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Periodontal disease is a chronic inflammatory condition that affects the

supporting structures of the teeth, including the periodontal ligament and

alveolar bone. Periodontal disease is due to an immune response that

stimulates gingivitis and periodontitis, and its systemic consequences. This

immune response is triggered by bacteria and may be modulated by

environmental conditions such as smoking or systemic disease. Recent

advances in single cell RNA-seq (scRNA-seq) and in vivo animal studies have

provided new insight into the immune response triggered by bacteria that causes

periodontitis and gingivitis. Dysbiosis, which constitutes a change in the bacterial

composition of themicrobiome, is a key factor in the initiation and progression of

periodontitis. The host immune response to dysbiosis involves the activation of

various cell types, including keratinocytes, stromal cells, neutrophils, monocytes/

macrophages, dendritic cells and several lymphocyte subsets, which release pro-

inflammatory cytokines and chemokines. Periodontal disease has been

implicated in contributing to the pathogenesis of several systemic conditions,

including diabetes, rheumatoid arthritis, cardiovascular disease and Alzheimer’s

disease. Understanding the complex interplay between the oral microbiome and

the host immune response is critical for the development of new therapeutic

strategies for the prevention and treatment of periodontitis and its

systemic consequences.
KEYWORDS

periodontal disease, immune response, microbiota, scRNA-seq, innate immunity,
adaptive immunity
1 Introduction

Advances in single cell techniques have provided new insight into cell types that are

modified in their numbers or activity in subjects with periodontitis. In addition, in vivo

animal studies have established cause-and-effect relationships through the use of biologic

agents or genetically modified mice. Periodontal disease consists of periodontitis and

gingivitis, both of which are triggered by bacteria and caused by the host’s immune

response. While gingivitis causes inflammation without loss of connective tissue
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attachment or bone, periodontitis leads to the destruction of the

connective tissue attachment and alveolar bone (1–3). Periodontal

disease has a significant impact on oral health and has been

implicated as contributing to the pathogenesis of several systemic

conditions, including diabetes, Alzheimer’s disease, rheumatoid

arthritis, and cardiovascular disease (2–5).

Periodontitis involves the activation of the inflammatory

response caused by a change in bacteria, generally referred to as

dysbiosis (6, 7). The nature of dysbiosis is not well defined and

represents one of the major challenges in oral health research.

Readers are referred to recent reviews examining microbial

dysbiosis that precedes the development of periodontitis (5–8). Key

cell types in the initial response to bacteria include keratinocytes and

stromal fibroblasts, which are not typical immune cells (9, 10). The

interaction of these cells with immune cells leads to gingival

inflammation and the initiation of pathways that damage

connective tissue. In gingivitis, the loss of connective tissue is

reversible. In some individuals, gingivitis leads to periodontitis. The

factors responsible for this transition have not yet been well defined

although recent results provide new information on potential cell-cell

communications that are involved.

Single cell RNA sequencing provides transcript level analysis of

cells that have been isolated from tissues. This approach is

particularly useful because it provides an unbiased examination of

hundreds of transcripts in each cell that gives insight into the cell

type, cell state, and cell activity. Taken together, the scRNA-seq data

has defined key subpopulations of stromal cells, keratinocytes and

leukocytes and their potential mechanistic role in periodontitis.

However, it is important to consider several key limitations of this

approach. The method used to isolate cells from gingival tissue can

lead to selective loss or enrichment of certain cell populations,

influencing the results. The depth of sequencing can also bias the

identification of highly expressed genes over those with lower

transcript levels. Furthermore, the arbitrary determination of cell

clusters can result in differences in the number of clusters reported by

different investigators. Finally, the high cost of scRNA-seq limits the

number of biological replicates that can be examined, necessitating

confirmation of findings through alternative approaches. Awareness

of these caveats is crucial when interpreting scRNA-seq data in the

context of periodontitis research.
2 Innate immunity

2.1 Epithelial barrier

The function of epithelial tissues is the protection of the organism

from chemical, microbial, and physical challenges which is

indispensable for viability (10). Keratinocytes form a barrier

through tight junctions, adherens junctions, and gap junctions.

Bacteria, in turn, can disrupt the epithelial barrier by inducing

leukocytes to produce proteolytic enzymes that degrade inter-

epithelial junctions, inflammatory cytokines that downregulate the

expression of adhesion molecules and keratinocyte apoptosis that

disrupts a continuous barrier (10–12). Bacteria can penetrate

epithelial cells and reach the basal layer within 24 hours (13). The
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severity of periodontitis is positively correlated with the extent of

epithelial tissue damage. A reduction of epithelial cells is found in

moderate or severe periodontitis (14). Bacterial invasion of the oral

epithelium causes increased ROS production, which can lead to

mitochondrial damage and accumulation and the production of

pro-inflammatory factors (15). P. gingivalis can modulate gingival

keratinocytes to enhance mRNA levels of inflammatory factors and

stimulate apoptosis (16) and degrade the proteins that form

intercellular adhesions (17, 18). Other invasive bacteria include A.

actinomycetemcomitans, T. denticola, and F. alocis (19). The use of

protease inhibitors such as leupeptin has been shown to partially

mitigate the loss of barrier function induced by P. gingivalis,

implicating the involvement of microbial proteolytic enzymes in

disrupting the epithelial barrier (16).

In addition to providing a physical barrier to microorganisms as

part of the host immune defense, the gingival epithelium also

expresses a variety of pattern recognition receptors (PRRs) that

enable it to recognize microbiota-associated molecular patterns

(MAMPs) and respond by secreting cytokines, chemokines and

antibacterial peptides. Keratinocytes in the epithelial barrier play a

key role in the initiation of the host immune response.

Single-cell RNA sequencing analysis has identified gingival

epithelial subpopulations that contribute to inflammatory signatures,

antimicrobial defense and neutrophil recruitment in periodontitis

(14, 20). scRNA-seq analysis of gingiva indicates an overall reduction

in epithelial cells in subjects with periodontitis (14, 20, 21). Caetano

et al. identified ten subpopulations of gingival epithelial cells in

periodontitis (14). These subpopulations comprised two basal cell

clusters, three epithelial clusters expressing high levels of cell cycle

genes, one cluster expressing genes associated with extracellular matrix

organization and angiogenesis, and four distinct gingival epithelial

subpopulations with transcriptomes linked to immune regulation. The

latter express transcripts that encode factors that stimulate B-

lymphocyte receptor signaling and neutrophil-mediated immunity.

Although the overall population of epithelial cells decreased, there

was an increase in immune-related epithelial subpopulations (14).

Williams et al. identified three keratinocyte subpopulations including

a basal cell cluster, a cluster enriched in genes involved in cornification,

and a cluster with a gene expression profile consistent with

inflammatory responses (20). The gene expression profiles of these

cells indicated a shift towards an inflammatory state, with upregulated

pathways related to antimicrobial responses and cytokine biosynthesis

in subjects with periodontitis (20). Thus, there is an increase in gingival

epithelial subpopulations with pro-inflammatory gene signatures with

periodontitis and an overall reduction of non-inflammatory epithelial

cells. A distinctive junctional epithelial population was characterized by

elevated expression levels of serum amyloid A-proteins (SAA) (21).

These proteins were found to trigger the secretion of inflammatory

cytokines through interaction with the TLR2 pathway in human

gingival fibroblasts.
2.2 Stromal cells in periodontitis

Stromal cells in the gingiva consist of mesenchymal stem cells,

pericytes and fibroblasts and contribute to tissue integrity, immune
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regulation, and repair processes. They express several receptors

needed to recognize microbes and produce cytokines and

chemokines in response. Approximately 30 years ago Yu and

Graves suggested that gingival fibroblasts through the production

of CCL2 could play an important role in recruiting monocytes and

macrophages to inflamed gingiva (22). scRNA-seq data supports

the concept that fibroblasts are an important part of the host

response. Williams et al. characterized five distinct fibroblast

subclusters (20). Among these clusters, two exhibited a

transcriptome profile linked to matrix synthesis and tissue

remodeling, while the remaining three featured gene signatures

associated with immune functions, including leukocyte

proliferation, granulocyte migration, and complement activation.

Notably, individuals with periodontitis showed a general decrease in

fibroblast subpopulations but displayed a specific increase in

inflammatory fibroblast subpopulations in parallel with findings

with epithelial cells (Figure 1). There was an upregulation of genes

associated with neutrophil recruitment such as CXCL1 and CXCL8.

Caetano et al. identified five distinct fibroblast populations, one

pericyte population, and one myofibroblast subpopulation (14).

Among the fibroblasts, three subpopulations exhibited enrichment

of genes associated with extracellular matrix production, while two

other fibroblast subpopulations displayed an inflammatory profile.

In the context of periodontitis, a marked reduction was observed

in the myofibroblast and pericyte subpopulations, accompanied

by an increase in inflammatory fibroblasts, while the other

subpopulations remained unchanged. Consequently, both
Frontiers in Immunology 03
investigations identified a decline in fibroblast numbers,

accompanied by an expansion of pro-inflammatory stromal cells

in subjects with periodontitis. This data suggests a unique

restructuring of the epithelial and stromal compartments in

periodontitis, with a specific emphasis on facilitating

neutrophil recruitment.
2.3 Innate immune cells

2.3.1 Neutrophils
Neutrophils are abundant in gingiva and the gingival sulcus.

They have strong antibacterial activity, making them important in

the defense against oral infections. Neutrophils may be drawn to the

periodontium and other areas that are infected, inflamed, or

injured, promoting periodontitis (23). Inflammation increases

when neutrophils die and are not quickly removed (23, 24).

Neutrophils have regulatory effects on other cell types such as

macrophages through production of chemokines that attract

macrophages to sites of inflammation and cytokines that

modulate polarization of macrophages to an M1 phenotype (25).

Upregulation of genes that promote necroptosis, pyroptosis, and

ferroptosis-related processes has been reported in neutrophils in

subjects with periodontitis (26). When neutrophil recruitment is

reduced there is regression of gingival inflammation (27). In

contrast, if neutrophil recruitment is totally blocked there is

increased severity of periodontitis in humans and in murine
FIGURE 1

Changes in cell population during periodontitis from single cell RNAseq studies.
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periodontitis models, demonstrating the importance of these cells in

protecting against oral bacteria. Moreover, the absence of

neutrophils causes a secondary increase in IL-17 that leads to

greater periodontal inflammation and bone loss (28). The study

of neutrophils by scRNA-seq is complicated by their high rates of

apoptosis during cell isolation (14). However, a significantly higher

proportion of neutrophils was documented in subjects with

periodontitis (20) and in periodontitis mouse models (29, 30)

(Figure 1). It would be helpful if investigators presented

differences in actual cell numbers and differences in percentages

of cells in supplemental tables, but this has not been done on a

consistent basis.

Phagocytosis of pathogens by neutrophils is important in their

antibacterial activity (31). Degranulation is one of the ways in which

neutrophils exert their anti-microbial and immunomodulatory

functions and is important for the progression of periodontitis.

The granules are also involved in the inflammatory response and

destruction of periodontal tissues through the release of matrix

metalloproteinases (MMPs) that break down the extracellular

matrix (32) or elastase that disrupts the periodontal epithelial

barrier through the cleavage of cell adhesion molecules (33).

Neutrophils produce neutrophil extracellular traps (NETs).

Which are a unique DNA structure decorated with antimicrobial

peptides (34). Periodontitis is characterized by elevated levels of

NETs and delayed NET clearance, compared to healthy gingiva

(35). They are produced in response to pathogens and are thought

to protect the host by trapping microorganisms, restricting their

spread from initial sites of infection, or neutralizing virulence

factors (36, 37). Mice that cannot produce NETs are more

susceptible to infection (38).

Mast Cells

Mast cells (MCs) are a related granulocyte that can also affect

periodontitis negatively (39, 40). Mast cells play a pivotal role in

inflammatory responses and can induce bone resorption. They

release proteases and histamine from the cytoplasmic granules, as

well as cytokines and chemokines. Mast cell counts increase in

subjects with chronic periodontitis and in animal studies, mast-cell-

deficient mice have significantly reduced alveolar bone loss,

demonstrating a cause-and-effect relationship (40, 41). In human

gingival tissue, one scRNA-seq publication reported an enrichment

of mast cells in subjects with periodontitis compared to non-

periodontitis (14), while another report noted a decrease (20)

(Figure 1). The basis for this difference is unknown.

2.3.2 Monocytes/Macrophages
Monocytes and macrophages are important in periodontal

destruction. Monocytes from the blood reach the tissue

microenvironment and develop into macrophages (42). The

phenotypic transformation of macrophages plays an important role

in the immune response during the onset, development, and

regression of periodontitis (43, 44). Macrophages can be polarized

to at least two different types with opposite activities: M1-type

macrophages and M2-type macrophages. M1 macrophages produce

high levels of pro-inflammatory cytokines, and may exacerbate
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inflammation and tissue damage. M2 macrophages produce anti-

inflammatory molecules and growth factors. They participate in

processes such as tissue repair, regeneration, and inflammation

resolution (43, 44). The onset of periodontitis is linked to the

formation of M1 macrophages that are pro-inflammatory and can

promote osteoclast differentiation by stimulating the production of

RANKL. When M1 polarization is blocked, there is reduced

periodontal bone loss (45, 46). M2 macrophages exert anti-

inflammatory effects in periodontal tissue by producing IL-10 and

TGF-b (47, 48). Controlled release of particles that contain CCL2

induce polarization of M2 macrophages reduce RANKL expression

and osteoclast numbers, thereby inhibiting alveolar bone loss (49).

Single-cell RNA sequencing data in periodontitis reveals a significant

increase in macrophages compared to healthy individuals (14, 50),

(Figure 1). Interestingly, macrophages in periodontitis express both

pro-inflammatory and anti-inflammatory markers, challenging the

notion of exclusive polarization (50).

2.3.3 Dendritic cells (DCs)
DCs connect innate and adaptive immunity by capturing

antigens and inducing antigen-specific immune reactions (51).

There are two major classes of DC, monocytoid (mDC) that are

of monocyte lineage and plasmacytoid (pDC) which are of

lymphocytic origin (52). mDC are also known as conventional

DC (cDC). cDC are primarily activated in response to bacterial

infection and pDC in response to viral infection (51). Human

studies show that the number of cDCs decline and pDCs rise in

the gingiva of subjects with periodontitis (53). DCs are crucial in

guiding naïve T-cells towards T helper cell (Th1, Th2, Th17, Treg,

Tfh) differentiation (54) and activating CD4 and CD8 immune

responses. They also up-regulate activity in monocytes/

macrophages, neutrophils, and NK cells (51, 52).

A reduction in DC function increases susceptibility to

periodontitis (55). Without adequate DC activity, the production

of antibodies in response to bacterial challenge is significantly

reduced (55, 56). Reduced activity of DCs results in a

compensatory increase in the expression of inflammatory and

pro-osteoclastogenic factors, IL-1b, IL-17, and RANKL (56).

Conflicting results have been obtained in scRNA-seq analysis of

DC. One publication found there was no clear difference in this cell

type between healthy and periodontitis subjects (14) while another

(20) reported a notable reduction of ~ 30% in both pDC and cDC in

individuals with periodontitis (Figure 1). The reason for this

difference is unknown but could involve differences in cell

isolation and the parameters of cell clustering.

Langerhans cells (LCs) are a subset of dendritic cells found in

the epithelium of mucosa and skin tissues. They respond to both

mechanical and bacterial stimulation and play a role in the

development of mucosal immunity (57). Depletion of LCs

accelerates periodontal bone loss (57, 58) agreeing with increased

susceptibility when DC function is compromised (55). Smoking has

been found to specifically diminish gingival LCs in healthy

individuals, raising the possibility that the loss of LCs may

contribute to periodontitis in smokers (53).
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3 Innate lymphoid cells

3.1 NK T-cells, gd T-cells and MAIT cells

Unconventional T-cells include natural killer T (NKT) cells, gd
T-cells and mucosal-associated invariant T (MAIT) cells that

express CD3. They are more prevalent in gingiva from subjects

with periodontitis (59). NK T-cells are a specialized subset of T-cells

with ab T-cell receptors (TCRs) and NK cell receptors on their

surface (59, 60). Gram-negative bacteria possess glycosphingolipids

that can activate NK T-cells via antigen presenting cells. NK T-cells

can enhance RANKL production, osteoclastogenesis, and alveolar

bone loss in mice following oral P. gingivalis inoculation and in

other models (61, 62).

gd T-cells express T-cell receptors (TCR) consisting of the

gamma and delta chains, with a limited diversity, and do not

express CD4 or CD8 (63). These cells are stimulated by a variety

of signals, such as direct antigen binding to TCR, stimulation of toll-

like receptors or cytokine stimulation. They are found in the

epithelium or in the connective tissue adjacent to the epithelium

and make up the majority of T-cells in epithelial tissues (64). gd T-

cells are elevated in inflamed human gingiva (64), and are increased

to a greater extent than ab T-cells (64). gd T-cells stimulate the

recruitment of macrophages and neutrophils and produce IL-17A

and IFNg (65). In mice, they are the principal source of IL17A. In

the oral inoculation model of periodontitis, gd T-cells have distinct

pathogenic functions, and their reduction significantly reduces loss

of alveolar bone. However, this linkage does not exist in the ligature

model, pointing out an important difference in the two primary

murine models of periodontitis (65). scRNA-seq data reveals an

approximately 20% decrease in gd T-cells among all cell types in

individuals with periodontitis compared to healthy individuals (20),

contrasting with a 30% increase among immune cells observed in a

mouse model of periodontitis compared to the healthy state (29)

(Figure 1). Using different reference populations could be a

potential reason for the contrasting findings and species

differences (64). Another difference may be due to the fact that

most human studies represent inflamed tissue that may not exhibit

current disease activity, a significant limitation in most human

studies, whereas the disease activity is typically progressing in

murine models (66).

MAIT have a restricted T-cell receptor (TCR) response (67).

Notably, TCR-independent mechanisms such IL-18 signaling can

activate MAIT cells. They differ in how they react to various

microorganisms, and this diversity may help them discriminate

between dangerous pathogens and beneficial commensal species.

Germ-free mice have fewer MAIT cells and MAIT cell populations

increase during infection, suggesting a protective function against

microbial challenge (67). Emerging evidence indicates that MAIT

cells may contribute to the development of periodontitis by

producing proinflammatory cytokines like IL-17 and TNF when

activated by pathogenic microorganisms in the oral cavity. Further

research is required to comprehensively elucidate the precise role of

MAIT cells in periodontitis (68). A scRNA-seq study reported a
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significant decline in MAIT cells in subjects with periodontitis (20)

The scRNAseq data revealed an upregulation of nucleotide

oligomerization domain (NOD)−like receptor signaling pathways,

apoptosis, IL-17 signaling, and TNF signaling in MAIT cells from

periodontitis subjects (69).
3.2 Innate lymphoid cells-1, -2 and -3.

Lymphoid cells that lack T-cell receptors but are of lymphocyte

lineage include innate lymphoid cells (ILC) with three subtypes

(ILC1, ILC2, and ILC3). Rather than reacting to antigen, these cells

react directly to signals of stress and danger. They possess pattern

recognition receptors (TLR2, TLR4, TLR9, NLRP3, RAGE, P2X7

and P2Y2, etc) on their cell surface that respond to danger-

associated molecular patterns (LPS, S100 proteins, AGEs, ATP,

ROS, etc). ILCs are primarily tissue-resident cells and are classified

according to the cytokines they generate (70). ILC1 cells express

similar cytokines to Th1 cells such as IFNg, ILC2 cells produce

cytokines similar to Th2 cells such as IL-4, IL-5, IL-9, and IL-13 and

ILC3 cells produce IL17A, similar to Th17 cells. According to

scRNA-seq data, a mouse model of periodontitis exhibits a

reduction of over 30% in ILC cells among immune cells in

animals with induced periodontitis (29). ILC1 was the

predominant subset, comprising over 60% of ILCs in mice and

humans. In humans, the percent ILCs were not significantly altered

in the gingiva of subjects with periodontitis. Notably, a small

proportion of ILC1 cells expressed RANKL and and ILC3

produced IL17A suggesting they could participate in bone

resorption (71). The plasticity, differentiation, tissue-specific

migration and accumulation of ILC subpopulations may be an

important modulator of the local immune response (72).
3.3 Natural killer (NK) cells

NK cells are lymphocytes belonging to the innate immune

system (60). NK cells are cytolytic, killing viral or bacterial-

infected, or malignant cells, and can exert pro-inflammatory

effects. Through the release of granzymes and perforin, NK cells

directly destroy their targets. NK cells produce cytokines like IFN,

TNF, IL-5, IL-13, and GM-CSF that upregulate activity in other

cells, particularly macrophages and contribute to the control of

infections (60, 73) (Figure 1). NK cells have a role in senescent cell

clearance. They are stimulated by bacteria through toll-like

receptors (TLRs) and cytokines produced by cells such as

dendritic cells (73).

NK cells tend to have proinflammatory influences in

periodontitis (60). This is manifested through cytokine

production, cytotoxic effects, and dendritic-cell crosstalk.

Moreover, increased numbers of NK cells in patients wtih

periodontitis and decreased numbers after periodontal therapy

have been observed (60). Additionally, NK cells are correlated to
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the regulation of T-cell proliferation and suppression of B-cells in

periodontitis (60). Overall, these findings suggest that NK cells play

a role in the pathogenesis of periodontitis, particularly through their

proinflammatory influences (60).
4 Adaptive immunity

4.1 CD4+ T-cells

Naive CD4+ T-cells are capable of differentiating into a variety

of functional and phenotypical T helper (Th) cell subsets, Th1, Th2,

Th17, Treg and Tfh cells (67, 74). Th1 cells are pro-inflammatory

and produce IL-1b and IFN-g to promote inflammation and are

associated with tissue damage in periodontitis. Th2 cells play a key

role in the production of antibodies. Interleukin-4 (IL-4) and other

Th2-cell-derived cytokines are anti-inflammatory and are

considered to reduce bone loss. However, antibodies produced by

Th2 responses activate complement and could potentially be pro-

inflammatory. Th17 cells promote inflammation through IL-17

production. Th17 cells are increased in human periodontitis;

reducing Th17 cell numbers reduces alveolar bone resorption in

experimental periodontitis (75). In humans, Th17 cells are the

principal source of IL17A. IL-17 stimulates osteoblast-lineage cells

to secrete RANKL and GM-CSF to enhance osteoclast formation

and bone resorption (76). IL-17A also stimulates fibroblasts,

epithelial cells, and endothelial cells to produce RANKL, MMP,

PGE2, and chemokines to promote the progression of periodontitis

(77). IL-17A can affect immune cells such as macrophages,

neutrophils, dendritic cells, and B-cells. Regulatory T-cells (Treg)

stimulate immunosuppression and resolution of inflammation

through production of TGF-b, cytotoxic T lymphocyte-associated

protein 4 (CTLA-4), lymphocyte activation gene 3 (LAG-3),

programmed cell death protein 1 (PD1), T-cell immune receptors

with Ig and ITIM structural domains (TIGIT), and T-cell

immunoglobulin and mucin-containing structural domain 3

(Tim-3) (78). The percentage of these cells increases in the later

stages of periodontitis to reduce disease progression and reestablish

homeostasis (79). Interestingly, increased RANKL promotes the

induction of Tregs and increases formation of M2 macrophages,

thus facilitating the resolution of inflammation (79). T follicular

helper (Tfh) cells play an important role in the regulation of

humoral immunity and germinal center responses, and in

periodontitis, may promote local B-cell activation, and maintain a

long-term humoral immune response (80). Tfh cells in older

individuals may contribute to increased inflammation in

periodontitis (74).

Th22 cells are a subpopulation of T-helper cells that produce IL-

22 and TNF, which have been linked to the pathogenesis of

periodontitis by increasing inflammation (81) and the number of

Th17 cells in periodontal lesions (82). Oral inoculation of bacteria

in mice stimulates the production of IL-22 through increased

numbers of IL-22-expressing CD4+ T-cells in periodontitis-
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affected tissues (83). This increase is associated with higher levels

of RANKL and alveolar bone resorption.

scRNA-seq analysis indicates that T-cells constitute the largest

lymphocyte population, followed by B-cells and plasma cells (20)

(Figure 1). In human samples with periodontitis there is an overall

expansion of T-cells (20, 21). Various studies have identified

distinct subclusters of T-cells within single-cell RNA sequencing

datasets from both healthy and diseased conditions. These

subclusters include CD4+, MAIT, CD8+, gd T-cells, Treg, TH17,

and NK T-cells, which are consistently observed across different

studies, albeit with varying proportions in periodontitis (20, 21, 29).

Human studies indicate an approximately 25% decrease in CD4+ T-

cells in human subjects (20) and a similar reduction of over 30% in

mouse periodontitis models (30).
4.2 CD8+ T lymphocytes

CD8+ T-cells kill virally or bacterially infected cells. CD8+ T-

cells are fewer in number than CD4+ T-cells in periodontitis lesions

(84). CD8+ cytotoxic T lymphocytes produce TNF, IFN-g and kill

cells through expression of Fas ligands, pore-forming proteins

(perforins) and proteases (granzyme) (85). CD8+ regulatory T

lymphocytes (CD8+ Tregs) produce CTLA4, TGF-b and IL-10 to

resolve inflammation. Systemic administration of CTLA-4 reduces

alveolar bone resorption in experimental periodontitis (86). Like

pro-inflammatory CD4+ T-cells, the pro-inflammatory CD8+

cytotoxic T lymphocytes likely promote periodontitis whereas the

pro-resolving CD8+ Tregs help prevent or reduce it. In human

gingival tissue, scRNA-seq studies indicate a small ~10% increase in

CD8+ T-cells in subjects with periodontitis compared to non-

periodontitis subjects (20, 21). Interestingly, periodontitis was

associated with an increase in expression of CCL4, CCL4L2, and

CCL3L3 in both CD8 T-cells and NK cells. Elevated levels of the

CCR5 ligands in cytotoxic CD8+ T-cells underscores their potential

role in recruiting inflammatory cells during periodontitis (21).
4.3 B lymphocytes

B-cells are part of the humoral component of the adaptive

immune system and are specialized in producing antibodies. B-cells

can also present antigens and enhance inflammation through

cytokine production, opsonization, and complement fixation

mediated by the antibodies they produce. B-cells and plasma cells

are increased in periodontitis (87). Hub genes are located at critical

nodes in biological processes such as chronic inflammation.

Interestingly, a recent study pointed to B-cells as expressing a

high number of hub genes that are correlated with inflammation

in periodontitis (88). B-cells produce RANKL to promote bone loss

(79). Evidence that B-cells contribute to periodontitis was shown in

a ligature-induced murine model in which there was significantly

less bone loss in B-cell deficient mice (89). On the other hand, B-
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cells can potentially reduce periodontitis by limiting bacterial

invasion. In support of the latter, reduced dendritic cell activation

of B-cells increases periodontitis in an oral inoculation murine

model (55). B regulatory cells (Bregs) can reduce inflammation and

limit excessive inflammatory responses similar to Tregs. Bregs

produce anti-inflammatory cytokines such as IL-10, and inhibit

alveolar bone resorption (90, 91). Plasma cells that produce anti-

inflammatory cytokines IL-35 and IL-37 also inhibit alveolar bone

loss (92). Taken together, evidences suggests that B lymphocytes

have a dual role in modulating the progression of periodontitis and

can both promote and inhibit alveolar bone resorption depending

on the specific conditions.

scRNA-seq studies observed an overall increase in the

proportion of B-cells in human subjects with periodontitis

compared to healthy controls (21, 50). Three distinct B-cell

populations were consistently detected including memory B-cells,

IgG-producing plasma B-cells, and follicular B-cells (20). Caetano

et al. (14) reported a distinct increase in memory B-cells in

moderate periodontitis compared to healthy individuals. The

increase is backed up by several publications using alternative

approaches showing there is a significant increase in plasma cells

in periodontitis compared to healthy individuals (14, 20, 21,

50) (Figure 1).
5 Osteoblast lineage cells
and periodontitis

In a periodontally healthy adult, an episode of bone resorption is

followed by an equivalent amount of bone formation, which is

referred to as coupling. In periodontitis, chronic inflammation

inhibits bone coupling after an episode of bone resorption,

increasing the size of an osteolytic lesion (2, 93). Thus, osteolytic

lesions occur due to bone resorption and inhibition of coupled bone

formation. Immune activation significantly reduces coupled bone

formation (93). Experimental animal models have demonstrated that

oral microbial dysbiosis stimulates inflammation by in bone-lining

cells and osteocytes by enhancing nuclear translocation of NF-kB (2).

Lineage-specific inhibition of NF-kB in osteoblasts and osteocytes,

but not in other cell types, mitigates periodontal bone loss caused by

dysbiosis (94). This phenomenon can be attributed to two primary

mechanisms. Firstly, inhibition of NF-kB activation reduces RANKL

expression in osteocytes and osteoblastic cells, resulting in reduced

bone resorption. Osteocyte production of RANKL is significant due

to their location within bone. Secondly, the activation of NF-kB in

cells of the osteoblast lineage blocks coupled bone formation. The

reduction in coupled bone formation is due to NF-kB’s role in

limiting osteoblast differentiation, indirectly inducing apoptosis in

osteoblastic cells and through reducing the synthesis of bone osteoid

(94, 95). Such increased apoptosis is significant, as treatments

targeting apoptosis have been shown to reduce periodontal bone

loss by promoting increased coupled bone formation (96).

Inflammation also inhibits mesenchymal stem cell (MSC)

differentiation into osteoblasts by blocking the upregulation of

transcription factors, runt-related transcription factor 2 (Runx2)
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and osterix (Osx) (3). Therefore, the activation of NF-kB in

osteoblast precursors, osteoblasts, and osteocytes play an essential

role in periodontitis, contributing to enhanced bone resorption and

limiting the process of coupled bone formation.
6 Periodontitis and systemic diseases

There is a relationship between periodontitis and systemic

conditions such psoriasis, rheumatoid arthritis, inflammatory

bowel disease, type-2 diabetes, osteoporosis, non-alcoholic fatty

liver disease, Alzheimer’s disease, pre-term birth, cancer

progression and cardiovascular disease (97). In some cases there

may be an association through co-morbidities and in others a causal

relationship. The relationship is often two-way. Periodontal disease

may worsen glycemic control and diabetes may enhance

periodontal disease progression (4, 5). The latter may be due to

bacteremia entering the bloodstream through invasion of the oral

epithelial barrier, which may impact systemic disease a distant sites

including an effect on hematopoiesis (4, 5, 98).

Periodontal inflammation and bone loss is enhanced by

diabetes (99). The diabetic condition promotes the inflammatory

response to bacteria (100) and alters the microbial composition to

render it more pathogenic (98, 101). Clinical evidence shows that

effective periodontal treatment improves blood glucose levels in

patients with type 2 diabetes, suggesting a causal relationship

between periodontal disease and glycemic control (102, 103).

Similar to the link with diabetes, the intersection between

rheumatoid arthritis and periodontitis is thought to be

bidirectional. Rheumatoid arthritis subjects have greater loss of

attachment, and increased expression of inflammatory mediators

(IL-17, IL-2, TNF, and IFN-g) that is linked to an increase in

bacterial load and an increase in periodontal pathogens (104).

Periodontal disease may contribute to the etiology of rheumatoid

arthritis by increasing exposure of subjects to enzymes that

citrullinate proteins to stimulate an auto-immune response (105,

106). In addition to the effect of systemic disease on periodontal

tissues, bacteremia caused by periodontal disease may cause

epigenetic changes in the bone marrow that affect hematopoiesis.

Maladaptive bone marrow (BM)-mediated trained innate immunity

(TII) has been proposed as a co-morbidity between periodontitis

and arthritis (107, 108). In this scenario, chronic inflammation

causes epigenetic changes in the bone marrow to increase the

inflammatory response at a distant site.
7 Summary

Periodontal disease is one of the most common causes of oral

inflammation and periodontitis is one of the most common osteolytic

diseases found in adults (2). They are triggered by bacteria, although

the sequelae are due to the impact of bacteria-induced innate and

acquired immune responses. New approaches such as scRNA-seq have

provided a new understanding of how immune and non-immune cells

have bi-directional communication to initiate and amplify the

inflammatory response triggered by bacteria. For example, there are
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distinct epithelial cell subpopulations that contribute to antimicrobial

defense and are likely to play an important role in neutrophil

recruitment (14, 20). Subjects with periodontal inflammation

experience an overall loss of epithelial cells, but there is an increase

in epithelial cells with an inflammatory signature that stimulates

neutrophil recruitment. Stromal cells also consist of subtypes that

have inflammatory signatures, such as a fibroblast subtype that

produces chemokines to stimulate leukocyte recruitment (20, 22).

Subjects with periodontitis have a shift towards more pro-

inflammatory fibroblast phenotypes, accompanied by a decline in

matrix-producing subsets.

Examination of the innate immune landscape reveals complex

changes in myeloid cell populations, including neutrophils,

macrophages, and dendritic cells. These cells exhibit a balance of

protective and destructive functions, depending on their precise

activation state. Neutrophils play a crucial role in the pathogenesis of

periodontitis, and can be both protective and destructive functions

depending on their numbers and activation state (23, 24). While the

presence of neutrophils is essential for combating bacterial infection

(109) and initiating the inflammatory response, an excessive or

dysregulated neutrophil response can contribute to tissue damage

and disease progression (26, 27). A substantial reduction in

neutrophils, as observed in certain genetic disorders like leukocyte

adhesion deficiency, leads to an increased severity of periodontitis (25).

Conversely, a large, persistent neutrophil infiltration in periodontal

tissues can also exacerbate inflammation and connective tissue

breakdown (20). Neutrophils release proteolytic enzymes, such as

matrix metalloproteinases (MMPs) and elastase, which degrade the

extracellular matrix and disrupt the epithelial barrier. Additionally, the

formation of neutrophil extracellular traps (NETs), while initially

beneficial for trapping pathogens, can cause collateral tissue damage

if not properly regulated and cleared. Therefore, a balanced neutrophil

response is critical for maintaining periodontal health, as both the

absence and the excessive or chronic presence of these cells can

contribute to the initiation and progression of periodontitis.

Macrophages can polarize into distinct phenotypes (43, 44). M1

macrophages promote inflammation, tissue destruction and bone

resorption by producing pro-inflammatory cytokines. The onset

and progression of periodontitis is closely linked to the formation of

M1 macrophages. Conversely, M2 macrophages exhibit an anti-

inflammatory phenotype and participate in resolving inflammation

and tissue repair by releasing anti-inflammatory cytokines. Single-

cell RNA sequencing data from periodontitis lesions reveal a

significant increase in macrophages expressing both pro-

inflammatory (M1) and anti-inflammatory (M2) markers (45–

48). M1 macrophages may drive inflammation and bone loss in

the early stages, while M2 macrophages may play a protective

role in later stages by resolving inflammation and promoting

tissue regeneration.

A number of cell types, particularly lymphocytes with innate

immune properties, have recently been identified as contributing to
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periodontal inflammation and bone loss, particularly. NKT-cells, gd
T-cells, and mucosal-associated invariant T (MAIT) cells (59). In

periodontitis, NKT-cells may enhance inflammation, RANKL

production, osteoclastogenesis, and alveolar bone loss. gd T-cells

express a distinct TCR composed of gamma and delta chains and

play critical roles in barrier surveillance (63, 64). In periodontitis, gd
T-cells are elevated and stimulate the recruitment of macrophages

and neutrophils, as well as the production of pro-inflammatory

cytokines like IL-17A and IFN-g. Their absence has been shown to

significantly reduce alveolar bone loss in animal models of

periodontitis. MAIT-cells are known to increase during infections,

suggesting a protective role. Their numbers are reduced in

periodontitis, suggesting the loss of a key protective cell type (20,

69). However, this has not yet been functionally demonstrated.

Conventional lymphocytes expressing ab receptors have also been

implicated in periodontitis. Anti-inflammatory T-cells (T-regs and

B-regs) limit periodontal inflammation and bone loss, while Th1

and Th17 T-cells have been implicated in stimulating inflammation

and periodontal bone loss (73, 74, 77). The role of Th2 cells is more

complicated as the production of antibodies may be protective or by

activating complement, may lead to inflammation-induced

tissue damage.

Periodontal ligament fibroblasts and osteoblast lineage cells

consisting of osteoblasts and osteocytes are strongly affected by

inflammation that leads to periodontitis. One hypothesis of

periodontitis links the proximity of periodontal inflammation to

bone as a key event that distinguishes gingivitis from periodontitis

(92, 93). The onset of periodontitis activates NF-kB signaling, which

induces the expression of RANKL in osteocytes, bone lining cells and

PDL fibroblasts (110). Interestingly, deletion of RANKL in osteocytes

has a dramatic effect on reducing bone resorption stimulated by oral

inoculation of P. gingivalis and F. nucleatum. In addition to

stimulating bone resorption, inflammation suppresses expression of

bone matrix proteins and causes osteoblast cell death leading to

disruption of bone coupling (95). Collectively, these inflammatory

processes affect osteocytes, osteoblasts, and PDL fibroblasts to induce

periodontitis by simulating osteoclast formation and activity and

inhibiting repair of osteolytic lesions.

The research presented highlights several important

implications for clinical practice in managing periodontitis. The

findings related to the involvement of specific cell types and their

states at different disease stages could guide the development of

stage-specific targeted therapies. Modulating the balance of

macrophage polarization towards an anti-inflammatory M2

phenotype, or regulating the recruitment and activation of

neutrophils, may help resolve the destructive inflammatory

response. The scRNA-seq data could identify valuable biomarkers

for monitoring disease progression, predicting treatment responses,

and guiding personalized management of periodontitis.

Additionally, the insights into cell populations involved in tissue

repair and the adaptive immune response could pave the way for
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developing regenerative therapies. In summary, the insights gained

from research highlight the importance of targeting specific cellular

and molecular mechanisms involved in periodontitis to develop

more effective prevention and treatment strategies, with the

potential to also impact various systemic diseases associated with

chronic inflammation.
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