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Mincle receptor in macrophage
and neutrophil contributes to the
unresolved inflammation during
the transition from acute kidney
injury to chronic kidney disease
Cui Wang †, Yilin Zhang †, Anran Shen, Taotao Tang, Ning Li,
Chuanhui Xu, Bicheng Liu and Linli Lv*

Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing,
Jiangsu, China
Background: Recent studies have demonstrated a strong association between

acute kidney injury (AKI) and chronic kidney disease (CKD), while the unresolved

inflammation is believed to be a driving force for this chronic transition process.

As a transmembrane pattern recognition receptor, Mincle (macrophage-

inducible C-type lectin, Clec4e) was identified to participate in the early

immune response after AKI. However, the impact of Mincle on the chronic

transition of AKI remains largely unclear.

Methods: We performed single-cell RNA sequencing (scRNA-seq) with the

unilateral ischemia-reperfusion (UIR) murine model of AKI at days 1, 3, 14 and

28 after injury. Potential effects and mechanism of Mincle on renal inflammation

and fibrosis were further validated in vivo utilizing Mincle knockout mice.

Results: The dynamic expression of Mincle in macrophages and neutrophils

throughout the transition from AKI to CKD was observed. For both cell types,

Mincle expression was significantly up-regulated on day 1 following AKI, with a

second rise observed on day 14. Notably, we identified distinct subclusters of

Minclehigh neutrophils and Minclehigh macrophages that exhibited time-dependent

influx with dual peaks characterized with remarkable pro-inflammatory and pro-

fibrotic functions. Moreover, we identified that Minclehigh neutrophils represented

an “aged” mature neutrophil subset derived from the “fresh” mature neutrophil

cluster in kidney. Additionally, we observed a synergistic mechanism whereby

Mincle-expressing macrophages and neutrophils sustained renal inflammation by

tumor necrosis factor (TNF) production. Mincle-deficient mice exhibited reduced

renal injury and fibrosis following AKI.

Conclusion: The present findings have unveiled combined persistence of

Minclehigh neutrophils and macrophages during AKI-to-CKD transition,

contributing to unresolved inflammation followed by fibrosis via TNF-a as a

central pro-inflammatory cytokine. Targeting Mincle may offer a novel

therapeutic strategy for preventing the transition from AKI to CKD.
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Introduction

As a widespread clinical syndrome with acute renal dysfunction,

acute kidney injury (AKI) could progress to chronic kidney disease

(CKD) with high risk, which is characterized with fibrotic structural

lesions (1). However, the mechanism underlies the progression

from AKI to CKD remains unclear. Inflammation plays a dual role,

being essential for renal repair while also acting as a potential driver

of sustained kidney damage leading to CKD (2–5). Therefore,

depicting the mechanism of unresolved inflammation during this

chronic transition process is of great significance.

The onset of AKI prompts an immediate and robust innate

inflammatory response characterized by rapid recruitment of

neutrophils and natural killer cells followed by infiltration and

activation of monocytes/macrophages and resident dendritic cells,

which further stimulate the adaptive immune responses (3, 6). The

innate immunity triggered by AKI produce a spectrum of

inflammatory mediators, meanwhile, damage-associated

molecular patterns (DAMPs) facilitate the recruitment and/or

persistence of various inflammatory cells (3, 7). As the disease

progresses, if injury is not resolved, prolonged inflammation can

result in maladaptive repair and subsequent uncontrolled fibrosis

(8–10). However, the precise mechanism driving the formation of

the inflammatory milieu and the role of innate immune cells in the

unresolved situation have yet to be completely delineated.

Phenotypic and functional plasticity of innate immune cells

increase the complexity of the context. Recently, emerging single-

cell genomic studies have provided novel insights into the

heterogeneity of innate immune cells during the process of renal

inflammation and fibrosis (11–14).

Mincle (macrophage-inducible C-type lectin, Clec4e),

recognized as a pattern recognition receptor is mainly expressed

in innate immune cells including monocytes/macrophages,

neutrophils and dendritic cells (15–17). Previous researches have

uncovered the significant involvement of Mincle in both infectious

diseases and sterile inflammation, wherein it prompts the secretion

of pro-inflammatory cytokines and chemokines upon activation by

its ligands encompassing pathogen-associated molecular patterns

(PAMPs) or DAMPs (18–20). We have previously reported that

Mincle could induce aggravated renal inflammation in the context

of AKI by maintaining pro-inflammatory phenotype of

macrophages, thereby contributing to the deterioration of kidney

injury (21, 22). Importantly, Mincle was suggested to recognize b-
glucosylceramide and free cholesterol released from dead tubular

cells, thereby contributing to the cell death-induced sustained

inflammation and renal atrophy (23). However, given the

diversity and heterogeneity of innate immune cells, the dynamic

profiling of Mincle in distinct populations of these cells and their

contribution to the chronic progression of AKI after the initial

kidney injury remains poorly understood.

Here, we applied single-cell RNA sequencing (scRNA-seq) and

spatial transcriptomics in a unilateral ischemia-reperfusion (UIR)

murine model of AKI at days 1, 3, 14 and 28 after injury. This study

unveiled the combined persistence of Minclehigh neutrophils and

macrophages during AKI-to-CKD transition, contributing to

unresolved inflammation followed by fibrosis via tumor necrosis
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factor (TNF) as a central pro-inflammatory cytokine. Mincle-

deficient mice showed improved renal pathology and reduced

extracellular matrix deposition, suggesting that targeting Mincle

may offer a novel therapeutic avenue for halting chronic

progression of AKI.
Materials and methods

Preparation of single-cell suspension

Each kidney sample from three mice was minced and digested

using the Multi Tissue dissociation kit (Miltenyi, 130-110-203),

followed by homogenization through syringe-based mechanical

disruption. The kidney tissue was enzymatically digested using a

mixture of collagenase I, collagenase IV, and hyaluronidase in 1640

medium (Gibco, USA) at 37°C for 40 minutes while suppressing the

response with 10% fetal bovine serum (FBS). The resulting

dissociated solution was passed through 70-mm cell strainer and

then was centrifuged at 400g for 5min at 4°C to collect the cell

pellet. To remove any remaining erythrocytes, the red blood cell

(RBC) lysis solution (Miltenyi,130-094-183) was applied on ice.

Finally, the single-cell suspension was obtained with over 90%

viability as detected by Countstar (Alit Biotech, Rigel S2).
Single-cell RNA-seq library generation
and sequencing

This process was performed by CapitalBio Technology in

Beijing. The harvested cell suspension was processed with the

Chromium single-cell controller (10x Genomics, GCG-SR-1) and

the Single Cell G Chip Kit (10x Genomics, 1000120) to generate the

single-cell gel beads in the emulsion. The reverse transcription was

performed with the S1000TM Touch Thermal Cycler (Bio Rad)

following a procedure of 53°C for 45 minutes, 85°C for 5 minutes

and a subsequent hold at 4°C. The official library kit (Single Cell 3’

Library and Gel Bead Kit V3.1) was applied to construct the

libraries intended for single-cell RNA-seq analysis. After the

cDNA synthesis and amplification, the cDNA quality assessment

was analyzed using Agilent 4200 instrument, and then sequenced

on an Illumina Novaseq 6000 sequencer with paired-end reads of

length 150 bp. The minimum sequencing depth per cell required

was set at 100,000 reads.
Analysis of single-cell RNA-seq data

Alignment and quality control
The cleaned raw FASTQ files underwent alignment to the

mm10 (Ensembl GRCm38.93) reference genome and

quantification using CellRanger (Version 6.0). Following data

quality control, preprocessing, and dimensional reduction analysis

performed by Seurat, a merged gene-cell data matrix was generated

from all 15 matrices, comprising 12 UIR samples and 3 control

samples. Prior to downstream analysis, low-quality cells with fewer
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than 200 expressed genes or mitochondrial gene percentages

exceeding 25% were excluded. The remaining high-quality cell

barcodes were exported.

Identification of marker genes and differentially
expressed genes (DEGs)

For subsequent analysis, the remaining 60,010 high-quality

single cells underwent a repeated Seurat process to generate the

final dataset. The identification of DEGs in cell clusters was

performed using the FindAllMarkers function implemented in the

Seurat package. A comprehensive list of cell markers was employed

for cell type annotation of all identified clusters in the final dataset.

Cell sub-clustering analysis
For cell sub-clustering, the entire Seurat pipeline was re-

executed with identical parameters only in the barcodes of cells

labeled as monocyte/macrophage and neutrophil. As a result, a total

of 7 distinct subclusters of the monocyte/macrophage populations

and 3 distinct subclusters of the neutrophil populations

were identified.

Enrichment analysis
The GO (gene ontology) pathway enrichment analysis was

conducted by the KOBAS software incorporating the Benjamini-

Hochberg multiple testing adjustment. The top 50 DEGs

(Supplementary Table S1) of each cluster were used as input for

the enrichment. The obtained results were visualized using the

R package.

The scoring of gene sets in scRNA-seq data
Gene sets comprising relevant markers were collected from

previously relevant literatures in combination with GO database

( S upp l emen t a r y Tab l e S 2 ) . The S eu r a t p a c k a g e ’ s

“AddModuleScore” function was used for gene set scores of each

cell cluster.

Cell trajectory analysis
The inference of cell developmental trajectory was conducted

using RNA velocity according to the instructions (24). The state of

mRNA over time can be inferred by RNA Velocity through the

analysis of dynamic changes in alternative splicing of mRNA.

Specifically, by incorporating both spliced and unspliced data,

we employed the Python-based Velocyto command-line tool and

the Velocyto.R package to calculate the RNA velocity and visualize

it on the uniform manifold approximation and projection

(UMAP) graph.

Ligand–receptor interaction analysis
The CellChat library was utilized to analyze cell-to-cell

communication based on single-cell transcriptome data, enabling

an investigation into inter-cellular cross-talk among diverse cell

types (25). To forecast ligand-receptor interactions specific to each

cell type, we employed the Python package CellChat with database

v1.1.3. We considered only receptors and ligands expressed in over

5% of cells for analysis and visualization.
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Spatial transcriptome sequencing

This process was performed by CapitalBio Technology in

Beijing. The kidney cryosections (10mm thickness) were carefully

positioned on the Thermocycler Adaptor with the active surface

facing upwards and incubated at 37°C for 1 minute. Subsequently,

they were fixed in -20°C methyl alcohol for 30 minutes. The Visum

spatial gene expression slide and Reagent Kit (10x Genomics, PN-

1000184) were utilized for processing the Visum spatial gene

expression analysis. A volume of 70 ml of permeabilization

enzyme was introduced and incubated at 37°C for 30 minutes. A

total volume of 100 ml of SSC was used to rinse each well, after

which 75 ml of reverse transcription Master Mix was added for

cDNA synthesis. Upon completion of first-strand synthesis, the RT

Master Mix was removed from the wells. A subsequent step

involved incubating each well with 75 ml of a solution containing

0.08 M KOH at room temperature for 5 minutes, followed by

removal of KOH and washing with EB buffer (100 ml). In the

process of second-strand synthesis, each well received an addition

of Second Strand Mix (75 ml). The cDNA amplification procedure

was conducted using a Bio Rad S1000TM Touch Thermal Cycler.

The Visum spatial libraries were generated utilizing the Visum

spatial Library construction kit (10x Genomics, PN-1000184) and

sequenced on Illumina Novaseq 6000 sequencer with at least

100,000 reads per spot and paired-end reads of length 150 bp.

The gene list for calculation offibrosis score and inflammation score

was based on Supplementary Table S2.
Animals

The Mincle genetic (WT&KO) mice, bred on the C57BL/6J

genetic background, were generously provided by Dr. Sho Yamasaki

from Osaka University in Osaka, Japan (26). Male C57BL/6J mice,

aged 6-8 weeks and weighing 20-25g, were obtained from Beijing

Vital River Laboratory Animal Technology Co., Ltd. The mice were

housed in a pathogen-free environment under a 12-hour light/dark

cycle and provided with standard mouse diet and water ad libitum.

All animal experiments conducted in this study received ethical

approval from the Committee on the Ethics of Animal Experiments

at Southeast University.
Renal unilateral ischemic reperfusion
injury model

The mice were allocated into distinct groups at random, and the

same researchers carried out every surgical procedure. The

abdomen was surgically opened under anesthesia to establish the

UIR model. The warm renal ischemia was initiated by applying

arterial clips on the left renal pedicle for 35 minutes on a 37°C-

warming pad, while maintaining the integrity of the right kidney.

Throughout the procedure, strict measures were taken to maintain a

consistent core body temperature of mice at 36.8-37.2°C using a

rectal probe for monitoring purposes. Sham-operated mice

underwent identical surgical procedures, excluding the application
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1385696
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1385696
of microaneurysm clamps. Kidney samples were collected on days

1, 3, 14, and 28 following UIR induction.
Histopathological analysis

The kidney sections (4um) that had been fixed in formalin and

embedded in paraffin were processed for periodic acid-Schiff (PAS),

and Masson’s trichrome staining according to a standardized

protocol. Two experienced pathologists performed the renal

histopathological analysis in a blinded manner. The evaluation of

renal histopathological damage included assessment of brush

border loss, tubular dilation, cast formation, and tubular necrosis

in 10 randomly selected tissue sections per mouse. The extent of

tubular damage was evaluated using a semiquantitative scoring

method to assess renal injury as a percentage: 0, no damage; 1, 10%;

2, 10–25%; 3, 25–75%; 4, >75%. Interstitial fibrosis was indicated by

blue area observed in Masson staining. Renal fibrosis was quantified

in at least five sections per mouse by Image J software.
Cell experiments

A mouse macrophage cell line Raw264.7 (ATCC) was used for in

vitro study. Raw264.7 cells were cultured in Dulbecco’s Modified

Eagle Medium (DMEM; Gibco) supplemented with 1%(v/v)

penicillin-streptomycin (P/S, Gibco) and 10% FBS (10099141C,

Gibco). Clec4e knockdown in Raw264.7 cell was achieved by using

lentivirus shRNA (Target sequence: CCTTTGAACTGGAAACATT)

targeting the Clec4e gene purchased from GeneChem (Shanghai,

China). Non-silencing lentivirus shRNA was used as a nonsense

control (NC). Lentiviruses expressing Clec4e and nonsense control

(NC’) constructed in the GV492 vector were purchased from

Genechem (Shanghai, China). Raw264.7 cells infected with

lentivirus (MOI=100) were stimulated with LPS (100ng/ml, L2630,

Sigma) for 12h and then were applied for the following detection

through RT-qPCR and immunofluorescence.
Immunofluorescence staining

Prior to immuno-staining, antigen retrieval for all paraffin-

embedded kidney sections was conducted using the microwave

heating method in EDTA (MVS-0098, MXB Biotechnologies,

Foochow, China) . For immunofluorescence sta ining ,

formaldehyde-fixed kidney sections were incubated with primary

antibodies against Mincle (CLEC-4E (B-7): sc-390806, Santa Cruz,

USA), CD68 (ab125212, Abcam, UK), Ly6G (GB11229-100,

Servicebio, CN), TNF-a (ab1973, Abcam, UK), Megalin (sc-

515772,Santa Cruz, USA), a-SMA (ab5694, Abcam, UK).

Raw264.7 cells seeded on the cover glasses were incubated with

primary antibody against TNF-a (ab1973, Abcam, UK).

Subsequently secondary antibodies were applied and DAPI was

employed to stain cell nuclei. Immunostained samples were

observed under a confocal microscope (FV3000, Olympus).
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Flow cytometry analysis

The Mincle-positive immune cell population in UIR kidney was

quantified using flow cytometry. In brief, kidney samples were

minced and enzymatically digested using the gentleMACS™ octo

dissociator (Miltenyi Biotec) along with the multi tissue dissociation

kit (Miltenyi, 130-110-203), followed by a 30-minute incubation at

37°C. The resulting cell suspension was filtered through 70-mm cell

strainers and washed with wash buffer (PBS containing 2% FBS and

2 mM EDTA). Erythrocytes were eliminated using RBC lysis buffer

(00-4333-57, eBioscience™), and cell viability was detected with

Live/Dead-Fixable Viability Stain 780 (BD Biosciences, Cat. No.

565388). After blocking nonspecific Fc binding with FC Block

(553141, BD Biosciences), cell suspensions were then incubated

with CD45-BV510 (103138, Biolegend), CD11b-FITC (101206,

Biolegend), F4/80-BV421 (565411, BD Biosciences), Ly6G-PerCP-

cy5.5 (127615, Biolegend) for 30min at 4°C. For Mincle, we applied

the primary anti-Mincle antibody (D266-3, MBL) and then

incubated with the Alexa Fluor 647-conjunted second antibody

(ab150167, abcam, UK). Flow cytometry was performed on

FACSymphony A5 SORP (BD Biosciences) and data was

analyzed with FlowJo software.
Quantitative real-time PCR

The total RNA was extracted from mouse kidney samples and

Raw264.7 cell lysate using RNAiso Plus (Vazyme, Nanjing, China)

following the manufacturer’s protocols. Subsequent reverse

transcription and quantitative real-time PCR were performed

using 5× HiScript III qRT SuperMix and 2× ChamQ SYBR qPCR

Master Mix (Vazyme, Nanjing, China). The expression levels of b-
actin were used for data normalization, and the primers utilized in

RT-qPCR were listed in Supplementary Table S3.
Statistical analysis

The data were presented as the mean ± standard deviation (SD).

Statistical analysis was conducted using t-test or one-way analysis of

variance (ANOVA) with GraphPad Prism 9.0 software. A

significance threshold of P < 0.05 indicated statistical significance.
Results

The expression of Mincle exhibited a
biphasic pattern during the progression of
renal fibrosis

To explore the dynamics and functional role of Mincle in the

progression of AKI to CKD, we established a UIR-induced mouse

model (Figure 1A). We observed remarkable renal interstitial

collagen deposition on day 14, indicating the development of

renal fibrosis which was aggravated on day 30 (Figures 1B, D).
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Meanwhile, a time-dependent dynamic expression of Mincle during

the AKI - to -CKD tran s i t i on p roce s s wa s no t ed by

immunofluorescence staining (Figures 1C, E). We observed a

biphasic pattern of Mincle expression following AKI,

characterized by a sharp increase on the first day and a

subsequent second peak at day 14. The Pearson correlation

coefficient analysis indicated a positive association between

Mincle and the extent of fibrosis suggesting potential involvement

of Mincle in the chronicity of AKI (Figure 1F).
The single-cell transcriptional analysis
revealed the comprehensive landscape of
Mincle expression in macrophages
and neutrophils

Single-cell RNA sequencing analysis was performed to

investigate the landscape of Mincle expression in cell clusters

(Figure 1A). Our findings revealed that Mincle was mainly

expressed in the populations of monocytes/macrophages and

neutrophils in the kidney displaying a time-dependent pattern

(Figures 2A, B). The Mincle expression in monocytes/

macrophages and neutrophils exhibited a rapid increase on the

first day post-UIR injury. However, the expression of Mincle was

observed to be down-regulated in total monocytes/macrophages as

disease progressed (Figures 2A, B), which may attribute to the

decreased expression in monocyte cluster (Supplementary Figures

S1A, B). Interestingly, unlike monocytes/macrophages, Mincle in

neutrophils exhibited a sustained elevation and demonstrated a

secondary peak of up-regulation on day 14 (Figures 2A, B). The

biphasic pattern of Mincle expression on day1 and 14 suggested

their critical role in the acute phase as well as the transition point

towards chronicity.

To validate the findings of single-cell sequencing data, we

employed flow cytometry analysis and identified a notable increase

in the recruitment of Mincle-positive F4/80+ macrophages and

neutrophils on day 1 following AKI, which further augmented on

day 14 (Figures 2C–F). Immunofluorescence staining also displayed a

large number of macrophages and neutrophils expressing Mincle in

renal interstitium on day 14 (Figure 2G). Overall, single-cell RNA

sequencing analysis unveiled a dynamic profile of Mincle expression,

predominantly exhibited by macrophages and neutrophils,

throughout the process of AKI-to-CKD transition.
High Mincle-expressing neutrophils and
macrophages were characterized with pro-
inflammatory and pro-fibrotic signatures

Further analysis was subsequently conducted to delineate the

characteristics of cell clusters expressing Mincle. By performing

sub-clustering analysis, neutrophils were partitioned into 3 subsets

displayed in UMAP plots (Figure 3A). The cell fraction of

neutrophil cluster 1 and cluster 2 (referred to as Neu 1 and Neu

2) exhibited a significant increase on day 1, followed by obvious

decline by day 3. However, with disease progression, they displayed
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a peak on day 14 (Figure 3B). Next, gene set scores were established

in regard to cell maturation, activation, aging, apoptosis,

phagocytosis, and chemotaxis (related genes in Supplementary

Table S2), Neu 1 and Neu 2 were identified as mature neutrophil

subsets with phagocytic function (Figure 3C). Neu 2 displayed early

activation and chemotaxis characteristics while Neu 1 was more

likely to represent an “aged” subset of neutrophils characterized

with high level of Cxcr4 and low level of Sell (27) (Figure 3C).

However, Neu 3 may represent a small subset of immature or renal-

resident neutrophils with undefined function (Figure 3C).

Therefore, we focused on Neu 1 and Neu 2 in the following analysis.

Through gene ontology (GO) pathway enrichment analysis,

Neu 1(high expression of Clec4e, Ccl3, Ccl4, Tnf, Siglecf, Il1rn,

Icam1, Il1a,Ccr12, Ctsb) and Neu 2 (high expression of Retnlg, Slpi,

S100a8, S100a9, Lcn2, Ccl6, Mmp8, Lrg1) were found to be involved

in inflammatory responses (Figure 3D). RNA velocity analysis

further elucidated the trajectory of neutrophils, revealing that Neu

2 (as a fresh mature subset) differentiated into Neu 1 (as an aged

mature subset) (Figure 3E), which aligned well with the observed

dynamic changes in neutrophil proportions as well as the defined

gene set functions (Figures 3B, C). In addition, it turned out that

Mincle was significantly up-regulated in Neu 1(Figure 3F).

Meanwhile, unsupervised clustering identified seven distinct cell

subpopulations of mononuclear phagocytes (including monocyte

and Mac 1-6). Notably, a remarkable Mincle expression was

observed in two specific subsets, monocyte and Mac1 (Figure 3F).

The Neu 1 and Mac 1 clusters presenting with dual peak expression

of Mincle were identified as Minclehigh neutrophils and Minclehigh

macrophages, respectively. Functional assessments revealed that

these Minclehigh neutrophils and Minclehigh macrophages

exhibited prominent pro-inflammatory and pro-fibrotic properties

(Figure 3G). Moreover, spatial transcriptomics data showed a

pronounced expression of Mincle at the outer-stripe of outer

medulla in the kidney, with similar distribution for myeloid cells

(indicated by Itgam) as well as inflammatory regions (indicated by

inflammation score) and fibrotic regions (indicated by Acta2

expression and fibrosis score) (Figure 3H). Persistent chronic

renal inflammation was revealed by inflammation score peaked

on day 14 after AKI (Figure 3H).

Therefore, Mincle was highly expressed in specific subsets of

neutrophils and macrophages, displaying remarkable pro-

inflammatory and pro-fibrotic properties crucial for driving CKD

progression following the initial kidney injury.
Minclehigh neutrophils and Minclehigh

macrophages synergistically promote the
production of TNF

To further elucidate the mechanisms driving AKI-to-CKD

transition mediated by Mincle-expressing macrophages and

neutrophils, we identified 54 common genes from the up-

regulated genes of these two cell subsets (Figure 4A). GO terms of

these 54 genes were predicated to be implicated in immune-

inflammatory responses and extracellular matrix synthesis

(Figure 4B). In addition, protein-protein interaction (PPI)
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D E F

C

FIGURE 1

The expression of Mincle exhibited a significant correlation with kidney fibrosis. (A) Design and workflow of this study. The transition from AKI to
CKD was experimentally induced in mice through UIR. Kidney samples collected at days 1, 3, 14, and 28 post-UIR, along with sham kidneys, were
subjected to the 10x chromium single-cell and visium spatial transcriptomic procedures. Validation experiments were conducted in Mincle WT and
KO mice. (B, D) Masson staining and quantification of kidney at various time points post-UIR. n=7. Scale bar, 50mm. (C, E) Representive
immunofluorescencent images and quantification of Mincle (labeled in red) in kidney at various time points post-UIR. n=7. Scale bar, 50mm. (F) The
correlation analysis between fibrosis severity, as indicated by masson area fraction, and Mincle expression was conducted. n=35. Data were
presented as mean ± SD. ns, no significance, **p < 0.01, ****p < 0.0001.
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analysis showed that Tnf emerged as the hub gene closely related to

the up-regulated genes in both Minclehigh neutrophils and

Minclehigh macrophages (Figure 4C). Gene expression correlation

analysis demonstrated a strong association between Tnf and Clec4e

in these two Minclehigh immune cell subsets (Figure 4D). The

CellChat algorithm-based inter-cellular communication analysis

revealed important contribution of Minclehigh neutrophils and

Minclehigh macrophages as ligand sources in the TNF signaling

pathway network (Figure 4E). Correspondingly, a prominent
Frontiers in Immunology 07
increase in Tnf expression primarily in macrophages and

neutrophils, particularly on day 14 was observed (Figure 4F).

Furthermore, the in vitro validation confirmed a decrease in TNF

expression following Mincle knockdown, while an increase was

observed after overexpression of Mincle in LPS-stimulated

Raw264.7 cells (Supplementary Figures S2A–D). Meanwhile,

TNF-a expression was reduced in macrophages and neutrophils

on day 14 in Mincle knockout (KO) mice (Figure 4G). Hence, we

identified that Minclehigh myeloid cells (specifically macrophages
A

B

C D F

E

G

FIGURE 2

Dynamic expression of Mincle in macrophage and neutrophil. (A, B) The UMAP projection and violin plot suggesting expression of Mincle (Clec4e) in
all different identified cell clusters and specific expression in neutrophil and monocyte/macrophage at different time points post injury. B, B cell; CD,
collecting duct; DCT, distal convoluted tubule; EC, endothelial cell; Epi, epithelial cell; Fib, fibroblast; LH, loop of Henle; Mono/Mac, monocyte/
macrophage; Neu, neutrophil; Per, pericyte; Pod, podocyte; PT, proximal tubule; Pro, proliferation cell; T, T cell. (C–F) Flow cytometry analysis
revealing the quantification of Mincle-positive macrophages and neutrophils in the kidney from AKI to CKD (Sham, day 1 and day 14). n=5.
(G) Representative immunofluorescence staining of CD68+Mincle+ and Ly6G+Mincle+ cells in kidney of day 14 post-UIR. CD68&Ly6G, green; Mincle,
red. Scale bar, 20mm. Data were presented as mean ± SD. *p < 0.05, **p < 0.01, ****p < 0.0001.
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FIGURE 3

Neutrophils and macrophages expressing high levels of Mincle exhibited pro-inflammatory and pro-fibrotic signatures. (A) UMAP plot of all clusters
of neutrophils. (B) The proportion of each subgroup of neutrophils at different time points. (C) Heatmap of phenotype and function score (including
maturation, activation, aging, apoptosis, phagocytosis and chemotaxis) for each neutrophil cluster. (D) Heatmap of each sub-cluster of neutrophils
based on DEGs and their top marker genes were listed. Top GO pathway enrichment analysis of Neu1 and Neu 2 subtypes were presented. (E) The
UMAP plot depicting the developmental transition of neutrophil clusters in Neu 1-2 following injury, as revealed by RNA velocity analysis. (F) Violin
plot suggesting Mincle expression in all macrophage sub-clusters and neutrophil sub-clusters, as well as the dynamics of Mincle in clusters of Neu1
and Mac1 at each time point after injury. (G) Heatmap of fibrotic score and inflammatory score in sub-clusters of Neu1-3 and Monocyte and Mac1-
6. (H) Temporal and spatial gene expression patterns of Clec4e, Itgam and Acta2, along with fibrosis score and inflammation score, were elucidated
using 10x Visium spatial transcriptomics.
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FIGURE 4

Minclehigh neutrophils and Minclehigh macrophages collaboratively facilitate TNF production. (A, B) DEGs and top GO terms of 54 common genes of
Minclehigh neutrophils and Minclehigh macrophages. (C) PPI analysis of 54 common genes identified between Minclehigh neutrophils and Minclehigh

macrophages. (D) Gene correlation analysis between Tnf and Clec4e in Minclehigh neutrophils and Minclehigh macrophages, respectively. (E) TNF
signaling pathway indicated by relevant ligand-receptor interaction pairs predicted by CellChat between main kidney cell types. (F) The UMAP
projection suggesting expression of Tnf in all different identified clusters and specific expression in neutrophils and monocytes/macrophages at
different time points after injury. (G) Representative immunofluoresce staining of CD68+TNF-a+ and Ly6G+TNF-a+ cells in kidney of Mincle WT or
KO mice on day 14 post-UIR. CD68&Ly6G, green; TNF-a, red. Scale bar, 50mm.
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and neutrophils) synergistically contributed to TNF production

during the chronic transition of AKI.
Mincle deficiency protect kidney from
aggravated injury and fibrosis post-UIR

Due to the distinctive expression pattern of renal myeloid-

derived Mincle during both early and chronic stages of kidney

injury, along with its pro-inflammatory and pro-fibrotic properties,

we further investigated the renal manifestations in Mincle knockout

mice. In wild-type (WT) mice, obvious tubular epithelial cell (TEC)

flattening, loss of the brush border and epithelial cell nuclei, and

tubular cast formation were observed after AKI, which could not be

completely repaired in the late stage of the disease and was

accompanied by a substantial interstitial immune cell infiltration

(Figures 5A, B). However, Mincle knockout resulted in significant

amelioration in renal pathological damage at different time points

during the process of AKI to CKD (Figures 5A, B). Additionally, a-
SMA immunofluorescence staining indicated a notable attenuation

of renal fibrosis in Mincle-deficient mice (Figures 5A, C). In Mincle

WT mice, Mincle mRNA expression confirmed a biphasic up-

regulation pattern following AKI (Figure 5D). Quantitative

analysis of kidney weight and megalin staining revealed more

pronounced renal atrophy and tubular loss in WT mice than

those observed in KO mice (Figures 5E–G). Remarkably,

compared to WT group, Mincle KO mice exhibited significant

down-regulation in the mRNA expression of pro-inflammatory

factors (TNF-a, IL-1b, Ccl2) and fibrosis-associated factors (TGF-

b, a-SMA, COL1A1) especially on day 14 (Figures 5H–M).

Collectively, our findings demonstrated that Mincle played a

critical role in renal injury and fibrosis progression after AKI

probably by mediating the unresolved inflammation.
Discussion

While Mincle has been extensively characterized as a key

mediator of inflammation in AKI, further investigation is

warranted to elucidate its role in the transition from AKI to

CKD. In this research, we offered a comprehensive single-cell

analysis of Mincle behavior during the progression from AKI to

CKD. Using mouse models of UIR, we delineated the detrimental

involvement of Mincle in the unresolved inflammation and

subsequent renal fibrosis across the acute and chronic phase after

AKI (Figure 6).

Initially, we identified biphasic pattern of Mincle expression

during the progression of renal fibrosis which potentially

contributed to the chronicity of inflammation. Previous research

predominantly emphasized the pathogenic role of Mincle-

expressing macrophages in AKI, confirming the initiation and

exacerbation of renal inflammation by Mincle (21, 22, 28). Here,

we observed a rapid up-regulation of Mincle in the initial stage of

kidney injury, followed by a second peak during the chronic

progression of AKI, accompanied by recruitment of immune cells

and sustained inflammatory status, which exhibited a strong
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association with late-stage renal fibrosis. Inflammatory processes

are pivotal in kidney fibrosis, involving diverse innate immune cells

in establishing renal interstitial inflammation environment (2, 5).

Innate immune cells not only initiate and exacerbate inflammation

in the early stage, but also contribute to the progression of kidney

fibrosis through sustained chronic inflammation driven by the

activation of innate immune pathways (5, 7). Furthermore, in

conjunction with the implementation of spatial transcriptome

technology, some innate immune cells were identified in

anatomical regions adjacent to fibrotic areas and were deemed to

be implicated in the establishment of the renal fibrosis

microenvironment (29, 30). Xu et al. recently elucidated that the

sustained macrophages infiltration, along with subsequent

activation of T-cells and neutrophils leading to a pro-

inflammatory immune response, facilitated secondary kidney

injury during AKI-to-CKD transition (11). Therefore, Mincle

derived from macrophages and neutrophils may not only

exacerbate early inflammatory responses but also involved in the

chronic transformation of kidney injury.

Further study identified two distinct sub-clusters of Minclehigh

macrophages and Minclehigh neutrophils, both exhibiting pro-

inflammatory and pro-fibrotic characteristics during kidney injury

progression. The recognition of functional diversity and time-

dependent infiltration of immune cell signifies a critical facet in

the complex pathogenesis of renal interstitial inflammation and

chronic injury (7). The phenotypic heterogeneity and functional

plasticity of macrophages have gained increasing interest (31).

Macrophages not only participate in the early inflammatory and

repair process, but also can be transformed into pro-fibrotic

phenotype to mediate the collagen matrix deposition in the

kidney. Utilizing single-cell RNA sequencing technology, a

plethora of novel subsets of macrophages have been identified to

exert distinct roles in both AKI and CKD. In the ischemia-

reperfusion-induced AKI mouse model, a specific subset of

monocyte-derived macrophages marked by S100a8/S100a9

expression triggered and intensified kidney inflammation (32).

Additionally, an early-emerging Arg1+ monocyte subset displayed

a pro-inflammatory and pro-fibrotic phenotype, while Ccr2+

macrophages appeared in late phase of injury (14). In the current

study, we identified a specific Minclehigh macrophage population

that possesses both M1 and M2 phenotypes exhibiting pro-

inflammatory and pro-fibrotic characteristics, potentially

sustaining renal inflammatory and fibrogenic processes.

Neutrophils, recognized as primary responders in early renal

injury (3, 7), have garnered increased attention in the AKI-to-

CKD transition in recent researches. Persistent infiltration of

specific neutrophils, such as Siglec-F+ or MMP-9+ neutrophils, is

crucial for creating a pro-fibrotic microenvironment that facilitates

the progressive renal fibrosis (11, 33, 34). In addition, previous

report showed that the “aged” neutrophils (Cxcr4hi&

Icam1hiCxcr1lo) presented in the renal tissue were associated with

a pro-inflammatory phenotype (35). Here, we systematically

characterized three neutrophil subpopulations in UIR-induced

AKI-to-CKD model. Specifically, the Minclehigh neutrophils were

found as an “aged” sub-cluster with pro-inflammatory and pro-

fibrotic signatures, prominently infiltrating during late renal UIR
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FIGURE 5

The absence of Mincle provides protection by mitigating exacerbated injury and fibrosis following UIR. (A–C) Acute kidney injury was induced by UIR
in Mincle WT or KO mice. Renal tubular injury score was calculated according to PAS staining at each time point (Sham, day1, day3, day14 and
day28) post-UIR. Representative immunofluorescent staining of a-SMA (green) in kidney at each time point after UIR. n=7. Scale bar, 50mm.
(D) RT-qPCR analysis of Mincle mRNA in kidney from Mincle WT and KO mice. n=7. (E) The ratio of the weight of the injured kidney to that of the
healthy (sham group) kidney. n=7. (F–G) Immunofluorescence staining of megalin (red) in kidney sections (Sham and day 28) after UIR with
representative images. Megalin-positive areas were quantified. n=7. Scale bar, 50mm. (H–M) RT-qPCR analysis for the indicated inflammation and
fibrosis related factors was performed on sham kidney and injured kidney samples harvested on day1, 3, 14, and 28 after injury. n=7. Data were
presented as mean ± SD. ns, no significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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stages, suggesting its significant role in fibrosis progression.

Therefore, Minclehigh macrophages and Minclehigh neutrophils

may represent a distinct myeloid cell population implicated in

inflammation and fibrosis during AKI to CKD transition.

Interestingly, the expression of Mincle in neutrophils was

significantly higher than that in macrophages. Nevertheless,

further validation utilizing macrophage-specific Mincle-deficient

mice and neutrophil-specific Mincle-deficient mice is warranted

to determine whether neutrophil-derived Mincle plays a

predominant role in the AKI-to-CKD progression.

Next, we found that Minclehigh macrophages and Minclehigh

neutrophils contributed to the production of TNF, which was

reduced significantly in Mincle knockout mice. The pathogenic

role of TNF signaling pathway in kidney disease has been

extensively reported. Wen et al. found that the KLF4 deficiency in

myeloid cells augmented TNF-a production, thereby exacerbating

necroptosis of TECs and renal interstitial fibrosis in two murine

models of CKD induced by nephrotoxic serum nephritis and

unilateral ureteral obstruction, however, this effect was mitigated

by macrophage-specific TNF deletion (36). Utilizing single-cell

transcriptomics, TNF from activated leukocytes drove Gli1+ cell

proliferation and fostered renal fibrosis by elevating Indian

Hedgehog (IHH) release from TECs (37). Moreover, an unbiased

transcriptomic approach revealed shared molecular signatures of an

activated kidney TNF pathway and unfavorable clinical outcomes

among patients diagnosed with either minimal change disease or

focal segmental glomerulosclerosis, highlighting TNF as a pivotal

driver in the progression of these diseases (38). Considering the

impact of TNF on renal injury and fibrosis, the dynamic infiltration

of these two Mincle-expressing immune cell subsets collectively

facilitates TNF production which may act as the critical contributor

to the chronic transition of AKI.

Finally, we identified that Mincle deficiency protect kidney from

aggravated injury and fibrosis post-UIR. New anti-inflammation

therapies against renal fibrosis have been well discussed (39, 40). It
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has proven that targeting the endogenous ligands of Mincle

represents a promising approach for alleviating renal inflammation

(22, 28). Moreover, Syk inhibitors and a variety of Chinese patent

medicine compounds have demonstrated the ability to suppress

Mincle/Syk/NF-kB signaling pathway, consequently mitigating

acute kidney inflammation induced by various etiologies (41–43).

Furthermore, modulating Mincle activation via targeted

manipulation of Mincle gene (23, 44) or protein receptor (45, 46)

emerged as potential therapeutic avenues. Nevertheless, a limitation

of this study lies in its exclusive utilization of a murine model of UIR

induced AKI. Given the intricate etiologies of AKI in humans (47), it

is imperative to explore alternative kidney disease models to unveil

the complex mechanistic actions of Mincle in different

disease contexts.

In conclusion, we have elucidated the dynamic expression of

Mincle with a second peak in a UIR-mediated AKI-to-CKD model

through sc-RNA seq analysis. We identified distinct Minclehigh

macrophages and neutrophils exerting pro-inflammatory and pro-

fibrotic effects, which synergistically contributed to the persistence of

renal inflammatory microenvironment and accelerated renal fibrosis

progression by promoting TNF production. Precisely targeting

Mincle or its downstream pathways may provide a promising

therapeutic avenue to impede AKI-to-CKD transition.
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SUPPLEMENTARY FIGURE 1

The dynamics of monocytes and Mincle-derived from the monocyte cluster.

(A) The monocyte cluster highlighted in the UMAP projection was markedly
increased on day 1 after injury. (B) The violin plot suggesting expression of

Mincle in Mono cluster at different time points post-injury. Mono, monocyte;
Mac, macrophage.

SUPPLEMENTARY FIGURE 2

Expression of TNF-a in Raw264.7 cell with Mincle knockdown or

overexpression. (A, B) RT-qPCR analysis for Mincle and TNF-a mRNA was
performed in lentivirus-infected Raw264.7 cells after stimulation with LPS. (C,
D) Immunofluorescence staining of TNF-a (red) in Raw264.7 stimulated with
LPS with representative images. The mean fluorescence intensity (MFI) of

TNF-a was quantified by Image J software. n=3. Scale bar, 20mm. NC/NC’,

nonsense control; KD, knockdown; OE, overexpression. Data were presented
as mean ± SD. *p < 0.05, **p< 0.01, ***p < 0.001.
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