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Background: In response to the replacemammal researchmodels with insects in

preliminary immunological studies, interest has grown in invertebrate defense

systems. The immunological response is regulated by cytokines; however, while

their role in mammals is well understood, little is known of their function in

insects. A suitable target for studies into insect immunology is Galleria mellonella

(Lepidoptera), the wax moth: a common host for human fungal and bacterial

pathogens. G. mellonella is also a perfect subject for studies into the presence of

cytokine-like proteins.

Specific objectives: The main goal of present research was detection in insect

immunocompetent cells the 18 mammalian cytokines (IL-1a, IL-1b, IL-2, IL-3, IL-
6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-CSF, M-

CSF, G-CSF), which play important role in immunological response and

indication how their level change after fungal infection.

Methodology: The changes of cytokine-like proteins level were detected in

hemocytes taken from G. mellonella larvae infected with entomopathogenic

fungus, C. coronatus. The presence of cytokine-proteins was confirmed with

using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in

freshly collected hemolymph). The ELISA test was used to detect changes in

concentration of examined cytokine-like proteins.

Results:Our findings indicated the presence of eighteen cytokine-like molecules

in G. mellonella hemocytes during infection with C. coronatus. The hemocytes

taken from infected larvae demonstrated higher fluorescence intensity for six

cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1b and IL-19) compared to

untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-

CSF, IL-1a and IL-19 concentration in the hemolymph after fungal infection, and

significantly lower TNF-b and G-CSF.
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Conclusions: Our findings confirm that the selected cytokine-like molecules are

present in insect hemocytes and that their concentrations change after fungal

infection, which might suggest that they play a role in the anti-fungal

immunological response.
KEYWORDS

cytokines, insects hemocytes, fungal infection, model in immunological research,
Galleria mellollella, Conidiobolus coronatus
GRAPHICAL ABSTRACT
1 Introduction

Immunological studies have generally tended to favour the use

of murine models, such as those based on rats. Nevertheless, due to

the costly and labor-intensive nature of using such animals, and the

necessity of maintaining large populations to acquire statistically

significant data, there is an increasing demand for alternative

models. One such possibility involves the use of those based on

invertebrates (1). Comparative genome analyses in insects and

other invertebrates have revealed a multitude of homologous

genes to those found in humans, which encode proteins

responsible for pathogen recognition or signal transduction.

Hence, models based on insects such as Drosophila melanogaster,

Blattella germanica, Galleria mellonella, Culex quinquefasciatus and

Bombyx mori are becoming increasingly popular in studies on the

virulence of microorganisms and host immunity (2).
02
Currently, the G. mellonellamodel (also called the wax worm or

moth) is increasing in popularity in biological research. Several

attributes of the larvae confer advantages as models: they are cost-

effective to rear in abundance, straightforward to utilize, and require

no specialized laboratory equipment for maintenance (3). The

considerable size of the final instar larvae (12-20 mm) simplifies

manipulation and enhances the ease of collecting tissue/

hemolymph samples for analysis. Furthermore, administering test

substances to the larvae is straightforward via food, topical

application, or injection. The short life cycle of G. mellonella,

approximately seven to eight weeks, makes them ideal for large-

scale studies, especially since female wax moths can deposit around

1500 eggs in a single reproductive cycle. The temperature range at

which these insects can be cultivated is crucial; unlike many other

alternative invertebrate models, they thrive in a broad temperature

range (18 - 37°C), with the length of the cycle influenced by
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temperature fluctuations (4). This characteristic is particularly

valuable in immunological research as it enables mapping of

temperature variations within mammalian bodies.

G. mellonella serves as a model host for human pathogens such

as Bacillus cereus (5), Candida albicans (6, 7), Listeria

monocytogenes (8), and Staphylococcus aureus (9). Additionally,

this insect is a popular model in research on entomopathogenic

fungi activity (10) like Conidiobolus coronatus (Entomophthorales),

a soil fungus pathogenic to insects and occasionally humans. In

immunocompromised patients, particularly in tropical climates, C.

coronatus can cause chronic infections, known as rhinofacial

mycosis, characterized by invasion of adjacent skin and

subcutaneous tissue in the face and nose, leading to deformity

(11). C. coronatus as an entomopathogen selectively attacks various

species of insects (12). Previous research on four medically

significant fly species (Calliphora vicina, Calliphora vomitoria,

Lucilia sericata (all Diptera: Calliphoridae), and Musca domestica

(Diptera: Muscidae)) has revealed that while pupae exhibit

resistance to C. coronatus infection, the adult flies are susceptible

(13). The larvae of C. vicina have a thick cuticle that serves as a

highly effective barrier against C. coronatus and exhibits poor

degradation by proteases in vitro. The protective function of the

cuticle is reinforced by the hemolymph, which has demonstrated

effective antiproteolytic capabilities. However, the immune

response of C. vicina is generally weak, marked by hemocytes

with low phagocytic and encapsulating activity, an inefficient

polyphenol oxidase (PO) system, and hemolymph with low

lysozyme activity (14). On the contrary, despite possessing both

humoral and cellular components in their immune systems, G.

mellonella larvae are susceptible to C. coronatus infection due to

their comparatively thin and readily degradable cuticle (15).

Understanding the immune system’s response during infection is

crucial for preventing and managing its effects.

The immunological system of G. mellonella larvae exhibits

significant structural and functional resemblance to the innate

immune response of mammals. Just as mammalian skin serves as

a barrier to pathogens, the insect cuticle plays a similar role.

Furthermore, the hemolymph of insects shares some similarities

with mammalian blood, as both contain immunocompetent cells

(16). While literature data did not confirm the presence of acquired

immunity seen in mammals, which is characterized by the

production of specific antibodies, they possess the capability to

synthesize and secrete a range of antimicrobial peptides (AMPs)

into the hemolymph (17). The humoral immune response can

manifest through processes such as melanization, clotting, as well

as production of reactive oxygen species (ROS) (18).

In G. mellonella, the cellular immune system rely on

phagocytosis, nodulation, and encapsulation reactions and based

on the presence of five distinct types of hemocytes, each

contributing uniquely to the immune response. Plasmatocytes

and granulocytes, the predominant cells, are known for their

active phagocytic role. Conversely, oenocytoids, spherulocytes,

and prohemocytes, though less explored, seem to have minor

involvement in immune responses (19, 20).
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While the factors governing immune responses in mammals are

relatively well studied, there is little literature data describing these

processes in insect. Nonetheless, it is widely described that their

humoral immune responses mostly rely on antimicrobial peptides

(AMPs) releasing from the fat body, which is mediated through

pathways such as Toll, IMD (immune deficiency) and JAK-STAT

(Janus kinase-signal transducer and activator of transcription). Toll

signaling pathway is induced by Gram-positive bacteria and fungi,

while Gram-negative bacteria mostly activate the IMD

pathway (21).

The first stage of defence mechanisms in mammals are

identification of molecular patterns detected in pathogens; in this

phase the most important role plays the toll-like receptors (TLRs)

present in dendritic cells, macrophages, and granulocytes, produced

in hematopoietic stem cells.

Upon binding to a pathogen ligand, TLRs trigger a cascade of

signaling pathways which are conserved from insects to plants and

humans. They ultimately activate NF-kB (Nuclear Factor kappa B)

which, in mammalian cells, leads to the induction of cytokine genes

and the establishment of innate immunity (22). Within dendritic

cells, TLR signals trigger the production of type I interferons (IFN

a/b), which subsequently establish an antiviral state within host

cells. Moreover, TLR signals elicit the release of both pro-

inflammatory cytokines like IFNs, IL-1, TNF-a, and IL-12, and

anti-inflammatory cytokines such as IL-10 and IL-6. Among these,

IL-12 and IL-10 serve as connectors bridging early innate responses

to specific immune responses (23).

The IMD pathway is very similar to the mammalian TNF-a
pathway, a key regulator of vertebrate immunity and metabolism.

Two well-described/examinated cellular reactions to TNF-a
production include the initiation of apoptosis and the

stimulation of transcription processes promoting cell survival.

TNF-a-induced apoptosis is characterized by the activation of

caspase cascades, leading to cell death through the cleavage of

specific cellular substrates. Furthermore, TNF-a triggers the

activation of two transcription factors: NF-kB and activating

protein 1 (AP-1). Among these, NF-kB plays a crucial role in

preventing apoptosis and ensuring cell survival by stimulating the

expression of genes involved in inflammation, cell growth, and

signal regulation (24).

The JAK-STAT pathway is one of the best understood signal

transduction cascades. It is known to be universal and essential to

cytokine receptor signaling. Almost 50 cytokine receptors realize

their signals through combinations of four JAK and seven STAT

family members, suggesting commonality across the JAK-STAT

signaling system. Activation of this pathway induces cell

proliferation, differentiation, migration, and apoptosis (25, 26).

The three main pathways for regulating cytokine activity

in the insect immune system (Toll, IMD, JAK-STAT) have

analogous equivalents in mammals. Therefore, we hypothesize

that cytokine-like proteins may also be present in insects. The

main goal of this study is to confirm the presence of eighteen

cytokine-like molecules in G. mellonella hemocytes following C.

coronatus infection.
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2 Materials and methods

2.1 Culture of Galleria mellonella

A colony of Galleria mellonella wax moths (Lepidoptera:

Pyralidae) was maintained in chambers with controlled

temperature and humidity (30°C, 70% r.h.) without photoperiod

(in constant darkness) and fed an artificial diet (ingredients: wheat

flour, wheat bran, corn flour, skimmed milk powder, honey,

glycerine) (27). Fully mature larvae were collected prior to

pupation, subjected to surface sterilization and homogenization,

and then utilized as an adjunct in fungal cultures. Five-day-old last

instar larvae were employed to investigate the impact of fungal

infection on the detection and concentration of various cytokine-

like proteins, including Interleukin (IL)-1a, IL-1b, IL-2, IL-3, IL-6,
IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, Interferon (IFN)-g,
Tumor necrosis factor (TNF)-a, TNF-b, granulocyte-macrophage

colony-stimulating factor (GM-CSF), macrophage colony-

stimulating factor (M-CSF), and granulocyte colony-stimulating

factor (G-CSF), in both hemolymph and hemocytes.
2.2 Pure colony isolation and culture of
Conidiobolus coronatus

Conidiobolus coronatus (isolate number 3491), initially isolated

from Dendrolaelaps spp., was sourced from the collection of Prof.

Bałazy at the Polish Academy of Sciences, Research Center for

Agricultural and Forest Environment in Poznań. It was cultivated in

90 mm Petri dishes at 20°C in photoperiod (12-hour light:dark) for

sporulation induction on Sabouraud agar medium (1% (w:v) peptone,

4% (w:v) glucose and 1.8% (w:v) agar with a final pH of 5.6) (SAM).

Additionally, to increase the sporulation and virulence of the C.

coronatus cultures, medium was supplemented with homogenized

G. mellonella larvae at a final concentration of 10% wet weight.
2.3 Infection of insects with C. coronatus

G. mellonella larvae (five-day-old last instar) were exposed for

24 hours to even-day-old fully-grown and sporulating C. coronatus

colonies. Twenty individuals were maintained in each Petri dish. A

control group was formed of larvae exposed for 24 hours to sterile

Sabouraud agar medium (Merck). After exposure, the insects were

transferred to new, clean Petri dishes with appropriate food (an

artificial diet (27)) and kept at 20°C for one day. Following this 24-

hour exposure to the fungus, one group of insects was collected

immediately for examination (F24 group) while the rest were left for

another 24 hours before collection (F48 group).
2.4 Larval hemolymph collection

Hemolymph from both control and infected larvae (F24 and

F48) of G. mellonella was collected. Due to the high percent of dead

insect (68 ± 4.5% in F24 and 87 ± 5.2% in F48), the hemolymph
Frontiers in Immunology 04
samples were obtained from both surviving and dying individuals.

In order to sterilize the surface of the larva and thus to reduce the

contamination of hemolymph samples, the insects were first washed

with 70% (v/v) ethanol and then briefly with distilled water.

Hemolymph was collected from the larvae through an incision

made in the last proleg. Depending on the planned research

method, hemolymph was collected in different ways.

To culture the hemocytes, 100 ml of hemolymph taken from

ten larvae was mixed with 500 ml of supplemented Grace’s

Insect Medium (GIM; Invitrogen) containing antibiotics

(gentamicin,10mg/ml; and amphotericin B (250mg/ml; both from

Gibco), and phenylthiourea (PTU; 0.1mM; Sigma-Aldrich). Next

samples were put in a six-channel m-Slide IV 0.4 (IBIDI), 100ml of
sample to each channel and incubated at 27°C for 24 hours.

For flow cytometric analysis, 100 ml of hemolymph taken

from thirty larvae were mixed with 100 ml of supplemented

GIM containing anticoagulant (10mM EDTA and 30mM

sodium citrate).

For enzyme-linked immunosorbent assay (ELISA), 200 ml of
hemolymph taken from 35 larvae was mixed with 100 ml of

supplemented GIM medium. The hemocytes was firstly lysed

during the sonication process (20 kHz, 3 min). and next

centrifuged at 10000 x g for 10 min. The supernatants were put

to new 1.5ml plastic tubes and stored at -20°C for further analysis.
2.5 Immunolocalization of cytokine-like
proteins in G. mellonella hemocytes

The cytokine-like proteins IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7,
IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-

CSF, M-CSF, G-CSF were subjected to immunolocalization of using

fluorescence microscopy and flow cytometry. The same primary

antibodies were used for both research methods: anti-IL-1a, anti-
IL-1b, anti-IL-2, anti-IL-3, anti-IL-6, anti-IL-7, anti-IL-8, anti-IL-
12, anti-IL-13, anti-IL-15, anti-IL-17, anti-IL-19 polyclonal

antibodies were purchased from BioVision; anti-IFN-g, anti-TNF-
a, anti-TNF-b, anti-GM-CSF, anti-M-CSF, anti-G-CSF polyclonal

antibodies were purchased from Invitrogen (a part of Thermo

Fisher Scientific). Goat anti-Rabbit IgG (H+L), DyLight 488

(Invitrogen) or Goat anti-Mouse IgG (H+L), DyLight 488

(Invitrogen) was used as the secondary antibody depending on

the primary antibody host.
2.6 Immunolocalization by
fluorescence microscopy

Fluorescence microscopy was used to immunolocalize selected

cytokine-like proteins in all hemocyte cultures (taken from controls,

F24, and F48 insects). Firstly hemocytes were fixed (4%

paraformaldehyde; Sigma-Aldrich; PFA) and permeabilized (0.1%

Triton X-100;Sigma-Aldrich; both suspended in PBS). Next, the

cells were incubated in 4% BSA-PBS for one hour to prevent a non-

specific antibody binding. Primary antibodies listed above were

then applied to hemocyte and incubate overnight at 4°C (1:60
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suspended in PBS). After that, the cells were incubated for two

hours at room temperature with secondary antibodies.

Concentrations of secondary antibody were 2mg/ml. ActinRed

555 ReadyProbes Reagent (Invitrogen) were used to label the actin

fibers. The cell nuclei were stained with Hoechst (Enzo Life

Sciences). Fluorescence signals were analyzed by fluorescent

microscopy using an Axio Vert.A1 fluorescence microscope

(Zeiss) with Axio Cam ICc 5 (Zeiss) and ZEN 3.2 lite software

with Modul Image Analysis (Zeiss). Each test was performed in

three independent replicates.
2.7 Flow cytometry analysis

Flow cytometry analysis was performed according to a protocol

previously developed by our team for the determination of

cytokine-like proteins in insect hemocytes (28). The hemolymph

taken from both untreated and fungus-treated larvae was

centrifuged (400xg, 10 min) and washed with PBS. The cells were

then fixed in 4% paraformaldehyde (Sigma-Aldrich; PFA) in

phosphate-buffered saline (PBS) and permeabilized in 0.1%

Triton X-100 (Sigma-Aldrich) in PBS. After that, the cells were

incubated with primary antibodies (diluted 1:100) overnight at 4°C,

using the same antibodies as previously described. After three

washes in PBS, the cells were further incubated for two hours at

room temperature with the secondary antibody.

The readings were acquired on an CyFlow Cube 8 (Sysmex) and

analyzed with FCS Express 6 (DeNovo Software). For each

experimental condition, 100ml of each sample was scrutinized.

Data was acquired using a 488 nm laser which detected each

cytokine on the FL-1 channel. Each measurement was performed

in three independent replicates. Results were shown as dot plots

comparing forward scatter (FSC) with side scatter (SSC).
2.8 Cytokine-like proteins quantification
by ELISA

Quantitative cytokine-like proteins analysis was carried out

using ELISA tests all from Wuhan Fine Biotech Co., Ltd. The

following commercial ELISA kits were used: Human IL-1a, Human

IL-1b, Human IL-2, Human IL-3, Human IL-6, Human IL-7,

Human IL-8, Human IL-12, Human IL-13, Human IL-15,

Human IL-17, Human IL-19, Human IFN-g, Human TNF-a,
Human TNF-b, Human GM-CSF, Human M-CSF and Human

G-CSF. Each test was performed in three independent replicates

according to the manufacturer’s instructions.
2.9 BLASTP analysis

For preliminary proteomic analysis, the human amino acid

sequences of the 18 studied cytokines (IL-1a, IL-1b, IL-2, IL-3, IL-6,
IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b,
GM-CSF, M-CSF, G-CSF) were compared with the G. mellonella

proteomic database. Sequences of human cytokines acquired from
Frontiers in Immunology 05
UniProt [https://doi.org/10.1093/nar/gkac1052] where used as

queries in blastp searches (BLASTP 2.12.0+) against UniProtKB

reference genomes + Swiss-Prot databases with results restricted to

G. mellonella (taxon ID 7137). Blastp searches were executed via the

UniProt website (https://www.uniprot.org/blast) with default

settings: Matrix: BLOSUM62; Gap Penalties: Existence: 11,

Extension: 1; Neighboring words threshold: 11; Window for

multiple hits: 40.
2.10 Statistics

Statistical analysis was conducted utilizing STATISTICA 6.1

software (StatSoft Polska). The one-way ANOVA was employed to

assess statistical relationships, followed by Tukey’s test for post hoc

analysis. Normality was examined using the Kolmogorov–Smirnov

(K–S) test. The concentrations of cytokine-like proteins in

hemolymph, measured by ELISA, were analyzed using Pearson’s

correlation test, using OriginPro (OriginLab) software. In all cases, a

p-value below 0.05 was considered statistically significant.
3 Results

The effects of C. coronatus infection on the amounts of eighteen

cytokine-like proteins (IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7, IL-8, IL-
12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-CSF, M-

CSF, G-CSF) in hemocytes were examined in three groups of G.

mellonella larvae. In the experimental phase of the research, fungus-

treated insects were employed. The larvae were divided into two

groups, both of which underwent a 24-hour incubation period with

the fungus. First one, named F24, was larvae immediately taken do

the experiments after exposition to fungus, the second one (F48) the

fungus-infected larvae were incubated additionally 24h on sterile

petri dish and then used in experiments. The control insects were

incubated with sterile Sabouraud agar medium. Following

collection, all samples were subjected to examination by

fluorescence microscopy, flow cytometry and ELISA.
3.1 Immunolocalization of cytokine-like
proteins in hemocytes

Two methods were used to immunolocalize the eighteen

proteins in G. mellonella hemocytes: fluorescence microscopy and

flow cytometry.

The fluorescence documentation depict labeled b-actin fibers,

cell nuclei, immunolocalized cytokine-like proteins, and merged

images. Microscopic research revealed two distinct hemocyte types:

plasmatocytes and granulocytes. Other hemocyte subpopulations of

G. mellonella , namely spherulocytes, oenocytoids, and

prohemocytes, were non-adherent and consequently washed out

during the fixation and staining processes. Of the proteins tested,

eight in groups F24 and F48 (G-CSF, GM-CSF, M-CSF, IL-3, IL-15,

IL-1 b, IL-6, IL-19) showed a significant increase in fluorescence

intensity on the fluorescein isothiocyanate (FITC) channel
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compared to the control (Figure 1); this indicated an increase in

their levels in hemocytes after fungal infection. However, no

differences were found when comparing hemocytes collected from

insects from groups F24 and F48.

TNF-a, TNF-b, IFN-gamma, IL-7 and IL-17 (Figure 2)

demonstrated similar fluorescence intensities on the FITC channel in

cytes collected from all three groups (control, F24 and F48). This

confirms that their levels were not affected by fungal infection. In

addition, it is worth emphasizing that IL-7 and IL-17 showed much

lower green fluorescence compared to TNF-a, TNF-b and IFN-gamma.

Figure 3 presents microscopic images of IL-1 a, IL-2, IL-8, IL-
12 and IL-13 immunodetection. The lack of fluorescence on the

FITC channel indicates the absence of these cytokine-like proteins

in hemocytes from all cultures i.e. both healthy (control) and

fungal-infected (F24 and F48) insects.

Flow cytometry data (Figure 4) are presented as dot plots of FSC

(forward scatter) versus SSC (side scatter). All cells present in the

sample are marked as gate ‘cells’ (blue), while cells that contain the

tested protein were marked as ‘FITC cells’ (green; numerical data

are provided in Table S1). Although all cell subpopulations were

examined by this method, it was not possible to determine

individual hemocyte subpopulations.

In the control group, the highest number of cells responding to

antibody labeling was noted for IFN-gamma (82.92 ± 3.34%) and

the lowest for IL-19 (7.65 ± 2.66%). Of the tested cytokines, G-CSF

was the most prevalent among hemocytes taken from larvae from
Frontiers in Immunology 06
groups F24 (77.72 ± 1.83%) and F48 (82.91 ± 5.46%). In contrast,

IL-2 was the least prevalent (F24 16.69 ± 5.21%; F48 10.16 ± 3.29%).

In F24, significantly higher levels of M-CSF, GM-CSF, IL-1 b, IL-3,
IL-8, IL-13, IL-15 and IL-19 positive cells were noted compared to

control values; in addition, significantly higher levels of G-CSF, M-

CSF, GM-CSF, IL-1 b, IL-7, IL-8 and IL-19 positive cells were found
compared to both F48 and controls. The only statistically significant

decrease between control and F48 was found for IFN-gamma.

Detailed statistics (p-values for one-way ANOVA, with Tukey’s

test) are presented in Table S2.
3.2 Quantitative measurement of cytokine-
like protein concentrations in hemolymph

In healthy G. mellonella larvae (control) and those subjected to

fungal infection (F24 and F48), the hemolymph concentrations of

cytokine-like proteins (IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7, IL-8, IL-
12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-CSF, M-

CSF, G-CSF) were determined using ELISA tests. The results are

summarized in Figure 5.

The predominant cytokine-like protein in the control (61.92 ±

5.89 pg/ml) and F24 (78.99 ± 14.84 pg/ml) was IL-3, while IL-7

predominated in F48 (65.18 ± 2.36 pg/ml). Of the tested proteins,

IL-19 was not detected in healthy controls, while IL-15 and IL-13

were not observed in F48.
FIGURE 1

Immunofluorescence staining of G-CSF-, GM-CSF-, M-CSF-, IL-3-, IL-15-, IL-1 b-, IL-6-, IL-19- like proteins in G. mellonella hemocytes after C.
coronatus infection. b-Actin (orange) was stained by ActinRed 555 ReadyProbes Reagent (Invitrogen). Cell nuclei (blue) were stained with Hoechst
(Enzo Life Sciences). Cytokine-like proteins (green) were detected using the appropriate primary antibody, Goat anti-Mouse IgG (H+L), DyLight 488
(Invitrogen) as a secondary antibody for detecting G-CSF, and Goat anti-Rabbit IgG (H+L), DyLight 488 (Invitrogen) as secondary antibody for
detecting the remaining cytokines. Control (negative control), non-infected, healthy larvae; F24, larvae sampled immediately after 24-h exposure to
C. coronatus sporulating colonies; F48, larvae sampled 24 hours after 24-h exposure; scale bar 25 µm.
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No significant changes in concentration were found between

healthy and infected insects for IL-3 and IL-15. However, M-CSF, IL-

1 a and IL-19 were significantly higher in both infected groups (F24

and F48) compared with controls, while TNF-b and G-CSF were

significantly lower. The IL-12 and IL-13 levels were also significantly

higher, but only in the F24 group. Also significant differences between

controls and F48 were found for IFN-gamma, GM-CSF, IL-1 b, IL-2,
IL-6, IL-6, IL-7 and IL-17. The precise concentrations of the tested

proteins are given in Table S3, with detailed statistics (p-values for

one-way ANOVA, with Tukey’s test) in Table S4.

Pearson’s correlation coefficients were calculated between the

levels of the tested proteins, in each individual group: control, F24

and F48 (Figure 6). In the controls, significant negative

correlations were found between G-CSF vs IL-1 a, M-CSF vs IL-

3, IL-1 b vs IL-7, and positive correlations between TNF- a vs IL-3,

TNF-b vs IL-13, GM-CSF vs IL-15. In F24, a significant negative

correlation was found for IL-1 a vs IL-17, and positive ones for

IFN-gamma vs G-CSF, TNF- a vs M-CSF, IL-3 vs M-CSF, GM-

CSF vs IL-8, IL-6 vs IL-7, IL-2 vs IL-13, IFN-gamma vs IL-17, G-

CSF vs IL-19. In F48, significant negative correlations were found

for IL-1 b vs IL-12 and GM-CSF vs IL-19, and positive ones for

TNF-a vs IFN-gamma, TNF- a vs GM-CSF, IFN-gamma vs G-
Frontiers in Immunology 07
CSF, IL-1 a vs IL-1 b, TNF- b vs IL-7, IL-1 a vs IL-17, IFN-gamma

vs IL-17 and G-CSF vs IL-17.
3.3 BLASTP analysis

The results of the preliminary proteomic analysis involving

comparison of the amino acid sequence of 18 human cytokines

(IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17,
IL-19, IFN-g, TNF-a, TNF-b, GM-CSF, M-CSF, G-CSF) with G.

mellonella proteomic databases using the BLASTP tool are presented

in Figure S1, where the e-values below 0.01 considers homology

between compared mammals and insect proteins. Uncharacterized

proteins in G. mellonella proteomic databases showing homology (e-

value <0.01) with human cytokines were detected for: IL-1a (one

protein), IL-17, (one protein) and M-CSF (three proteins).
4 Discussion

In vertebrates, the responses to exogenous and endogenous

insults, the tissue repair mechanisms and the restoration of tissue
FIGURE 2

Immunofluorescence staining of TNF-a-, TNF-b-, IFN-gamma-, IL-7-, IL-17 – like proteins in G. mellonella hemocytes after C. coronatus infection.
b-Actin (orange) was stained by ActinRed 555 ReadyProbes Reagent (Invitrogen). Cell nuclei (blue) were stained with Hoechst (Enzo Life Sciences).
Cytokine-like proteins (green) were detected using the appropriate primary antibody, and Goat anti-Rabbit IgG (H+L), DyLight 488 (Invitrogen) as
secondary antibody. Control (negative control), non-infected, healthy larvae; F24, larvae sampled immediately after 24-h exposure to C. coronatus
sporulating colonies; F48, larvae sampled 24 hours after 24-h exposure; scale bar 25 µm.
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homeostasis are controlled by cytokines; as such they are regarded

as the major regulators of immune processes (29, 30). Primarily

these compounds are secreted by immunocytes, their function is

believed to be mediated through interactions with particular

cytokine receptors. Research on the functional similarities

between the innate (non-adaptive) host defenses of vertebrates

and invertebrates suggests that invertebrates possess soluble

cytokine-like mediators that regulate inflammatory responses to

infection or injury (31).

Although the topic of cytokines has been widely discussed in

vertebrates, especially mammals (32), there is little information

about cytokine-like proteins in invertebrates, and even less in

insects (33). The present study examined the presence of 18

cytokine-like proteins (IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7, IL-8,
IL-12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-CSF,

M-CSF, G-CSF) in the hemolymph of G. mellonella after infection

with the entomopathogenic fungus C. coronatus. The research was

carried out using three methods: fluorescence microscopy, flow

cytometry and ELISA tests.

Thirteen of the tested proteins (G-CSF, GM-CSF, M-CSF,

TNF-b, IFN-gamma, TNF-a, IL-1 b, IL-3, IL-6, IL-7, IL-15, IL-
17, IL-19) were found in the hemolymph and hemocytes of G.
Frontiers in Immunology 08
mellonella; however, the results regarding the influence of

infection differed according to the detection method.

Fluorescence microscopy identified higher levels of G-CSF,

GM-CSF, M-CSF, IL-3, IL-15, IL-1 b, IL-6, IL-19 in both F24

and F48 compared to controls. Flow cytometry analysis showed

an increase in M-CSF, GM-CSF, IL-1 b, IL-8 and IL-19 for both

post-infection samples compared to controls; in addition,

ELISA assays indicated higher levels of M-CSF, GM-CSF

and IL-1 a in the infected samples. These differences may

result from the sample preparation method. All subpopulations

of hemocytes can be detected by flow cytometry. However,

fluorescence microscopy requires several washes during

sample preparation, which may remove everything other than

adherent subpopulations of hemocytes, i.e. plasmatocytes and

granulocytes. In addition, ELISA tests are based on whole

hemolymph, i.e. homogenized cells and plasma; however, this

hemolymph was collected directly from the larvae and not

subjected to in vitro cell culture.

Initial proteomic analysis conducted with the BLASTP tool

revealed potential homology between three human cytokines (IL-

1a, IL-17 and M-CSF) and uncharacterized proteins from G.

mellonella, whose sequences were deposited in databases. For a
FIGURE 3

Immunofluorescence staining of IL-1 a-, IL-2-, IL-8-, IL-12-, IL-13 - like proteins in G. mellonella hemocytes after C. coronatus infection. b-Actin
(orange) was stained by ActinRed 555 ReadyProbes Reagent (Invitrogen). Cell nuclei (blue) were stained with Hoechst (Enzo Life Sciences). Cytokine-
like proteins (green) were detected using the appropriate primary antibody, Goat anti-Mouse IgG (H+L), DyLight 488 (Invitrogen) as a secondary
antibody for the detection of IL-1 a and Goat anti-Rabbit IgG (H+L), DyLight 488 (Invitrogen) as secondary antibody for the detection of the
remaining cytokines. Control (negative control), non-infected, healthy larvae; F24, larvae sampled immediately after 24-h exposure to C. coronatus
sporulating colonies; F48, larvae sampled 24 hours after 24-h exposure; scale bar 25 µm.
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more comprehensive assessment of the homology between human

cytokines and insect cytokine-like proteins, a complete proteomic

analysis is required. Our previous studies, in which analyzes were

performed using 2D electrophoresis, Western Blot and LC-MS-MS/

MS protein identification, confirmed 33% protein sequence coverage

of G. mellonella IFN-g- like protein to IFN-g sequence from Homo

sapiens (28). We are currently undertaking a proteomic analysis of

larval hemolymph, utilizing FAIM (high-field asymmetric waveform

ion mobility spectrometry) measurements and assessments through

the Swissprot Eukaryota databases. We have obtained initial results

into the identification of IL-17 and IL-19, which are undergoing

further refinement for subsequent publication.

Previous immunocytochemical studies have confirmed the

presence of cytokine-like proteins in various invertebrate species

belonging to the Mollusca (34), Nematoda (35), Annelida (36),

Tunicata (37) and Insecta (38). Of these, IL-1-, IL-6- and TNF-like

molecules have been found to predominate in inter alia annelids,

molluscs, echinoderms and protochordates (31, 39).
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The IL-1-like cytokine was among the earliest-discover

cytokine-like molecules in invertebrates, isolated from the

coelomic fluid and coelomocytes of the starfish Asterias forbesi

(40). In addition, molecules cross-reacting with antibodies against

the chemokines IL-8, IL-1, IL-6 and IL-2, and against transforming

growth factor (TGF)-b1, have been identified in molluscs (34, 41).

Moreover, IL-2-like activity was observed in protochordates and

echinoderms, specifically in deuterostome invertebrates possessing

a hematopoietic organ and T-like cells (42). Finally, genes encoding

TGF-b have been detected in the genome of cnidarians, such as the

sea anemone Aiptasia pallida, and the cytokine was found to

depress certain immune reactions, including nitric oxide

production (43, 44).

Comparative studies indicated the presence of cytokine-like

molecules in invertebrate and also similarities on genome level in

both invertebrates and mammals, for example the research

indicated the homology of mammalian messenger RNA (mRNA)

to IL-1b mRNA isolated from cerebral ganglion of the
FIGURE 4

Flow cytometry analysis of cytokine like proteins IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-
CSF, M-CSF, G-CSF in G. mellonella hemocytes after C. coronatus infection. The results are shown as dot plots of FSC (forward scatter) versus SSC
(side scatter). Gate ‘cells’ (blue)- all cells; gate ‘FITC cells’ (green)- cells that contain the tested protein. Control (negative control), non-infected,
healthy larvae; F24, larvae sampled immediately after 24-h exposure to C. coronatus sporulating colonies; F48, larvae sampled 24 hours after 24-h
exposure. One representative of three independent experiments is shown.
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protochordate Stylea plicata (45). In addition, PCR studies on

Manduca sexta using primers based on shared vertebrate IL-1

protein sequences identified a product demonstrating 35%

homology with sheep, rat, rabbit, cow, mouse and human IL-1a,
IL-1b or IL-1-receptor antagonist (IL-1-ra) (46).

Few studies have reported the occurrence of these proteins in

insects. However, a sequence homologous to an interferon

consensus response element has been reported in the diptericin

promoter of Drosophila (47), and a cytotoxic molecule (Gallysin 2)

that may be an analogue of TNF has been isolated in the

lepidopteran G. mellonella (48). Non-activated granular cells from
Frontiers in Immunology 10
G. mellonella or hemocytes from Estigmene acraea larvae have

demonstrated strong positive reactions to anti-IL-1a and TNF-a
polyclonal antibodies (pAb), while a less positive reaction was noted

for G. mellonella plasmatocytes (49). In addition, TNF-like

molecules have been observed in the plasmatocytes and granular

cells of Calliphora vomitoria hemocytes (50). The presence of

cytokine-like proteins in insects is also confirmed by our present

findings; however, our study is the first to examine such a wide

range of cytokines from different groups.

Similarly, very little is known of the effect of cytokine-like

molecules on insects. Earthworm coelomocytes exhibited higher
FIGURE 5

Concentration of cytokine-like proteins (IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-CSF, M-
CSF, G-CSF) in the hemolymph of G. mellonella larvae after infection with C. coronatus. The measurements were performed using ELISA tests. Data
are presented as means and standard deviations. ∗p ≤ 0.05, ∗∗p < 0.001 (one-way ANOVA, with Tukey’s test, p ≤ 0.05). Control, non-infected,
healthy larvae; F24, larvae sampled immediately after 24-h exposure to C. coronatus sporulating colonies; F48, larvae sampled 24 hours after 24-
h exposure.
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phagocytosis in response to recombinant human IL-12 and IFN-g,
whereas blue mussel hemocytes displayed increased stress and

reduced phagocytosis when stimulated with TNF-a. Similarly,

insect (D. melanogaster) cells demonstrated stimulation upon

exposure to recombinant human IL-8, resulting in an increase in

phagocytic cells (39). In addition, hemocytes of the fly Calliphora

vomitoria demonstrated TNF-like molecule expression following

encapsulation;the authors propose that his may serve as a

chemoattractant (50). Finally, a defence complex consisting of IL-

1-like molecule and phenol oxidase, the enzyme responsible for

melanization, has been reported in the hemolymph of the insect

Manduca sexta (51).

Infection by C. coronatus and the administration of its

metabolites (harman and norharman) has been found to affect

the insect immune system. Harman and norharman increase the

phagocytic activity of hemocytes and the level of serotonin (5-HT)

in G. mellonella hemolymph (15, 52). Our previous data identified

the presence of certain heat shock proteins (HSPs), viz. HSP90,

HSP70, HSP60 and HSP27, in G. mellonella hemocytes: HSP60 and

HSP90 predominated in healthy insects, with HSP70 and HSP27

present in trace amounts, while HSP60 and HSP27 were elevated in

the F24 and F48 groups, and HSP90 in F48 alone; the fungal

infection had no effect on HSP70 levels (53). Both HSPs and

serotonin are involved in regulating the functioning of the

immune system. Heat shock proteins are activators of the innate

immune system, and are capable of inducing pro-inflammatory

cytokine production by mammalian macrophages (54). In contrast,

5-HT reduced IFN-g and IL-17, and increased IL-10 production by

T lymphocytes (55).

Insects mostly rely on their cuticular, humoral, and cellular

defenses to combat fungal pathogens (56).

It is possible that the cytokine-like molecules present in insect

hemolymph also inhibit fungal infection. In mammals, the role of

cytokines in fungal infection is widely described: the cells of the host

innate immune system recognize fungal organisms by their cell wall

components, which act as pathogen‐associated molecular patterns

(PAMPs). The PAMPs bind to, and are recognized by, pattern‐

recognition receptors (PRRs), including Toll‐like receptors (TLRs),

on the surface of host cells (57, 58).
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The phagocytic activity directed against fungi takes place through

oxidative and non‐oxidative mechanisms, and can be increased by

opsonins and T‐cell‐derived cytokines (59). The production and

activation of mature phagocytic cells from hematopoietic progenitor

cells is stimulated by a group of glycoproteins known as hematopoietic

growth factors (HGFs). Of the HGFs, the most relevant to antifungal

host defenses are granulocyte colony‐stimulating factor (G‐CSF),

granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) and

macrophage colony‐stimulating factor (M‐CSF) (60). Our present

findings indicate that these cytokines are elevated in G. mellonella

hemocytes after fungal infection, while our previous studies confirm

that C. coronatus metabolites (harman and norharman) stimulate

phagocytosis in these cells (52).

HGFs have been proven to provide defense against fatal fungal

infections and bolster the effectiveness of antifungal medications in

both animal models and clinical investigations. G-CSF, M-CSF, and

GM-CSF have been employed in the management of invasive fungal

infections stemming from Candida (61, 62) and Aspergillus (63–

66), especially in patients undergoing chemotherapy or after stem

cell transplantation (67–69). As such, the fact that these proteins

also play a potential role in fungal infection in insects suggests

supports their attractiveness as potential research models.

In mammals, two subpopulations of T helper cells are involved in

the response to fungal infection: ‘protective’ type‐1 (Th1) and ‘non‐

protective’ type‐2 (Th2). The type‐1 response involves the production

of Th1 cytokines, such as IFN‐g and IL‐2, IL‐12, and IL‐18; these

stimulate macrophage activation, cytotoxic CD4+ T cell generation,

opsonizing antibody production and delayed-type hypersensitivity.

The type‐2 response entails the generation of Th2 cytokines, like IL‐4,

IL‐5, and IL‐13, which trigger the production of non‐opsonizing

antibodies and allergic reactions, while also suppressing the

pronounced inflammatory response induced by Th1 cytokines.

Several other cytokines contribute to the immune response against

fungal pathogens, including IL‐1, IL‐6, IL‐8, IL‐10, IL‐15, TNF‐a,
and transforming growth factor (TGF)‐b (70).

Our research with the G. mellonella insect model showed that C.

coronatus infection did not appear to increase the levels of IFN-

gamma-like protein and TNF‐a-like protein, as these proteins were
produced by hemocytes from both healthy and infected insects.
FIGURE 6

Pearson’s correlation coefficients (r) between the concentration of cytokine-like proteins (IL-1a, IL-1b, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15,
IL-17, IL-19, IFN-g, TNF-a, TNF-b, GM-CSF, M-CSF, G-CSF). Positive correlations are indicated in shades of navy blue, whereas negative correlations
are indicated in shades of yellow. Significant correlations, depending on the p-value, are indicated by red asterisks.
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Nevertheless, as in mammals, it is possible that the IL-1-b, IL-6 and

IL-15-like proteins may play an important role in fungal infection, as

their levels increased in infected insects; however, a better

understanding of the role of these proteins during infection is needed.

IL-1b signaling promotes monocyte, macrophage and

neutrophil recruitment in mammals, as well as enhanced

phagocytosis and killing, and increased production of reactive

oxygen species/nitrogen oxide synthase (ROS/NOS) (71). IL-15

plays a role in innate immunity against fungal infections by

boosting the antifungal activity of polymorphonuclear or

monocyte cells (72); it also recently has been found to play a part

in NK cell activation (73). IL-6 can stimulate the secretion of

various chemokines, resulting in the recruitment of monocytes

and/or macrophages and the resolution of inflammation (74).
5 Conclusions

Many similarities have been noted between the immune

systems of mammals and insects, particularly regarding the

functioning of immunocompetent cells, immune pathways and

factors. This has been confirmed by our present findings,

indicating that certain cytokine-like molecules are present in the

insect hemocyte subpopulation and that their level correlates with

the degree of fungal infection. These findings may also be valuable

in contributing to further research concerning insect physiology,

parasitology and immunology, as well as pest biocontrol.
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