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Introduction: Influenza virus infections are a major global health problem.

Influenza can result in mild/moderate disease or progress to more severe

disease, leading to high morbidity and mortality. Severity is thought to be

primarily driven by immunopathology, but predicting which individuals are at a

higher risk of being hospitalized warrants investigation into host genetics and the

molecular signatures of the host response during influenza infections.

Methods: Here, we performed transcriptome and genotype analysis in healthy

controls and patients exhibitingmild/moderate or severe influenza (ICU patients).

A unique aspect of our study was the genotyping of all participants, which

allowed us to assign ethnicities based on genetic variation and assess whether

the variation was correlated with expression levels.

Results: We identified 169 differentially expressed genes and relatedmolecular pathways

between patients in the ICU and those who were not in the ICU. The transcriptome/

genotype association analysis identified 871 genes associated to a genetic variant and 39

genes distinct between African-Americans and Caucasians. We also investigated the

effects of age and sex and found only a few discernible gene effects in our cohort.
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Discussion: Together, our results highlight select risk factors that may contribute

to an increased risk of ICU admission for influenza-infected patients. This should

help to develop better diagnostic tools based onmolecular signatures, in addition

to a better understanding of the biological processes in the host response

to influenza.
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Introduction

Influenza virus infections represent a major global health

problem. High morbidity and mortality are observed, with up to

500,000 deaths each year worldwide (1) and millions during past

pandemics (2, 3). Influenza infections cause a range of disease

phenotypes that range from asymptomatic to severe. Severity is

influenced by a variety of viral and host factors, including influenza

strain, age, sex, host genetics, and immune status (e.g. (4–8).

Mortality in severe cases is primarily driven by a pathological

immune response characterized by high levels of neutrophils,

macrophages, and inflammatory cytokines (7, 9–13). In addition,

ethnicity appears to affect the severity of influenza and SARS-CoV-2

infections in the US. During the 2009 H1N1 pandemic rates of

hospitalization were highest in African-Americans, observed in a

study in Wisconsin (14). During the SARS-CoV-2 pandemic,

African-Americans exhibited higher severity than Caucasians

(15, 16).

To advance the diagnosis and better predict the probability of

progression to severe influenza and risk of ICU admission, it is

pivotal to characterize host responses in-depth. While obtaining

samples directly from pulmonary infection sites presents

challenges, the analysis of blood samples has emerged as a practical

means to comprehensively assess the molecular aspects of the disease

across the entire system. In addition, exploring whole-blood gene

expression provides a valuable avenue for developing clinical tests for

point-of-care use, enabling a more personalized and effective

approach to patient management. Several transcriptome studies on

samples from influenza-infected patients have been performed, with

most using gene expression arrays (17–33). Some of these studies

distinguished mild/moderate infections from severe influenza disease.

For example, Bermejo-Martin et al. (19) observed impaired

expression of several genes participating in the T cell and B cell

immune responses in patients with severe influenza (patients

requiring mechanical ventilation) compared to patients with

reduced severity. These included genes involved in antigen

presentation, B cell development, T helper cell differentiation,

CD28, granzyme B signaling, apoptosis, and protein ubiquitination.

Patients with the poorest outcomes were characterized by

proinflammatory hypercytokinemia. In contrast, Dunning at al.
02
(30) found an inflammatory, activated neutrophil, and cell stress or

cell death pattern in patients who needed mechanical ventilation.

Similarly, Tang et al. (32) observed elevated gene expression related to

neutrophil activation in severe patients as the most important

difference when compared to patients with moderate disease.

Because some identified genes may be cohort-specific and

potentially a consequence of age, sex, and/or ethnicity, we aimed

to identify the differences in gene expression among influenza-

infected patients by taking these factors into account. We collected

blood samples from a large cohort of influenza-infected patients

from different parts of the US and Germany with severe or mild/

moderate disease and healthy controls. We performed RNAseq and

genotyping analyses on these samples. To our knowledge, this is the

only study so far that performed gene expression analysis and

genotyping on the same patients. This approach allowed us to

assign ethnicity based on genotyping rather than skin phenotype or

questionnaires. In addition, we were able to examine correlations

between genetic variation and gene expression changes. The results

suggested that while many differentially expressed genes (DEGs)

and related molecular pathways in influenza-infected individuals

were distinct from healthy controls, much less distinguished those

who required ICU admission from non-ICU patients and very few

were different for age, sex, or ethnic background.
Materials and methods

Patient cohorts – sample collections

Patients with influenza infections and healthy controls were

collected at five different sites (Data file 3, see Table 1 for

availability of supplementary data and tables). Baptist Memorial

Hospital (Memphis, TN USA): Patients with influenza virus

infection confirmed by rapid-antigen assay/viral PCR performed

on nasopharyngeal samples were recruited at admission to the

hospital or from patients in the ICU at the time of consent

(assigned as day 1). Blood samples from healthy controls were

taken from hospital visitors and hospital patients with no

respiratory infections. Otto-von-Gericke University (Magdeburg,

Germany): Patients with influenza virus infection confirmed by
frontiersin.org
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TABLE 1 Overview supplementary material at online repositories.

Label Name of data file/data set File types
(file
extension)

Data repository and identifier
(DOI or accession number)

Data
file 1

Data set: supplements
File:
ST1_transcriptome_sbst1_target_comb_SIG_2018_2019_2020_2022_181122_2a.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 2

Data set: supplements
File: ST2_coriell_samples_description_kls_310823.xlsx

Excel figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 3

Data set: supplements
File: ST3_genotype_target_combined_unique_SIG_geno_assethn_310823a.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 4

Data set: supplements
File: ST4_season_110823.xlsx

Excel figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 5

Data set: supplements
File: ST5_Collection_site_040923.xlsx

Excel figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 6

Data set: supplements
ST6_sbst1_limma_healthy_control_vs_infected_181122.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 7

Data set: supplements
File: ST7_sbst1_limma_ICUn_vsCNRTL_181122.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 8

Data set: supplements
File: ST8_sbst1_limma_ICUy_vsCNRTL_181122.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 9

Data set: supplements
File: ST9_sbst1_limma_ICUy_vs_ICUn_181122.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 10

Data set: supplements
File: ST10_sbst1_limma_ICUn_fVSm_231122.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 11

Data set: supplements
File: ST11_sbst1_limma_ICUy_fVSm_231122.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 12

Data set: supplements
File: ST12_sbst1_limma_old_young_060923.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 13

Data set: supplements
File: ST13_cis_eQTL_DEGs_dist1Mb_result_011222_150923.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 14

Data set: supplements
File: ST14_DEGs_CaucVSAfrAM_ciseQTL_121023.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
set 15

Data set: SIG_geno_0718 PLINK, txt figshare https://doi.org/10.6084/m9.
figshare.24299380

Data
set 16

Data set: SIG_geno_0419 PLINK, txt figshare https://doi.org/10.6084/m9.
figshare.24297946

Data
set 17

Data set: SIG_geno_2020 PLINK, txt figshare https://doi.org/10.6084/m9.
figshare.24299389

Data
set 18

Data set: SIG_geno_2022 PLINK, txt figshare https://doi.org/10.6084/m9.
figshare.24299401

Data
set 19

Data set: SIG_geno_combine PLINK, txt figshare https://doi.org/10.6084/m9.
figshare.24299443

Data
file 20

Data set: supplements
File:
ST20_sbst1_norm_LIMMA_btch_corr_SIG_comb_2022_2020_2019_2018_181122_1.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 21

Data set: supplements
File: ST21_comb_numeric_genotypes_SIG_geno_ptntID_011222.7z

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
set 22

SIG_2018 fastq Sequence Read Archive: SRP285410
GEO-ID: GSE158592

(Continued)
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rapid-antigen assay/viral PCR performed on nasopharyngeal

samples were recruited at admission to the hospital. Blood

samples were collected at admission (day 1). From ICU patients,

samples were taken at the time of consent (the first sample taken

was assigned as day 1). Blood samples from healthy controls were

taken from hospital visitors, hospital patients with no respiratory

or other infections or inflammatory disorders, and volunteers at

the Helmholtz Centre for Infection Research, Braunschweig.

Hannover Medical School (Hannover, Germany): Blood samples

from healthy controls were taken from hospital patients without

respiratory infections and volunteers at Hannover Medical School.

University of North Carolina (Chapel Hill, NC USA): Patients

with influenza virus infection confirmed by rapid-antigen assay or

viral PCR performed on nasopharyngeal samples were recruited

during hospital admission. Blood samples were collected at

admission or from patients in the ICU at the time of consent

(the first sample taken was assigned as day 1). Duke University

(Durham, NC USA): Patients were enrolled by convenience

sampling in the emergency department based on the presence of

a suspected infection of less than 28 days duration. Participants

were selected for inclusion in this study based on a diagnosis of

influenza, which was based on PCR testing of nasopharyngeal

swabs using the ResPlex V2.0 (Qiagen; Hilden, Germany),

Respiratory Viral Panel (Luminex; Austin, TX), or Respiratory

Pathogen Panel (Luminex; Austin, TX). Clinical adjudications

were performed to confirm influenza was the microbiological

etiology of illness, as previously described (28). See Data file 5

for information on collection sites. A few samples were taken from

a repository (seasons 2008/2009 until 2013/2014, total of 5

samples, collected at the Otto-von-Gericke University
Frontiers in Immunology 04
Magdeburg, Germany). Most samples were collected during

subsequent seasons 2014/2015 until 2020/2010 (total of 208

samples; Data file 4 for each season).
General aspects of sample analysis

The samples were analyzed in four different batches, although

the preferred procedure would have been to process all samples in

one batch. Analysis in different batches was mainly due to funding

limitations. The grant support was provided in yearly parts, and

therefore all samples from one season had to be analyzed within the

corresponding fiscal year. Therefore, we provide the raw data from

each batch, together with the combined data from all batches and

the processed batch-corrected data files (see Table 1 for availability

of supplementary data and tables). Some samples were analyzed in

multiple batches. In addition, for some patients, samples at multiple

time points were collected. The analysis of the data presented here

was performed with a unique sample from each participant and

only those collected on day 1, when patients presented at the

hospital, or the first blood draw from ICU patients. Therefore, in

addition to the analyses presented here, our data may also be used to

study gene expression changes in a single patient over time.
Preparation of RNA and RNA sequencing

RNA was prepared from whole blood collected into PAXgene

Blood RNA tubes (Qiagen) and then extracted as per the

manufacturer’s protocol (QIAGEN PreAnalytiX – Blood RNA
frontiersin.or
TABLE 1 Continued

Label Name of data file/data set File types
(file
extension)

Data repository and identifier
(DOI or accession number)

Data
set 23

SIG2019 fastq Sequence Read Archive: SRP275678
GEO-ID: GSE155635

Data
set 24

SIG_2020 fastq GEO-ID: GSE196350

Data
set 25

SIG_2022 fastq GEO-ID: GSE213168

Data
file 26

Data set: supplements
File: ST26_gg4_geno_011222.7z

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 27

Data set: supplements
File: ST27_tr7_transcriptome_011222.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 28

Data set: supplements
File: ST28_sbst1_limma_infAfrAm_vs_infCaucs_181122.txt

txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 29

ST29_ifn_old_071123.txt txt figshare https://doi.org/10.6084/m9.
figshare.24299152

Data
file 30

ST30_ifn_young_071123.txt txt figshare https://doi.org/10.6084/m9.
figshare.24299152
Data files and data sets generated or used in this study and their accessibility in public repositories.
g
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Kit). The quality and integrity of total RNA were controlled on an

Agilent Technologies 2100 Bioanalyzer (Agilent Technologies;

Waldbronn, Germany). Globin mRNA was depleted from total

RNA using GLOBINclear Kit, human (ThermoFisher, Invitrogen).

After globin mRNA depletion, the strand-specific RNA sequencing

library was generated using the NEBNext Ultra II Directional RNA

Library Prep Kit (New England Biolabs) according to the

manufacturer’s protocols. The library was sequenced on Illumina

HiSeq 4000 using the HiSeq 3000/4000 SBS Kit (300 cycles).
Bioinformatics of RNAseq data

Reads were quality checked with package FastQC (version 0.11.4)

(34), then trimmed using Trimgalore (version 0.4.4, (35)) with default

settings. Trimmed reads were mapped to human genome annotation

GRCh38 (ENSMBL Homo_sapiens.GRCh38.91) using STAR

(version 2.5.2b, (36)) with default settings. Mapped reads were

counted using RsubRead (version 1.32.4, (37)). Analysis and

visualization of expression data was performed using the R

software package (version 4.2.1, (38) and RStudio (version

2022.07.2, (39)). Annotation of human genes was performed using

package biomaRt (version 2.52.0, annotation GRCh38.p12, (40)).

Raw counts were then normalized using DESeq2 (version 1.16.1,

(41)). The four transcriptome batches were: SIG_2018 (Data set 22),

SIG2019 (Data set 23), SIG_2020 (Data set 24), and SIG_2022 (Data

set 25). The respective raw and normalized data are available at the

GEO (GEO) public database (see Table 1 for availability of

supplementary data and tables). The mean number of reads per

batch were: 50 million, 45 million, 85 million, and 54 million,

respectively. The normalized expression levels from all batches

were then combined and batch-corrected using the Limma package

(version 3.42.2; 42, 43)). The four batches contained overlapping

samples analyzed in multiple batches. For subsequent analyses

performed here, multiple samples from the same participant or

reference were removed, and a unique dataset was generated (Data

file 1 for sample description and Data file 20 for normalized batch

corrected expression values, see Table 1 for availability of

supplementary data and tables). For the identification of

differentially expressed genes (DEGs), the Limma package (version

3.42.2, (42, 43)) was used. The model used for the identification of

DEGs in Limma was: design <- model.matrix(~ 0 + group), including

all groups in the model. DEGs were determined by contrasting the

groups from the Limma result, based on an adjusted p-value of < 0.05

and exhibiting more than a 1.5-fold (log2 = 0.5849625) difference in

expression levels. Multiple testing adjusted P values were calculated

according to Benjamini and Hochberg (44). Volcano plots were

generated with the package EnhancedVolcano, version 1.8.0 (45).

VENN diagrams were generated with the function vennPlot (http://

faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/

overLapper.R). Functional analysis of DEGs was performed using

the R software package clusterProfiler (version v3.14.3; (46). For

beeswarm graphs of expression levels, package beeswarm (47)

(version 0.2.3.) was used.
Frontiers in Immunology 05
Preparation of DNA for genotyping

EDTA blood samples were collected from participants, cells

were centrifuged, and supernatants and pellets were stored at -80 °

C. DNA was prepared from frozen cell pellets using the QIAamp

DNA Blood Midi kit (Qiagen) according to the manufacturer’s

protocol. For identification of ethnicity, DNA samples from the

Coriell Institute HAPMAP collection were included as references.

The biospecimens for the reference samples were donated by

different populations (Population Descriptors, see Data file 2, see

Table 1 for availability of supplementary data and tables) and

obtained from the NHGRI Sample Repository for Human Genetic

Research at the Coriell Institute for Medical Research (Repository

IDs see Data file 2, see Table 1 for availability of supplementary data

and tables). Here, we refer to the affiliation of a participant to their

population as ethnicity (alternatively, race or genetic descent are

used by others).
Genotyping of DNA by SNP microarrays

Per sample, 2.5 µg of DNA was prepared for microarray analysis

on Illumina Global Screening Array-24 v2.0 (Illumina), and DNA

array analysis was performed according to the manufacturer’s

protocol (Illumina, Infinium HTS Assay Manual Workflow) at

the Johns Hopkins University School of Medicine, Genetic

Resources Core Facility (GRCF). After QC, signals showing

obvious assay failures on the array were removed. SNP calling

was done with GenomeStudio version 2011.1, Genotyping Module

version 1.9.4, and GenTrain Version 1.0. In total, 665,608 SNPs

were probed on the genotyping arrays. The four genotyping batches

were: SIG_geno_0718 (Data set 15), SIG_geno_0419 (Data set 16),

SIG_geno_2020 (Data set 17), and SIG_geno_2022 (Data set 18).

These datasets contain internal duplicates, duplicates between

batches, and reference genomes. Several samples were analyzed in

multiple batches, these duplicates were removed and a unique

sample dataset was generated (Data file 3 for description of the

samples). The corresponding data are available as PLINK files (see

Table 1 for availability of supplementary data and tables).
Bioinformatic analysis of genotype data

The combined genotype (SIG geno combined) data from all

batches, a total of 365 samples (including all duplicates), were then

analyzed by PLINK ( (48), see Data set 19 for PLINK and subjects).

The respect ive PLINK fi le for the combined dataset

(SIG_geno_combine) is provided in Data set 19 (see Table 1 for

availability of supplementary data and tables). Participant’s

ethnicity was identified by multidimensional scaling (MDS) with

reference to samples from the Coriell Institute HAPMAP collection

(see results below). Numeric genotype calls were extracted from the

four individual GenomeStudio batch files using the software

GenomeStudio (Version 2.0) (49) and then combined into a
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single dataset. Subsequently, multiple samples from the same

participant or the reference samples were removed, and a unique

dataset was generated (Data file 21 for the genotype data, Data file 3

for a description of this sample set, see Table 1 for availability of

supplementary data and tables). Visualization and analyses of

PLINK and GenomeStudio output files were performed using the

R software package (50).
QTL analysis

Overlapping datasets from the same participants for genotypes

(numeric allele call data) and transcriptomes were generated. The

corresponding genotype table is provided in Data file 26, and the

corresponding transcriptome table is in Data file 27 (see Table 1 for

availability of supplementary data and tables). QTL analysis was

then performed using the R package MatrixEQTL (version 2.3)

(51). Manhattan plots were generated using package qqman_0.1.8

(version 0.1.8; (52).
Statistics

For the comparison of two groups, a two-way t-test (numeric

data) or chi-square test (categorical data) was used and performed

in R. P < 0.05 was considered significant. Multiple testing adjusted P

values were calculated according to Benjamini and Hochberg (44).
Availability of data and materials

All data are available in public databases. Raw data for RNAseq

analyses are available in the GEO expression database (53–55): IDs:

SIG_2018: GSE158592; SIG2019: GSE155635; SIG_2020: GSE196350;

SIG_2022: GSE213168. Genotype raw data files are available in PLINK

format at the Figshare public database (56), see Table 1 for availability

of supplementary data and tables. All other data files are available in

Figshare (see Table 1 for availability of supplementary data and tables).
Results

Cohort demographics

An overview of the demographics of patients and the different

groups can be found in Table 2. The total number of participants

was 208, 81 were healthy controls and 127 were influenza-infected

patients, of which 23 were admitted to the ICU (Table 2). The

genotyping analysis (see below) showed that the samples were

primarily Caucasian (153) followed by African-American (people

of African ancestry in the US, 41), Mexican-American-Indian (4),

Asian (2), and admixed (2) (Table 2). The number of females and

males was significantly different between infected and healthy

controls (Table 2), but it was not significant between females and
Frontiers in Immunology 06
males when stratified by ICU status. The median age was

significantly different between infected and control samples, it

was not significantly different between non-ICU and ICU samples

(Table 2). For details on each participant, see Data file 1.
Transcriptome analysis of infected patients
versus healthy controls

RNA was isolated from the blood cells of 127 influenza-infected

patients and 81 healthy controls and submitted to RNA sequencing.

The samples that were used here for the analyses below are described in

detail in Data file 1 and their normalized expression values (unique per

sample and patient, batch corrected) in Data file 20. Principal

component analysis (PCA) demonstrated good separation between

infected patients and healthy controls (Figure 1). Analysis of

differentially expressed genes (DEGs) showed 701 upregulated and

367 downregulated genes when contrasting all infected patients versus

healthy controls (Figure 2A; complete list of DEGs in Data file 6). The

top 5 up- and down-regulated DEGs from this comparison and their

known functions are listed in Table 3. Pathway analysis for DEGs

between infected patients and healthy controls revealed that the top up-

regulated genes were ‘Defense response to bacterium’, ‘Regulation of

viral process’, ‘Response to virus’, ‘Response to biotic stimulus’,

‘Nuclear division’ (Figure 2B) and the top down-regulated genes

were ‘B cell proliferation’, ‘Adaptive immune response’, ‘Lymphocyte

differentiation’, and ‘Axonogenesis’ (Figure 2C).
Transcriptomes analysis of infected ICU
versus infected non-ICU patients and to
healthy controls

Comparing non-ICU infected patients with health controls

revealed 659 upregulated and 317 downregulated DEGs

(Figure 3A) while ICU patients showed 1071 upregulated and 818

down-regulated DEGs when compared to healthy controls

(Figure 3B). For the contrast of ICU patients and non-ICU

patients, there were 132 up-regulated and 37 down-regulated DEGs

(Figure 3C; complete lists of DEGs in Data files 7–9). Table 3 lists, as

examples, the top 10 DEGs from this comparison and their known

functions. Of note, there was significant overlap between these groups

with 857 DEGS shared between ICU and non-ICU patients when

compared to healthy controls, and 75 DEGs shared between all

contrasts (Figure 3D). For the DEGs of non-ICU patients compared

to healthy controls, pathways for ‘Defense response to bacterium’,

‘Regulation of viral process’, ‘Response to virus’, ‘Response to biotic

stimulus’, and ‘Nuclear division’were up-regulated genes (Figure 4A),

and no pathway associations were detected for the down-regulated

genes. For DEGs of ICU patients compared to healthy controls,

pathways for ‘Chromosome segregation’, ‘Regulation of viral

genome’, ‘Nuclear division’, ‘Response to LPS’, ‘Response to

bacterium’, ‘Regulation of inflammatory response’ were up-

regulated genes (Figure 4B) and ‘Activation of immune response’,
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‘Lymphocyte differentiation’, ‘Adaptive immune response’, and

‘Leukocyte cell-cell adhesion’ were down-regulated genes

(Figure 4C). The direct comparison of ICU versus non-ICU

revealed pathways for ‘Defense response & neutrophil-mediated
Frontiers in Immunology 07
toxicity’, ‘Antimicrobial humoral response’, ‘Regulation of

inflammatory response’, ‘Negative regulation of cytokine

production’ that were higher in ICU patients (Figure 5A) and

pathways for ‘IFNG production’, ‘Response to chemokine’,
TABLE 2 Demographics of cohorts.

Category Healthy
controls

Infected Infected -
not ICU

Infected
- ICU

p-values HC
versus infected

p-values non-
ICU versus ICU

Gender (males/females) 59F/22M 66F/61M < 0.01

sum 81 127

Gender (males/females) 54F/50M 12F/11M 1

sum 104 23

AGE

Age/years (median) 44 58 51 54 < 0.01 0.4536

Age/years (IQR) (31 -76) (45 - 68) (37 - 62) (38.5 - 68)

Age range 18-30 10F/7M 7F/2M 6F/1M 1F/1M

Age range 30-65 47F/14M 40F/42M 33F/36M 7F/6M

Age range > 65 2F/1M 19F/17M 15F/13M 4F/4M 0.899

Ethnicity

Caucasian 50F/15M 47F/41M 38F/32M 9F/9M

sum 65 88 70 18

African-American 7F/0M 18F/16M 15F/16M 3F/0M

sum 7 34 31 3

Asian 1F/1M 0 0 0

Mexican
American-Indian

0F/4M 0 0 0

Admixed 0 1F/1M 1F/1M 0
Number of participants stratified by gender, age, infection (infected: influenza infected, HC: healthy controls), and severity of disease (ICU: intensive care unit patients, non-ICU: patients not in
intensive care). F: female, M: male. P-values were calculated by two-sided paired-t-test. Ethnicity was determined by genotype analysis (this study).
FIGURE 1

Principal component analysis of transcriptome expression. Principal component analysis plot for gene expression values of infected patients and
healthy controls. Abbreviations: HC: healthy controls; inf_ICU infected patients at ICU; inf_non-ICU: infected patients not at ICU.
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‘Response to bacterium’, and ‘Response to LPS’ that were higher in

non-ICU patients (Figure 5B).
Analysis of age and sex in driving
transcriptome differences

In addition, we contrasted female versus male and young versus

old patients, stratified by ICU and non-ICU. Only few DEGs were

found in both comparisons. The results (Supplementary Figure S1)

and discussion can be found in the supplementary material.
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Genotyping of participants

Analysis of the genotype date after quality control revealed that the

percent of missing SNPs per sample ranged from 2% to 6% (mean, 4%)

with results differing somewhat between batches (means:

SIG_geno_0718: mean = 2%; SIG_geno_0419: mean = 4%;

SIG_geno_2020: mean = 5%; SIG_geno_2022: mean = 5%)

(Supplementary Figure S2A). Only four SNPs were absent from all

samples. The minor allele frequency ranged from 0 to 0.5

(Supplementary Figure S2B). These genotyping data and the

inclusion of references to samples from the Coriell Institute
FIGURE 2

Comparison of infected patients versus healthy controls. (A) Volcano plot of infected patients versus healthy controls. y-axis: -log10 BH multiple
testing adjusted p-values, x-axis: log2 fold change. DEGs are colored red, and the top 20 up- and down-regulated (by log-fold change) DEGs are
labeled. Blue: not significant genes with an adjusted p-value < 0.05. Yellow: not significant genes with an absolute fold change of 1.5 (log2 =
0.5849625). Grey: NS, not significant. (B) Functional analysis using GO term enrichment for the up-regulated DEGs from the contrast of infected
versus healthy controls. (C) Functional analysis using GO term enrichment for the down-regulated DEGs from the contrast of infected versus
healthy controls.
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TABLE 3 DEGs and their known functions.

Gene
symbol

Identified
as ..

Gene name Known function

IFI27 DEG of infected
versus healthy
controls; up-
regulated (Data
file 6)

Interferon Alpha
Inducible Protein 27

Encodes RNA polymerase II-specific DNA-binding transcription factor with lamin binding activity, predicted
to be involved in defense response to other organism, protein K48-linked ubiquitination, and pyroptosis and
acts upstream of or within negative regulation of transcription by RNA polymerase II and regulation of protein
export from nucleus.

OTOF DEG of infected
versus healthy
controls; up-
regulated (Data
file 6)

Otoferlin Encodes protein with AP-2 adaptor complex binding activity and calcium ion binding activity, predicted to be
involved in regulation of neurotransmitter secretion and synaptic vesicle priming.

SIGLEC1 DEG of infected
versus healthy
controls; up-
regulated (Data
file 6)

Sialic Acid Binding
Ig Like Lectin 1

Encodes protein that enables virion binding activity, and is involved in negative regulation of type I
interferon production.

CD177 DEG of infected
versus healthy
controls; up-
regulated (Data
file 6)

CD177 Molecule Encodes protein with calcium-dependent binding activity, integrin binding activity, and protease binding
activity, predicted to be involved in neutrophil extravasation, positive regulation of superoxide anion
generation, and regulation of vesicle-mediated transport.

RSAD2 DEG of infected
versus healthy
controls; up-
regulated (Data
file 6)

Radical S-Adenosyl
Methionine Domain

Containing 2

Encodes protein with 4 iron, 4 sulfur cluster binding activity and protein self-association, predicted to be
involved in defense response to virus, negative regulation of protein secretion, and negative regulation of viral
genome replication.

NOG DEG of infected
versus healthy
controls; down-
regulated (Data
file 6)

Noggin Encodes protein with cytokine binding and protein homodimerization activity, predicted to be involved in
embryonic morphogenesis, regionalization, and regulation of signal transduction.

SLC4A10 DEG of infected
versus healthy
controls; down-
regulated (Data
file 6)

Solute Carrier
Family 4
Member 10

Encodes protein with sodium:bicarbonate symporter activity, predicted to be involved in bicarbonate transport,
regulation of short-term neuronal synaptic plasticity, and visual perception, and to play a role in brain
development, locomotory exploration behavior, and proton transmembrane transport.

ALOX15 DEG of infected
versus healthy
controls; down-
regulated (Data
file 6)

Arachidonate
15-Lipoxygenase

Encodes protein acting on single donors with incorporation of molecular oxygen, incorporation of two atoms
of oxygen and phosphatidylinositol-4,5-bisphosphate binding activity, predicted to be involved in cellular
response to interleukin-13, fatty acid metabolic process, and positive regulation of ERK1 and ERK2 cascade.

TSPEAR DEG of infected
versus healthy
controls; down-
regulated (Data
file 6)

Thrombospondin
Type Laminin G
Domain And
EAR Repeats

Encodes protein involved in regulation of Notch signaling pathway and tooth mineralization, located in cell
surface and stereocilium.

NRCAM DEG of infected
versus healthy
controls; down-
regulated (Data
file 6)

Neuronal Cell
Adhesion Molecule

Encodes protein with ankyrin binding activity predicted to be involved in angiogenesis, central nervous system
development, and clustering of voltage-gated sodium channels.

MMP8 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Matrix
Metallopeptidase 8

Encodes protein with serine-type endopeptidase and tumor necrosis factor binding activity, predicted to be
involved in endodermal cell differentiation, positive regulation of tumor necrosis factor production, and
proteolysis. Biomarker of COVID-19, aortic aneurysm (multiple), arthritis (multiple), breast cancer, and female
reproductive organ cancer (multiple).

OLFM4 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Olfactomedin 4 Encodes protein with cadherin binding and structural molecule activity, predicted to be involved in positive
regulation of substrate adhesion-dependent cell spreading.

(Continued)
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TABLE 3 Continued

Gene
symbol

Identified
as ..

Gene name Known function

ADAMTS2 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

ADAM
Metallopeptidase
With
Thrombospondin
Type 1 Motif 2

Encodes protein with metalloendopeptidase activity, predicted to be involved to be involved in extracellular
matrix organization, acts on collagen fibril organization, protein processing, and spermatogenesis.

ARG1 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Arginase 1 Encodes protein with arginase activity and manganese ion binding activity, predicted to be involved in negative
regulation of T cell proliferation, negative regulation of type II interferon-mediated signaling pathway, and
positive regulation of neutrophil mediated killing of fungus.

MAOA DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Monoamine
Oxidase A

Encodes protein with monoamine oxidase activity and primary amine oxidase activity, predicted to be involved
in biogenic amine metabolic process, dopamine catabolic process and positive regulation of signal transduction.

IL1R2 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Interleukin 1
Receptor Type 2

Encodes protein with interleukin-1 binding activity and interleukin-1 receptor activity, predicted to be involved
in immune response, acts in negative regulation of gene expression and negative regulation of interleukin-1-
mediated signaling pathway.

ZDHHC19 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Zinc Finger DHHC-
Type
Palmitoyltransferase
19

Encodes protein with S-palmitoyltransferase activity, predicted to be involved in protein targeting
to membrane.

DEFA3 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Defensin Alpha 3 Encodes protein involved in antimicrobial humoral immune response mediated by antimicrobial peptide,
innate immune response in mucosa, and intracellular estrogen receptor signaling pathway.

PCOLCE2 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Procollagen C-
Endopeptidase
Enhancer 2

Encodes protein with heparin binding activity, and peptidase activator activity, predicted to be involved in
cellular response to leukemia inhibitory factor.

TPST1 DEG of ICU
versus non-ICU;
higher in ICU
(Data file 9)

Tyrosylprotein
Sulfotransferase 1

Encodes protein with homodimerization activity and protein-tyrosine sulfotransferase activity, predicted to be
involved in 3'-phosphoadenosine 5'-phosphosulfate metabolic process and inflammatory response.

CCL2 DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

C-C Motif
Chemokine
Ligand 2

Encodes protein with CCR2 chemokine receptor binding activity and chemokine activity, predicted to be
involved in cellular response to cytokine stimulus, leukocyte chemotaxis, and regulation of apoptotic process.

ZNF703 DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

Zinc Finger
Protein 703

Encodes protein with DNA-binding transcription factor binding activity and metal ion binding activity,
predicted to be involved in cellular response to estradiol stimulus, positive regulation of mammary gland
epithelial cell proliferation, and regulation of transforming growth factor beta receptor signaling pathway.

CLEC4F DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

C-Type Lectin
Domain Family 4
Member F

Encodes protein with galactose binding activity and glycolipid binding activity, predicted to be involved in
endocytosis, and NK T cell activation.

HLA-
DQB1

DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

Major
Histocompatibility
Complex, Class II,
DQ Beta 1

Encodes protein with peptide antigen binding activity, protein antigen binding activity, and toxic substance
binding activity, involved in T cell receptor signaling pathway, antigen processing and presentation of
exogenous peptide antigen via MHC class II, and humoral immune response.

CDKN1C DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

Cyclin Dependent
Kinase Inhibitor 1C

Encodes protein with kinase inhibitor activity, predicted to be involved in negative regulation of epithelial cell
proliferation, positive regulation of transforming growth factor beta receptor signaling pathway, and regulation
of DNA-templated transcription.

CCL8 DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

C-C Motif
Chemokine
Ligand 8

Encodes protein with phospholipase activator activity and protein kinase activity, predicted to be involved in
antimicrobial humoral immune response mediated by antimicrobial peptide, calcium ion transport, and
intracellular calcium ion homeostasis.

(Continued)
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TABLE 3 Continued

Gene
symbol

Identified
as ..

Gene name Known function

HLA-
DQA1

DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

Major
Histocompatibility
Complex, Class II,
DQ Alpha 1

Encodes protein with MHC class II protein complex binding activity and peptide antigen binding activity,
predicted to be involved in antigen processing and presentation of exogenous peptide antigen via MHC class II,
peptide antigen assembly with MHC class II protein complex, and response to type II interferon, acting
upstream of antigen processing and presentation of peptide antigen and positive regulation of T
cell differentiation.

NR4A1 DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

Nuclear Receptor
Subfamily 4 Group
A Member 1

Encodes protein with DNA-binding transcription factor activity, RNA polymerase II-specific and sequence-
specific double-stranded DNA binding activity, predicted to be involved in cellular response to vascular
endothelial growth factor stimulus, endothelial cell migration, and positive regulation of endothelial
cell proliferation.

CYP4F22 DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

Cytochrome P450
Family 4 Subfamily
F Member 22

Encodes protein with monooxygenase activity, predicted to be involved in ceramide biosynthetic process.

IL4I1 DEG of ICU
versus non-ICU;
higher in non-
ICU (Data file 9)

Interleukin 4
Induced 1

Encodes protein with L-amino-acid oxidase activity, predicted to be involved in aromatic amino acid family
catabolic process, negative regulation of T cell mediated immune response to tumor cell, and regulation of T
cell activation.
F
rontiers in Im
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List of DEGs identified in different contrasts and their known functions. Information on gene symbols and names from Gene Cards (GeneCards), information on gene functions from
(Alliance_of_Genome_Resources) and subsequently edited manually.
FIGURE 3

Comparison of infected non-ICU patients and ICU patients versus healthy controls, ICU versus non-ICU patients and corresponding VENN diagram. (A)
Volcano plot of infected non-ICU patients versus healthy controls. (B) Volcano plot of infected ICU patients versus healthy controls. (C) Volcano plot of
infected ICU patients versus infected non-ICU patients. See Figure 2 for more details on volcano plots. (D) Venn diagram illustrating the overlaps
between the DEGs from contrasts of ICU and non-ICU patients versus healthy controls and between ICU and non-ICU patients. A total of 2,022 DEGs
were identified in all three groups (all genes combined), and 75 DEGs were commonly shared between the three groups (central overlap.
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HAPMAP collection allowed us to assign ethnicity to each patient from

our cohort and to correlate genotype to gene expression data. The

multidimensional scaling (MDS) plot of the reference genotypes

showed a clear separation of ethnic groups (Figure 6A; colored for

the ethnicity of the reference genomes). Based on theMDS components

in Figure 6A, we assigned ethnicity to almost all participants from our

cohort to four ancestral groups (Figure 6B): African-American (AfAm,

n = 46), Asian (n = 2), Caucasian (Caucs, n = 169), Mexican American

Indians (Mex_AmInd, n = 4). For some samples, no clear assignment

was possible (referred to as admixed, n = 2).
Associations between transcriptome
and genotype

After assigning ethnicity to every participant, we analyzed gene

expression signals with respect to ethnicity (using Data file 20 and

sample descriptions from Data file 1). The PCA for normalized gene

expression for all participants suggests PC1 and PC2 did not

obviously separate by ethnicity (Figure 7A). We then specifically

looked for genes in infected patients that were differentially

expressed between African-Americans and Caucasians. Fifteen

genes were expressed at significantly higher levels in infected

African-Americans, and 24 were significantly higher in

Caucasians (Figure 7B; Data file 28). No pathways were found to
Frontiers in Immunology 12
be associated with these genes. Six of the 39 DEGs overlapped with

DEGs from infected versus healthy controls (HP, MMP9, FBXO39,

HES4, SMIM1, and FAP (Data file 6 and Data file 28), indicating

regulation after infection. All other ethnic groups were too small for

a reasonable analysis.

Also, our combined transcriptome and genotype data allowed

us to identify genes for which the expression levels were correlated

with genetic variations in or near the gene, so-called cis-eQTLs.

Analyzing all DEGs combined (ICU versus healthy, non-ICU versus

healthy, and ICU versus non-ICU), and including sex and ethnicity

as covariates, showed that 871 DEGs were significantly correlated

(adjusted P < 10-5, assuming an average of 100 SNPs per gene) with

a genetic variant (Data file 13). The Manhattan plot showed the

strongest cis-eQTLs on chromosome 6 (Figure 8) at the location of

the HLA cluster. Sixty-one genes were mapped to chromosome 6, of

which 16 were in the HLA region (30Mb – 34Mb). The top six most

significant cis-eQTLs were HLA-DQB2, FADS2, HLA-DQB1,

MDGA1, ICOSLG, and APOBEC3B; Data file 13). Figure 9

illustrates their expression levels, stratified by genotype at its

locus. In almost all cases, genotypes were distributed across

ethnicities. Of note, almost all African-American patients (except

one) carried genotype BB for FADS2.

Of the six DEGs from the comparison of infected African-

American versus Caucasian patients, four DEGs (SMIM1, FBXO39,

HES4, andHP;Data file 28 and Data file 13) also exhibited a significant
FIGURE 4

Pathway analysis of infected ICU and non-ICU patients versus healthy controls. (A) Functional analysis using GO term enrichment for the up-
regulated DEGs from the contrast of infected non-ICU patients versus healthy controls. (B) Functional pathway analysis using GO term enrichment
for the up-regulated DEGs from the contrast of infected ICU patients versus healthy controls. (C) Functional pathway analysis using GO term
enrichment for the down-regulated DEGs from the contrast of infected ICU patients versus healthy controls.
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cis-eQTL (Supplementary Figure S3A) stratified by ethnicity;

Supplementary Figure S3B stratified by genotype; Data file 14). Gene

HP had the lowest significance for a cis-eQTL and did not show a clear

separation. For gene FAP, participants’ genotypes were all homozygous

(AA), except for one heterozygote (AB).
Discussion

Here, we analyzed the host response in human blood after

infection with the influenza virus. This study is one of the largest

cohorts to date using RNAseq technology and analyzing the

influenza infection transcriptome response in humans (17–33,

57). Our study contained a total of 208 samples, where 127 were

from infected patients, with 23 requiring intensive care. In addition,

very unique to this study, we determined the genotype of

participants, allowing us to correlate gene expression with

ethnicity and genetic variation.
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Pathway analysis for DEGs between infected patients and

healthy controls agreed with other studies of influenza-infected

patients regarding upregulation of common virus-host defense

pathways (Figure 2; Data file 6) (17–33) and other respiratory

virus infections (33). The main responses for up-regulated genes

encompass interferon-stimulated genes and chemokine/cytokines.

Down-regulated genes represent adaptive immune responses, most

likely due to lymphopenia and suppression by up-regulated early

inflammatory pathways, and most likely recruitment of adaptive

immune cells into the lung.

Our results confirmed that IFI27 (Interferon Alpha Inducible

Protein 27; Volcano plot in Figure 2A; and list of DEGs in Data file 6)

showed the strongest increase in influenza-infected individuals

compared to healthy controls. IFI27 is an interferon-induced gene

involved in polymerase II-specific DNA-binding transcription factor

bindingactivity andcellular apoptosis (29, 58) and ismainly expressed in

dendritic cells (29). This study confirmed earlier observations describing

its strong expression in the blood of infected influenza-infected patients
FIGURE 5

Pathway analysis of infected ICU versus non-ICU patients. (A) Functional analysis using GO term enrichment for the up-regulated DEGs (higher in
ICU) from the contrast of infected ICU patients versus non-ICU patients. (B) Functional pathway analysis using GO term enrichment for the down-
regulated DEGs (higher in non-ICU) from the contrast of infected ICU patients versus non-ICU patients.
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(29, 59). In another study, we also observed top-level expression of IFI27

for human metapneumovirus infections but not for enterovirus/

rhinovirus infections (33). IFI27 may, therefore, serve as a molecular

biomarker in human blood to distinguish influenza and

metapneumovirus from other respiratory infections. However, IFI27

was not a distinguishing factor for ICU admission. More studies with

different respiratory and non-respiratory viral, bacterial, and fungal

infections will be required to confirm IFI27 as robust

diagnostic biomarker.

Pathways for inflammatory responses and neutrophil-mediated

toxicity were higher in ICU patients, and pathways for IFNG

production and response to chemokines were higher in non-ICU

patients. These are similar observations as described in previous

studies (25, 32, 59). The high activation of inflammatory responses,

and especially the high activation of neutrophil responses, is the

most likely cause of the observed immunopathology in ICU patients

(25, 32). However, only some DEGs (169) were statistically

significant in the direct contrast between ICU and non-ICU

patients. This observation suggests that the magnitude of

responses maybe different for many more genes but without

being statistically significant (mostly higher in ICU patients).

It is worth noting that many of the DEGs from the comparison

of ICU versus non-ICU patients (see Data file 9 for list of DEGs)
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exhibit known functions in macrophages, suggesting that

dysregulation of macrophages may also contribute to severe

influenza disease. CCL2 (C-C Motif Chemokine Ligand 2) was

down-regulated in the ICU patients as was CX3CR1 (C-X3-C Motif

Chemokine Receptor 1), which is associated with obesity, a risk

factor for severe influenza disease (60). ARG1 (Arginase 1) was also

up-regulated, and ARG1-expressing macrophages promote wound

healing and dampen T cells (61–64). In addition, ADAMTS2

(ADAM Metallopeptidase With Thrombospondin Type 1 Motif

2) was upregulated. ADAMTS2 expression is associated with CD14

monocytes and alveolar macrophages, and it is known to function

as a pro-collagen factor (65–67).

To our knowledge, this study is the first to use genotyping more

precisely than using questionnaires and correlate ethnicity to gene

expression differences. Genes influencing T cell signaling and co-

stimulation (ICOSLG, HLA-DQB2, and HLA-DQB1) and type I

interferon (FADS2,MDGA1, and APOBEC3B) were associated with

genetic variation (Data file 13, Figure 9). ICOSLG (Inducible T Cell

Costimulator Ligand) codes for a cell co-stimulator. Its loss leads to

immunodeficiency (Roussel et al., 2018). HLA-DQB2 (Major

Histocompatibility Complex, Class II, DQ Beta 2) encodes a TCR

signaling receptor (GeneCards). FADS2 (Fatty Acid Desaturase 2)

influences type I interferon response in CD4 cells (68). MDGA1
FIGURE 6

MDS plots of genotypes. (A) MDS plot showing all samples, with reference samples colored and participants in gray. (B) MDS plot of participants
analyzed in this study (only a single representation for each participant, no reference genomes), colored for ethnicity. Abbreviations: African-
American (AfAm), Mexican American Indians (Mex_AmInd), Mexican ancestry (Mexican anc), Indian American (Indian_Am).
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FIGURE 7

Principal component analysis and gene expression by genotype. (A) Principal component analysis plot for gene expression values of infected
participants, colored by ethnicity. Abbreviations: African-American (AfAm), Caucasian (Caucs), Mexican American Indians (Mex_AmInd), Mexican
ancestry (Mexican anc), Indian American (Indian_Am), no unambiguous assignment (admixed). (B) Volcano plot of DEGs for contrasts of infected
Caucasian versus African-American patients. See Figure 2 for more details on volcano plots.
FIGURE 8

Manhattan plot of cis-eQTL analysis. Manhattan plot illustrating the results of cis-eQTL analysis for all 2,022 DEGs combined (DEGs from all
comparisons presented in Figures 2, 3). y-axis: -log10 of p-value, x-axis: genome position per chromosome.
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(MAM Domain Containing Glycosylphosphatidylinositol Anchor

1) affects type I IFN in epithelial cells (69). APOBEC3B

(Apolipoprotein B MRNA Editing Enzyme Catalytic Subunit 3B)

affects type I IFN and was associated with COVID severity in

African-Americans (70, 71). However, our study did not find

ethnicity as a distinguishing factor, although it had higher

expression in individuals of any ethnicity with AA or BB genotypes.

Only a few DEGs were different between severity groups for

influenza-infected African-Americans and Caucasians, suggesting

only a minor role in the risk of progressing to severe influenza. Four

genes showed different expression between these two ethnic groups

and also exhibited genetic variations in cis (within or close to the

transcribed region of the genes), suggesting that differences in

expression level are caused by genetic differences (Supplementary

Figure S3 and Data file 14). SMIM1 (Small Integral Membrane

Protein 1 (Vel Blood Group) encodes a protein that is the antigen

for the Vel blood group, which participates in red blood cell

formation. These proteins are part of SCF complexes, acting as

protein-ubiquitin ligases. It does not have any known function in

the host response to infections (GeneCards). FBXO39 (F-Box

Protein 39) is a member of the F-box protein family, containing

an F-box motif. It is associated with Lymphogranuloma Venereum

and Granuloma Inguinale disease. Thus, it may have a function in

the host’s defense against infections (GeneCards). HES4 (Hes

Family BHLH Transcription Factor 4) is predicted to be part of

the chromatin and to enable DNA-binding transcription factor

activity and RNA polymerase II sequence-specific DNA binding

activity. It does not have any known function in the host response to

infections (GeneCards). The function of these genes in the immune

defense against infections is unknown, except for HP. Thus, it is

more likely that the few numbers of DEGs and their functions do

not explain the observed differences in the population and that the

observed differences in clinical outcomes could be due to
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socioeconomic differences or differences in access to care rather

than biological factors (72).

Our study has several limitations. Although the cohort was

large compared with other studies in the field, it only detected

small differences when groups were stratified by severity plus sex

and age. Thus, even larger group sizes may be needed to detect

significant differences between these groups. Transcriptome

analyses and genotype analyses were performed in several

batches, which required batch corrections. Such corrections

may result in a lower power to detect more subtle differences.

We did not include patients younger than 18 years in our study,

and thus could not analyze responses in children and

adolescents. We did not perform a time course analysis for

differential gene expression, because the number of patients

from whom we collected multiple time data was too limited.

Furthermore, the samples here were collected on ‘day 1’ of a

patient’s presentation at the hospital or the first blood draw from

ICU patients. Thus, the time of infection or onset of symptoms

was unknown, which did not allow us to analyze the kinetics of

the host response over time. Both point-in-time deviations of

gene signatures and their causal relationships are unclear but

should be the subject of future studies (73). Our cohort was large

enough for the detection of cis-eQTL, although higher numbers

would be preferable for detecting more. However, our cohort size

was too small for the identification of trans-eQTLs variants in

genes that affect the regulation of other genes distantly located in

the genome. Nevertheless, our data will allow future studies to

include the cis-eQTLs genotype information in their analyses.

While the genes identified here and elsewhere may serve as

biomarkers for a better diagnosis and/or predictors of severe

disease, they still need to be clinically validated. However, even if

verified, it is unclear how they might be used early enough to

alter the course of disease.
FIGURE 9

Gene expression levels of genes with a cis-eQTL. Boxplots of gene expression values of six top genes (by FDR) for e-QTL mapping, stratified by
genotype. Box center line: median, box limits: upper and lower quartiles, whiskers: 1.5x interquartile range.
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64. West EE, Merle NS, Kamiński MM, Palacios G, Kumar D, Wang L, et al. Loss of
CD4(+) T cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung
pathology during influenza infection. Immunity. (2023) 56:2036–2053.e2012.
doi: 10.1016/j.immuni.2023.07.014

65. Hofer TP, Frankenberger M, Mages J, Lang R, Meyer P, Hoffmann R, et al.
Tissue-specific induction of ADAMTS2 in monocytes and macrophages by
glucocorticoids. J Mol Med (Berl). (2008) 86:323–32. doi: 10.1007/s00109-007-0284-0

66. Bekhouche M, Leduc C, Dupont L, Janssen L, Delolme F, Vadon-Le Goff S, et al.
Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly
broadens their functions and identifies extracellular matrix organization and TGF-b
signaling as primary targets. FASEB J. (2016) 30:1741–56. doi: 10.1096/fj.15-279869

67. Etich J, Koch M, Wagener R, Zaucke F, Fabri M, Brachvogel B. Gene expression
profiling of the extracellular matrix signature in macrophages of different activation
status: relevance for skin wound healing. Int J Mol Sci. (2019) 20. doi: 10.3390/
ijms20205086

68. Kanno T, Nakajima T, Yokoyama S, Asou HK, Sasamoto S, Kamii Y, et al. SCD2-
mediated monounsaturated fatty acid metabolism regulates cGAS-STING-dependent
type I IFN responses in CD4(+) T cells. Commun Biol. (2021) 4:820. doi: 10.1038/
s42003-021-02310-y

69. Wang Y, Abe JI, Chau KM, Wang Y, Vu HT, Reddy Velatooru L, et al. MAGI1
inhibits interferon signaling to promote influenza A infection. Front Cardiovasc Med.
(2022) 9:791143. doi: 10.3389/fcvm.2022.791143

70. Taura M, Frank JA, Takahashi T, Kong Y, Kudo E, Song E, et al. APOBEC3A
regulates transcription from interferon-stimulated response elements. Proc Natl Acad
Sci USA. (2022) 119:e2011665119. doi: 10.1073/pnas.2011665119

71. Zhang K, Chen F, Shen HY, Zhang PP, Gao H, Peng H, et al. Regulatory variants
of APOBEC3 genes potentially associate with COVID-19 severity in populations with
African ancestry. Sci Rep. (2023) 13:22435. doi: 10.1038/s41598-023-49791-x

72. Markovic S, Rodic A, Salom I, Milicevic O, Djordjevic M, Djordjevic M. COVID-
19 severity determinants inferred through ecological and epidemiological modeling.
One Health. (2021) 13:100355. doi: 10.1016/j.onehlt.2021.100355

73. Smith AM. Decoding immune kinetics: unveiling secrets using custom-built
mathematical models. Nat Methods. (2024) 21:744–7. doi: 10.1038/s41592-024-02265-y
frontiersin.org

http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
https://doi.org/10.21105/joss.00731
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.1093/nar/30.1.207
https://figshare.com/
https://doi.org/10.1186/s12920-023-01693-7
https://www.genecards.org/
https://doi.org/10.1111/jcmm.16275
https://doi.org/10.1016/S0002-9440(10)65068-7
https://doi.org/10.1182/blood-2006-06-031856
https://doi.org/10.1182/blood-2006-06-031856
https://doi.org/10.1371/journal.ppat.1000371
https://doi.org/10.3389/fimmu.2014.00428
https://doi.org/10.1016/j.immuni.2023.07.014
https://doi.org/10.1007/s00109-007-0284-0
https://doi.org/10.1096/fj.15-279869
https://doi.org/10.3390/ijms20205086
https://doi.org/10.3390/ijms20205086
https://doi.org/10.1038/s42003-021-02310-y
https://doi.org/10.1038/s42003-021-02310-y
https://doi.org/10.3389/fcvm.2022.791143
https://doi.org/10.1073/pnas.2011665119
https://doi.org/10.1038/s41598-023-49791-x
https://doi.org/10.1016/j.onehlt.2021.100355
https://doi.org/10.1038/s41592-024-02265-y
https://doi.org/10.3389/fimmu.2024.1385362
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Host response to influenza infections in human blood: association of influenza severity with host genetics and transcriptomic response
	Introduction
	Materials and methods
	Patient cohorts – sample collections
	General aspects of sample analysis
	Preparation of RNA and RNA sequencing
	Bioinformatics of RNAseq data
	Preparation of DNA for genotyping
	Genotyping of DNA by SNP microarrays
	Bioinformatic analysis of genotype data
	QTL analysis
	Statistics
	Availability of data and materials

	Results
	Cohort demographics
	Transcriptome analysis of infected patients versus healthy controls
	Transcriptomes analysis of infected ICU versus infected non-ICU patients and to healthy controls
	Analysis of age and sex in driving transcriptome differences
	Genotyping of participants
	Associations between transcriptome and genotype

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


