function and improve energy metabolism, regulate amino acid and

lipid metabolism, mitigate oxidative stress and maintain immune function on

primiparous cows in early lactation.
KEYWORDS

branched-chain amino acids, oxidative stress, lactation performance, energy
metabolism, metabolomics
1 Introduction

Early lactation is crucial in the production cycle of cows. Dairy

cows typically face considerable physiological challenges during the

early stages of lactation. High lactation demand leads to endocrine

disruption, and metabolic demand has increased considerably in

cows (1). Dry matter intake and the imbalance between energy

demand and supply results in NEB in dairy cows (2, 3). To relieve

NEB, dairy cows initiate lipid mobilization. However, this also

causes negative effects, such as increasing the metabolic burden of

the liver and risk of increased liver fatty acid levels, which leads to

oxidative stress and immune dysfunction, thus influencing the

health and lactation performance of cows (4, 5).

Leucine (Leu), valine (Val), and isoleucine (Ile) are the

branched-chain amino acids (BCAA), and account for 50% of the

essential amino acids (EAA) in milk proteins (6). Leu and lysine are

the two most restrictive EAA in early lactation according to the

concentration disparities of EAA in mammary arterial and venous

blood (7). BCAA are important signaling regulatory molecules and

nutrients that regulate protein synthesis via the activation of mTOR

(8, 9), serve as precursors for the generation of non-essential amino

acids, and regulate organismal energy metabolism processes by

enhancing gluconeogenesis and mitochondrial oxidation in

adipocytes . Many nutr ients are degraded by rumen

microorganisms. Rumen-protected BCAAs (RPBCAA) are used

to reduce nutrient degradation and increase nutrient digestion

and absorption in the small intestine. Supplementation with

RPBCAA increases the contents of insulin (Ins) and glucose and

reduces hyperketonemia and hepatic lipidosis (10, 11). Ins and

glucose levels are also energy balance markers. In addition, BCAA

catabolic byproducts can enter the tricarboxylic acid cycle to help

meet the increased energy and nutrient requirements for milk

production during early lactation (12–14). BCAAs are oxidized to

produce ATP more efficiently than other amino acids and play

important roles in cellular metabolism and stress responses. A

strong association between BCAA concentrations and oxidative

stress indicators has been observed (15). Wu et al. (16) showed that

Leu and Ile protect MAC-T cells from H2O2-induced oxidative

stress by regulating propionate metabolism.

Metabolomics has provided new perspectives for animal

nutrition research through revealing the effects of external
02
changes on metabolic pathways and biomarkers in ruminants

(17–19). Several studies have used metabolomics to explore

metabolite changes and biomarkers in milk and serum at different

stages or under different nutritional conditions (20, 21). Their

results have provided theoretical guidance for in-depth studies of

the physiological status and nutritional utilization of cows.

Few studies examined the effects of RPBCAA supplementation

on metabolic changes and mechanisms in the primiparous dairy

cows. We hypothesized that feeding RPBCAA during early lactation

would regulate energy and that lipid metabolism would mitigate

oxidative stress and maintain the immune functions of cows, which

also would be reflected in changes in certain blood and milk

metabolites. Therefore, in combination with conventional

physiological and biochemical indexes, the metabolic changes in

early lactation dairy cows, as explored from the perspective of small

molecules, were used to evaluate the effects of post-

RPBCAA supplementation.
2 Materials and methods

2.1 Ethics statement

This study was performed in accordance with the Guidelines for

the Care and Use of Experimental Animals of Jilin Agricultural

University and was approved by the Jilin Agricultural University

Laboratory Animal Welfare and Animal Experimental Ethical

Inspection Committee (Jlau-acuc2021-005).
2.2 Experimental design and treatments

The study was performed at Yijiahe Dairy Farm (Ningxia

Province, China) from December 20, 2022, to January 20, 2023.

According to the gestation period (263.25 ± 2.79 d) and body

condition score (BCS = 4.04 ± 0. 17), 20 primiparous (first birth)

and healthy cows were selected 14 d before their expected calving

date. Experiments were performed using a single-factor design. The

cows were divided into two groups: control (CON) (n = 10), which

received a basal diet only from calving to 21 d in milk, and RPBCAA

(n = 10), which additionally received 95. 17 g/d of RPBCAA (44.60
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g/d RPLeu, 25.14 g/d RPIle, and 25.43 g/d RPVal) and a basal diet

from calving to 21 d in milk. Based on the NRC (2001) (22)

prediction of the small-intestinal digestible amino acid content of

each diet, amino acids were added achieve the corresponding amino

acid level of the 17.00% CP high-protein diet. The actual per-rumen

amino acid additions were calculated based on the product

inclusion rate, ruminal degradation rate, and small-intestinal

release rate. The RPBCAA was fed twice a day in equal amounts

(4:30 and 13:30). The total mixed ration (TMR) was designed to

meet the nutritional needs of cows during early lactation, according

to the NRC (2001) (22). Before feeding with TMR, RPBCAA were

mixed with a part of the TMR and provided to each cow in a small

cattle trough for consumption; the remaining TMR was offered

thereafter. All cows had free access to feed. During the experiment,

the feeding environment was consistent between the RPBCAA and

CON groups. Cows were fed TMR (4:30, 13:30, and 20:30) offered

to achieve a 5% refusal rate, had free access to water, and were

milked prior to feeding thrice daily; the milk yield was

recorded daily.

RPBCAA were purchased from Changchun Borui Technology

Co., Ltd. (Changchun, China). RPBCAA had a RPLeu content of

43.00%, 83.70% rumen bypass protection, and 74.74% intestinal

digestibility; the RPIle content was 48.80%, with 73.38% rumen

bypass protection, and 73.35% intestinal digestibility. The RPVal

content was 54.40%, with 79.15% rumen bypass protection and

74.96% intestinal digestibility. The carriers of rumen amino acids

were cellulose and starch. The intestinal digestibility data were

determined according to the methods of Gargallo et al. (2006) (23).
2.3 Sample collection

Throughout the experiment, weekly samples of TMR were

collected from the farm and stored at −20 °C. The starch, crude

protein, dry matter, crude fat, acid detergent fiber, and neutral

detergent fiber contents of the diets were assessed. TMR samples

were thawed and dried at 105°C for 24 h to determine absolute dry

matter (DM). Then, the samples were heated at 55°C for 48 h in a

forced-air oven and stored in a dryer at 22 °C. All samples were

assessed for DM (method 934.01; AOAC, 2005) (Shanghai Yiheng

Scientific Instrument Co., Ltd, Shanghai, China), starch (method

996. 11; AOAC, 2005) (Shanghai Yidian Physical Optical

Instrument Co., Ltd, Shanghai, China), crude proteins (method

954.01; AOAC, 2005), crude fat (method 920.39; AOAC, 2005),

neutral detergent fiber (Van Soest et al., 1991), and acid detergent

fiber (Van Soest et al., 1991) (Ankom Technology Corp., Fairport,

NY, USA) with drying for 3 h at 105°C (24). The composition and

nutritional parameters of the experimental diets are presented in

Table 1. Net energy was calculated according to the NRC (2001)

(22). BCS (5-point scale: 1 = thin, 5 = fat) was determined

independently by two veterinarians on the 7 d before calving and

7, 21, and 45 d after calving date (25).

Blood was sampled from the coccygeal vein using 20-gauge ×

2.54 cm needles before morning feeding at 4:00 on d 21 relative to the

actual calving date. Samples were stored separately in 5 mL heparin

sodium anticoagulant-containing evacuated tubes and clot activator
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tubes. Blood collection tubes were centrifuged at 4000 × g for 15 min

in 4°C conditions (AvantiJ-26XPI, USA). Serum samples were stored

at − 80°C before analysis. The cows were milked three times per day at

5:00, 12:00, and 21:00, and milk production was measured daily using

milking equipment (side-by-side parallel stall construction, Afimilk

Ltd. Kibbutz Afikim, Israel). Samples of milk were collected thrice

consecutively on days 7, 14, and 21 postpartum and were mixed in a

ratio of 4:3:3 for each milking; 100 mL milk was collected from each

cow, 0.5 mL of 20% potassium dichromate was added as a

preservative, and the samples were stored in 2 × 50 mL centrifuge

tubes at −40 °C. Samples were analyzed for milk fat, protein, lactose,

and total solids using an infrared milk analyzer (Ekomilk Bond,

Bulgaria), according to the manufacturer’s instructions.
TABLE 1 Ingredients and nutrient composition of the basal diet in the
early lactation dairy cowst (% of DM).

Ingredient Content

Alfalfa hay 9.55

Corn 18.88

Flaked corn 7.11

Corn silage 32.56

Cottonseed 2.44

Cottonseed meal 5.86

Soybean meal 7.27

Extruded soybean 3.04

Megalac 1.57

DDGS2 3.91

Molasses 3.58

Corn gluten meal 1.52

5% Latation premix3 2.71

Nutrient levels4 (%, DM)

CP 15.1

EE 3.76

NDF 30.16

ADF 17.63

Strach 29.68

Ca 0.80

P 0.38

NEL
5 (mCal/kg) 1.78

RDP6 (%CP) 63.01

RUP (%CP) 36.99
1 DM, dry matter.
2 DDGS, distiller’s dried grain with solubles.
3 Provided per kilogram of total mixed ration (on DM basis): VA 516 KIU, VD 106 KIU, VE
6814 IU, nicotinamide 6815 IU, Cu 592 mg, Zn 2353 mg, Mn 1650 mg, Co 16.1 mg, I 25.7 mg,
Se 34.0 mg.
4 Measured values.
5 Estimated based on NRC (2001). NEL = Net energy required for lactation.
6 RUP and RDP calculated with CPM-Dairy.
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2.4 Blood sample analysis

Serum samples were measured using ELISA kits obtained from the

Shanghai Enzyme-linked Biotechnology Co., Ltd, and operating

procedures were strictly followed. The concentrations of reactive

oxygen species (ROS), total antioxidant capacity (T-AOC), superoxide

dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde

(MDA), catalase (CAT), non-esterified fatty acids (NEFA), b-
hydroxybutyric acid (BHBA), glucose, insulin (Ins), glucagon (GC),

insulin-like growth factor 1 (IGF-1), leptin, growth hormone (GH), very

low-density lipoprotein (VLDL), acetyl coenzymeA carboxylase (ACC),

fatty acid synthase (FAS), hormone sensitive lipase (HSL), triglyceride

(TG), triglyceride lipase (ATGL), and immunoglobulin G (IgG),

immunoglobulin A (IgA), immunoglobulin M (IgM), complement 3

(C3), complement 4 (C4) were determined using ELISA kits obtained

from the Shanghai Enzyme-linked Biotechnology Co., Ltd. Absorbance

was detected at 450 nm using a microplate reader (Scientific Instrument

Co. Ltd., Shanghai, China). The inter- and intra-plate coefficients of

variation were <5%.
2.5 Serum and milk metabolites

Untargeted metabolomics analyses of milk and plasma samples

were performed using a Metabolomics Platform at Nanjing Jisi

Huiyuan Biotechnology Co.(Nanjing, China). Gas chromatography–

mass spectrometry (GC-MS) was used to measure milk and blood

metabolites. Serum andmilk samples collected at 21 d postpartumwere

analyzed using non-targeted metabolomics. Each 100 mL thawed

sample was added to a 1.5 mL Eppendorf tube, and 400 µL of

extract solution ethanol:acetonitrile = 1:1 with the isotopically labeled

internal standardmixture) was added. All samples were sonicated in an

ice water bath for 10 min. Then, they were placed in an ice refrigerator

at −40 °C for 1 h, and the microcentrifuge tubes were centrifuged at

12,000 × g at 4°C for 15 min. The supernatant was transferred to a new

glass microcentrifuge tube. Quality control samples were prepared by

mixing equal aliquots of supernatants from all samples. Liquid

chromatography–mass spectrometry (LC-MS) was performed using

the Vanquish system (Thermo Fisher Scientific, Waltham, MA, USA)

with the Water ACQUITY UPLC BEH Amide column (2. 1 mm ×

50 mm, 1.7 µm) coupled to an Orbitrap Exploris 120 mass

spectrometer (Orbitrap MS, Thermo Fisher Scientific). Mobile phase

A consisted of 25 mM ammonium acetate and 25 mM ammonium

hydroxide in water, whereas mobile phase B consisted of acetonitrile.

The sample injection volume was 2 µL, and the auto-sampler

temperature was 4 °C. A QE 120 mass spectrometer (Orbitrap MS,

Thermo Fisher Scientific) was employed to acquire the tandem mass

spectrometry spectra in the information-dependent acquisition mode

under the control of the acquisition software (Xcalibur, Thermo Fisher

Scientific). The specific parameters were as follows: sheath gas flow rate:

50 Arb, Aux gas flow rate: 15 Arb, capillary temperature: 320 °C, full

MS resolution: 60000, MS/MS resolution: 15000, collision energy:

SNCE 20/30/40, and spray voltage: 3.8 (positive) or −3.4 kV (negative).
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2.6 Metabolite data acquisition

Basic data were converted into the mzXML form using the

ProteoWizard software (https://proteowizard.sourceforge.io/), and

recognition, extraction, alignment, and integration of the peaks

were performed using the R package (XCMS as the core). The MS2

database was used to perform metabolite annotation. The cut-off for

the annotation was set at 0.3. Data without a definite substance

name, no spectral ratio, or substances with missing quantities

greater than 50% in the comparison group were filtered and

removed. For substances with less than 50% missing quantities,

the K-nearest neighbor algorithm was used to simulate missing

values. The total ion current or internal standard of each sample

was used to normalize the data.
2.7 Statistical analyses

All experimental data, including BCS, lactation performance,

and blood data, were analyzed using the SPSS software (version

26.0; SPSS Inc., Chicago, IL, USA). The CON and RPBCAA

groups were analyzed using an independent sample t-test; data

are presented as mean ± SEM. The significance level was set at

P < 0.05.

A cluster tree analysis was performed on both sets of samples

using the dendextend package in the R program (V3.6.2). The data

were subjected to principal component and orthogonal partial least

squares-discriminant analysis (OPLS-DA) using the SIMCA (V14.

1) software. Variable importance in projection scores were obtained

from the OPLS-DA model. Supervised OPLS-DA was performed to

acquire a high standard of group separation and to gain an

improved understanding of the variables responsible for

categorization. The significance of differences was calculated using

Student’s t-test. Differential metabolites were screened using

multivariate and univariate statistical analyses, provided that P

was less than 0.05 and the variable importance in projection was

greater than 1. A pathway function analysis of differential

metabolites was conducted using the KEGG PATHWAY database

(https://www.kegg.jp/kegg/pathway.html).
3 Results

3.1 Lactation performance and
body condition

The BCS is shown in Figure 1. Milk yields and compositions are

summarized in Table 2. Feeding with RPBCAA did not affect the

BCS (P > 0.05) or postpartum milk yield (P > 0.05). Throughout

the experiment, RPBCAA supplementation had no effect on milk

fat (P > 0.05), lactose (P > 0.05), proteins (P > 0.05), or total solids

(P > 0.05).
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3.2 Serum parameters associated with
energy metabolism

The serum biochemical parameters associated with energy

intake are shown in Table 3. Postpartum serum NEFA (P > 0.05),

BHBA (P > 0.05), leptin (P > 0.05), and glucose (P > 0.05)

concentrations were unaffected by RPBCAA supplementation.

However, the concentrations of Ins (P = 0.01), GC (P < 0.01),

IGF- 1 (P = 0.02), GH (P = 0.02), and VLDL (P = 0.02) were greater

in the serum of the RPBCAA group postpartum compared to

those in the CON group. Two groups exhibited no significant

differences in NEFA and BHBA contents.
3.3 Serum parameters associated with lipid
synthesis and decomposition

The effects of RPBCAA supplementation on fat synthesis and

decomposition are shown in Table 3. During the postpartum

period, no treatment effects were observed on the concentrations

of serum TG (P > 0.05) and ATGL (P > 0.05) in the CON group.
Frontiers in Immunology 05
Additionally, compared with the CON group, the RPBCAA group

showed increased concentrations of serum FAS (P < 0.01), HSL (P =

0.02), and ACC (P = 0.04) after calving.
3.4 Serum parameters associated with
oxidative stress

The malondialdehyde content was less (P < 0.01) and glutathione

peroxidase (GSH-Px) content was greater (P = 0.03) in the serum of

postpartum cows in the RPBCAA group compared to those in the

CON group (Table 4). The concentrations of T-AOC (P > 0.05), SOD

(P > 0.05), CAT (P > 0.05), and ROS (P > 0.05) were not affected.
3.5 Serum parameters associated with
immune function

Data corresponding to immune functions are shown in Table 4.

The concentrations of IgA (P > 0.05), IgM (P > 0.05), C3 (P > 0.05),

and C4 (P > 0.05) did not differ between the RPBCAA and CON

groups. Furthermore, serum IgG concentrations were reduced by

RPBCAA (P < 0.01).
3.6 Effect of dietary RPBCAA
supplementation on serum
metabolite profiles

The OPLS-DA method was effective in removing effects that

were not relevant to the study. According to the OPLS-DA score

plots, there was a clear separation between the CON and RPBCAA

groups, suggesting that RPBCAA treatment led to different

metabolic profiles in serum (Figure 2A) and milk (Figure 2B). A

total of 414 metabolites were tested in the serum samples. Twenty-

three blood differential metabolites were identified based on the

OPLS-DA model (Figure 3A). Leu-Leu-OH, leucyl-tryptophan,

LysoPC [P- 18:1 (9Z)], citrulline, SM [d17:1/24:1 (15Z)], 1-

(Hydroxymethyl)-5,5-dimethyl-2,4-imidazolidinedione, N-Acetyl-

L-arginine, phosphatidylcholine (PC) [P- 18:1 (9Z)/14:1 (9Z)],
TABLE 2 Effect of RPBCAA infusions on milk production parameters, milk yield, and body condition score during the postpartum period in Holstein
dairy cows.

Item Treatments1 SEM2 P-value

CON RPBCAA

Milk yield, kg/d 26.88 27.62 0.22 0.10

Milk composition,%

Fat 3.61 3.55 0.11 0.77

Protein 3.32 3.37 0.04 0.53

Lactose 4.84 4.90 0.06 0.62

Total solids 9.03 9.15 0.10 0.52
1Treatments: CON, control; RPBCAA, rumen-protected branched-chain amino acids.
2SEM, Standard error of the mean.
FIGURE 1

Body condition scores on the 7 d before calving and 7, 21, and 45 d
after calving (CON, control; RPBCAA, rumen-protected branched
chain amino acids).
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urocanic acid, and PC [P- 18:1 (11Z)/20:0] were the 10 most

variable metabolites at 21 d (P < 0.05) (Figure 4A).

Hierarchical cluster analysis of the differential metabolites in the

serum showed that metabolites with similar changes converged in

the same cluster (Figure 5A). Figure 6A shows the results of

differential metabolite association analysis. Quantitative

enrichment analysis identified five metabolic pathways: arginine

biosynthesis and histidine, sphingolipid, glycerophospholipid, and

tryptophan metabolism (Figure 7A).
Frontiers in Immunology 06
3.7 Effect of dietary RPBCAA
supplementation on milk
metabolite profiles

A total of 430metabolites were tested in themilk samples. Seventy-two

differential metabolites were identified based on the OPLS-DA model

(Figure 3B). LysoPC [18:3 (6Z,9Z, 12Z)], SM [d16:1/24:1 (15Z)], PC [P-

18:1 (11Z)/20:0], SM [d17:1/24:1 (15Z)], threo-Syringoylglycerol, 1-O-

Hexadecyl-2-O-dihomogammalinolenoylglycero-3-phosphocholine, PC
TABLE 4 Effect of RPBCAA on oxidative stress and immunity indicators during the postpartum period in Holstein dairy cows.

Item Treatments1 SEM P-value

CON RPBCAA

ROS, U/ml 893.23 872.78 15.95 0.52

MDA, nmol/ml 12.03 11.02 0.15 <0.01

GSH-Px, ng/ml 761.43 825.10 14.06 0.03

SOD, ng/ml 11.05 11.00 0.20 0.92

T-AOC, pg/ml 383.55 391.37 4.81 0.42

CAT, ng/ml 213.61 207.12 2.30 0.17

IgA, mg/ml 2983.97 3132.84 57.08 0.16

IgG, mg/ml 8.61 9.65 0.20 <0.01

IgM, mg/ml 2435.31 2323.25 38.11 0.15

C3, mg/ml 76.23 77.35 3.47 0.88

C4, mg/ml 192.96 222.98 13.72 0.31
1Treatments: CON, control; RPBCAA, rumen-protected branched-chain amino acids.
2SEM, Standard error of the mean.
TABLE 3 Effect of RPBCAA on energy and lipid metabolites during the postpartum period in Holstein dairy cows.

Item Treatments1 SEM2 P-value

CON RPBCAA

NEFA, mmol/ml 1015.04 1006.12 18.90 0.82

BHBA, mmol/ml 783.51 802.37 19.41 0.63

INS, mU/L 30.34 33.08 0.76 0.01

IGF-1, ng/ml 262.71 288.60 5.31 0.02

GH, ng/ml 21.33 23.46 0.47 0.02

GC, pg/ml 359.07 420.45 5.84 <0.01

Glu, ng/ml 56.54 56.03 0.74 0.73

Leptin, ng/ml 23.66 22.51 0.38 0.14

VLDL, mmol/ml 15.12 16.42 0.27 0.02

TG, mmol/ml 12.52 13.15 0.23 0.11

HSL, ng/ml 10.17 11.02 0.18 0.02

ATGL, ng/ml 208.14 219.01 3.49 0.13

FAS, nmol/mlm 16.72 19.69 0.29 <0.01

ACC, ng/ml 23.86 25.39 0.37 0.04
1Treatments: CON, control; RPBCAA, rumen-protected branched-chain amino acids.
2SEM, Standard error of the mean.
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(16:0/14:0), PC [20:3 (8Z, 11Z, 14Z)/15:0], PC [20:2 (11Z, 14Z)/15:0], and

PC (16:0/16:0) were the 10 most variable metabolites at 21 d

(Figure 4B). The abundance of LysoPC [18:3 (6Z,9Z, 12Z)] in the

RPBCAA group was lower than that in the CON group, whereas the

relative abundances of the remaining nine metabolites increased.

The hierarchical cluster analysis of the differential metabolites in

milk showed that metabolites with similar changes converged in the

same cluster (Figure 5B). Figure 6B shows the results of differential

metabolite association analysis. Quantitative enrichment analysis

identified five metabolic pathways: glycerophospholipid, histidine,

beta-alanine, pyrimidine, and linoleic acid metabolism (Figure 7B).
4 Discussion

Dairy cows undergo considerable physiological and immunological

changes as they transition from pregnancy to lactation, with the

incidence rate of metabolic disorders being the highest during early

lactation (26). Following parturition, cows do not eat a sufficient amount,
Frontiers in Immunology 07
making it difficult or impossible to meet their increased nutritional

requirements. This phenomenon results in the mobilization of their fat

reserves and muscle tissue to compensate for malnutrition.
4.1 Lactation performance and
body condition

Grummer et al. (27) reported that decreased DMI and

accompanying high energy demand led to NEB, which can reduce

cow performance and trigger energy metabolic diseases in dairy

cows. Therefore, early lactation is a critical phase requiring intensive

dietary management.

In the current study, the milk yield and composition were not

significantly different following RPBCAA supplementation during

early lactation. This result is consistent with that of Yepes et al. (10).

However, Rulquin and Pisulewski (28) demonstrated marked milk

protein yield responses when 40 g/d of Leu or more was infused via

the duodenum of the cows. The distribution of EAA changes during
A B

FIGURE 3

Volcano plots of metabolites in serum (A) and milk (B).
A B

FIGURE 2

Plots of orthogonal partial least squares-discriminant analysis for serum (A) and milk (B) samples obtained from each dairy cow in the control (XDZ/
NDZ) and treatment (XSY/NSY; received additional 95.17 g/d rumen-protected branched-chain amino acids) groups.
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anabolism and catabolism in organisms (29) and the oxidation of

amino acid in the liver, muscles, and other tissues may be limiting

factors in mammary protein synthesis (30). Milk production and

composition differences are determined via differentiation, including

the level of BCAA additive, stage of addition time, amino acid ratio,

and nutritional level in the diets (7, 31). Moreover, RPBCAA

supplementation did not affect milk composition in the present

study, and the differences in the results from these studies may be

related to the mammary tissue ingestion of BCAA, which are used

more for breast tissue development than for synthesizing milk

components (32). Supplementation with RPBCAA had no marked

effect on body condition ratings.

4.2 Serum variables related to
energy metabolism

Excessive serum concentrations of NEFA and BHBA in dairy

cows are commonly used as indicators of poor metabolic status and

NEB during early lactation (33). A serum NEFA concentration of
Frontiers in Immunology 08
1.00 mmol/L can cause ketosis (34). In the current study, the serum

NEFA concentration of the cows was higher than 1.00 mmol/L,

indicating that the cows were in a high-NEB status at this time.

High serum levels of NEFA interfere with the Ins signaling pathway

and reduce Ins sensitivity (35).

Ins and GC are important energy metabolism-regulating

hormones in animals. These hormones help regulate the

metabolism of three major substances and play a major role in

maintaining the stability of energy metabolism. In the current study,

Ins and GC were elevated in the RPBCAA group. This may have

resulted from BCAA promoting Ins secretion via Vagus nerve-

dependent mechanisms (36, 37). As ketogenic and gluconeogenic

amino acids, BCAA produce glucose during catabolism. The

concentrations of blood glucose were increased, which stimulated

the release of insulin. IGF- 1 and Ins are homologous and improve

the cellular uptake and utilization of glucose (38, 39). They also

promote the uptake and utilization of glucose in tissues, which

accelerates the increase in GC. However, the blood glucose

concentration in the RPBCAA and CON groups was unchanged in
A B

FIGURE 4

Top 15 serum (A) and milk (B) metabolites contributing to the variation in the first component of the partial least squares-discriminant analysis,
shown by variable importance in projection scores in the control (XDZ/NDZ) and treatment (XSY/NSY; received additional 95.17 g/d rumen-
protected branched-chain amino acids) groups.
FIGURE 5

Heatmap of the hierarchical clustering analysis for metabolites that were present at different concentrations in the control (XDZ/NDZ) and treatment
(XSY/NSY; received additional 95.17 g/d rumen-protected branched-chain amino acids) groups (P < 0.05, variable importance in projection >1.0).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1385896
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1385896
the present study. This result indicated that RPBCAA maintain

energy balance and promote energy metabolism in cows.
4.3 Serum variables related to lipid
synthesis and decomposition

The levels of fatty acid synthases and catabolic enzymes were

considerably great in RPBCAA group in the present study.

Furthermore, fat synthesis and catabolism were in a highly

dynamic state of equilibrium. VLDL transports endogenous

triglycerides synthesized in the liver to the extrahepatic

compartment, and a slow output of lipids in the form of VLDL

results in a fatty liver (40, 41). However, in the present study, the

supplementation with RPBCAA increased the activity of ACC, FAS,

and HSL. This may have resulted from the promotion of Ins
Frontiers in Immunology 09
secretion. However, this lipolytic effect may be attributed to

elevated GC levels. In dairy cows, the balance between adipose

lipolysis and lipogenesis is pivotal for maintaining lactation and is

regulated by numerous factors, including the lactation stage, energy

intake, and production level (42).
4.4 Serum variables related to oxidative
stress, immune function

Accelerated metabolism and the mobilization of body tissues in

periparturient cows as well as postpartum uterine recovery and

initiation of lactation are often accompanied by the onset of

oxidative stress. During this period, ROS accumulate in the

organisms (43), and excessive ROS levels lead to cellular oxidative

stress (44). The role of BCAA in alleviating oxidative stress in
A B

FIGURE 7

Serum (A) and milk (B) metabolomics view maps of the significant differential metabolites in the control and treatment groups. The x-axis represents
the pathway impact, and the y-axis is the value of −log (P). The size represents pathway enrichment, and the color indicates pathway impact values,
with darker color indicating higher values.
A B

FIGURE 6

Vertical and diagonal representation of serum (A) and milk (B) differential metabolites. The colors represent the level of correlation between the
different metabolites - the darker the color the higher the correlation.
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ruminants has been widely recognized (15, 16, 45). BCAAs promote

the expression of antioxidant enzymes, increase the cellular energy

supply, enhance peroxisomal and mitochondrial functions, and

improve antioxidant capacity (46). The cell membranes of

immune cells contain a high concentration of unsaturated fatty

acids that are highly sensitive to peroxidation. Therefore, the

immune function of immune cells stimulated by excess free

radicals decreases, which in turn affects the functions of the

immune system (47). Therefore, RPBCAA supplementation may

alleviate oxidative stress, reduce lipid peroxidation, and maintain

IgG levels in lactating dairy cows.
4.5 Milk and serum metabolomics profiling

To further explore the metabolic mechanism through which

RPBCAA supplementation alleviates NEB in early lactating dairy

cows, LC-MS was used to evaluate serum and milk metabolites. The

pathway analysis of serum and milk consistently indicated a major

impact of amino acid and lipid metabolism on these pathways.

Amino acid metabolism is crucial for protein synthesis and other

biosynthetic reactions. In the present study, the blood showed

significant differences in metabolites enriched in histidine

metabolism and the arginine biosynthesis pathway. Additionally,

glycerophospholipid and linoleic acid metabolism pathways were

significantly affected in milk.

Multiple amino acid biomarkers were detected in the serum of

cows. 5-Hydroxytryptophan is also known as serotonin. Serotonin

mediates liver regeneration and regulates glucose and Ins

homeostasis (48). Laporta et al. (49) showed that increasing 5-

hydroxytryptamine levels during the transition from gestation to

lactation increased the mRNA expression of enzymes involved in

liver energy metabolism, mRNA abundance, and distribution of

glucose transporters in the mammary gland and regulated the

energy metabolism of mammary tissue. Their result is

physiologically consistent with our observation of elevated insulin

levels and increased energy metabolism. The glutamine abundance

was higher in the RPBCAA group than in the CON group.

Glutamine is a precursor for synthesizing the antioxidant

glutathione, which is an important molecule in the protection of

cells against oxidative stress and can strengthen the immune

system. Xu et al. (50) found that BCAA supplementation may

improve the abundance of serum glutathione during early lactation.

Our study suggests that the addition of RPBCAA may have

improved the antioxidant status, reduced oxidative damage, and

maintained the immune function of the organism. PC is an essential

component of VLDL synthesis (51). VLDL transports unoxidized

NEFA out of the liver (25) and can prevent liver fat deposition as

well as reduce the incidence of fatty liver in cows. This is consistent

with the elevated plasma VLDL levels in our study. Breast epithelial

cells can recognize and uptake VLDL from the bloodstream (52).

However, due to increased abundance of milk PC, we hypothesized

that RPBCAA supplementation catalyzed PC metabolism

predominantly in the milk gland.

The untargeted metabolomic analysis provided a comprehensive

map of metabolites and related pathways that revealed a possible
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relationship between RPBCAA supplementation and amino acid

synthesis, metabolism, and lipid metabolism. The differences in

metabolic pathways and products will form the basis of future

research on dairy cattle metabolism. Currently, few studies have

explored the role of BCAA in periparturient dairy cows. The current

study demonstrated that RPBCAA can alleviate NEB in

periparturient cows. However, tissue samples could not be collected

to perform an in-depth study of the mechanism. The results for non-

targeted metabolites suggest that BCAA are highly relevant to lipid

metabolism. Supplementary validation tests could be conducted to

further investigate these results.
5 Conclusion

In summary, adding BCAAs to the diet can improve metabolic

levels of the dairy cow body by influencing endocrine functions and

improving the cows’ energy metabolism, thus regulating amino

acid, and lipid metabolism. Concurrently, it can mitigate oxidative

stress and maintain the immune function of cows. Future studies

should focus on the use of RPBCAA as supplements for dairy cows

to fully detail the mechanism of BCAA effects on energy and

lipid metabolism.
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