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Osteoarthritis (OA) is the most common form of arthritis, characterized by

osteophyte formation, cartilage degradation, and structural and cellular

alterations of the synovial membrane. Activated fibroblast-like synoviocytes

(FLS) of the synovial membrane have been identified as key drivers, secreting

humoral mediators that maintain inflammatory processes, proteases that cause

cartilage and bone destruction, and factors that drive fibrotic processes. In

normal tissue repair, fibrotic processes are terminated after the damage has

been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated

and prolonged. Various stressors, including aging, joint instability, and

inflammation, lead to structural damage of the joint and micro lesions within

the synovial tissue. One result is the reduced production of synovial fluid

(lubricants), which reduces the lubricity of the cartilage areas, leading to

cartilage damage. In the synovial tissue, a wound-healing cascade is initiated

by activating macrophages, Th2 cells, and FLS. The latter can be divided into two

major populations. The destructive thymocyte differentiation antigen (THY)1─

phenotype is restricted to the synovial lining layer. In contrast, the THY1+

phenotype of the sublining layer is classified as an invasive one with immune

effector function driving synovitis. The exact mechanisms involved in the

transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis

remain unclear. The review provides an overview of the phenotypes and spatial

distribution of FLS in the synovial membrane of OA, describes the mechanisms of

fibroblast into myofibroblast activation, and the metabolic alterations of

myofibroblast-like cells.
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1 Introduction

-Joint inflammation or arthritis is the leading cause of years of

disability for millions of people worldwide and is associated with

more than 100 types of joint diseases. This heterogeneous group is

characterized by the fact that the synovium is the focus of

inflammatory activity (1). Herein, fibroblast-like synoviocytes

(FLS) have been recognized as key factors in the pathogenesis of

the two main types of arthritis: degenerative osteoarthritis (OA) and

autoimmune-mediated rheumatoid arthritis (RA) (2). Both diseases

have many commonalities. They share pathogenic mechanisms,

including leukocyte extravasation, neovascularization, stromal

proliferation, and fibrosis-related characteristics. This ultimately

leads to micro-lesions within the synovial tissue and structural

damage in the joint, including cartilage degradation and bone

erosion. These synovial lesions initiate wound healing and tissue

repair processes leading to fibrosis features, a pathological condition

characterized by an excessive accumulation of extracellular matrix

(ECM). The fibrotic state results from the transformation of

fibroblasts into myofibroblasts that persist due to insufficient

clearance by apoptosis, as opposed to the controlled dissolution

observed in normal wound healing. Clinically, patients often suffer

from an unrecognized onset of disease, chronicity of disease,

repeated flare-ups, joint pain, and joint disability.

However, RA and OA also own distinct pathogenic features. RA

demonstrates a higher grade of inflammation driven by

autoimmunity and the pannus formation due to hyperplasia of

the synovial sublining area. In contrast, OA is considered a

degenerative, low-grade inflammatory disease. Herein, OA is a

prime example of stress-associated joint disorder due to the

constant and intense mechanical strain on the joints (3). The

exact mechanisms involved in the transition of fibroblasts into a

myofibroblast-like phenotype that drives fibrosis remain unclear.

The aim of this review is, therefore, to (i) briefly summarize

current knowledge on the pathogenesis of OA focusing on the

(patho-)physiology of the synovial tissue, (ii) provide an overview of

possible mechanisms of fibroblast to myofibroblast transformation

in OA and (iii) outlines their metabolic alterations that improve our

understanding of new potential therapeutic targets. Finally, we

present a hypothesis on the development of OA and outline

possibilities for future diagnostic and treatment strategies for OA.
2 Osteoarthritis: driven by synovitis
and fibrosis

Osteoarthritis is a highly prevalent musculoskeletal disorder

and the most common form of arthritis. The risk of symptomatic

knee and hip OA ─ the two most frequent forms ─ is estimated at

45% and 25%, respectively (4, 5). Due to increasing life expectancy

and an active, aging population, OA has become the leading cause

of joint pain and age-related disability (3, 6). Among the 369

diseases examined in the Global Burden of Disease Study 2019,

OA ranks as the 17th leading cause of disabilities worldwide (6).

Consequently, it is predicted that the prevalence of OA will

continue to rise, imposing a burden on individuals and healthcare
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systems. This is evident in the increasing number of joint

replacement surgeries (7).

OA is a chronic, low-grade inflammatory, progressive joint

disorder characterized by structural damage to one or more joints

(2). Traditionally, OA has been classified as a non-inflammatory

joint disease of articular cartilage in elderly individuals (8, 9) due to

both the relative lack of neutrophils in the synovial fluid and the

absence of a systemic manifestation of inflammation. Nowadays,

OA is considered a degenerative whole-joint disease, wherein all

components of the synovial joint ─ bone, articular cartilage,

synovial membrane, tendon, and ligaments ─ actively contribute

to disease progression (Figure 1) (10–12). The underlying

mechanisms of disease onset and progression are poorly

understood, and early diagnosis remains elusive. However,

various stressors are known to be associated with or suggested to

contribute to OA, including aging, obesity, joint instability,

excessive joint locomotion, trauma, and inflammation (Figure 1)

(13–15). The pathogenesis is characterized by progressive articular

cartilage degradation ─ a hallmark of OA ─ partially driven by

variable degrees of inflammatory processes, disruption of

osteochondral homeostasis, abnormalities of bone contour,

osteophytosis, degeneration of knee ligaments, synovitis,

hypertrophy of the joint capsule, and fibrosis (3, 10, 16).

The course of OA is highly variable among individuals. OA can

affect a single joint or multiple joints, leading to mild or severe joint

pain, immobility, and potential loss of joint function, reducing

quality of life and considerable socioeconomic burdens (3, 15, 17).

Large weight-bearing joints such as hip, hand, knee, and spine are

commonly affected (18). Articular cartilage is anatomically capable

of responding to the local biomechanical environment, e.g.,

absorbing and distributing mechanical loads and forming a low-

friction system that enables mobility (19). Normally, homeostasis of

anabolic and catabolic processes within the joint maintains cartilage

integrity by providing lubricants and nutrients, maintaining ECM

composition, and removing debris.

In the context of aging, trauma, and OA pathogenesis,

mechanical stress and inflammation enhance catabolic processes,

driving the breakdown of proteoglycans and collagens. This process,

coupled with an imbalanced reactive oxygen species (ROS)

production that exceeds antioxidant capacity, culminates in

cellular senescence (20–22). Moreover, the composition and

organization of the cartilage matrix change while calcification of

cartilage ─ a hallmark of OA ─ increases and the synthesis of

lubricin declines. The deficiency in cartilage lubrication, which is

characterized by the loss of proteoglycans and the breakdown of

collagens, is exacerbated by low-grade inflammation of the synovial

membrane. This results in an inability of the articular cartilage to

properly distribute the mechanical forces within the joints, leading

to micro lesion in the synovium (23, 24).

Calcium crystals and breakdown products can trigger an

inflammatory cascade in the articular cartilage and the synovial

membrane by pattern recognition receptors (PRRs) of the innate

response as a part of a sterile tissue injury (23). The PRRs of the toll-

like receptor family (TLRs 1-10) are constitutively expressed on

cells of the synovial membrane, including macrophages and FLS in

OA (25). Notably, FLS can respond to microbial TLR agonists in
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vitro [31, 32]. After TLR engagement, activated FLS produce

chemokines (e.g., interleukin (IL)-8)/cytokines (e.g., IL-1, IL-6,

and tumor necrosis factor (TNF)-a), thereby recruiting and

stimulating additional immune cells (26–28). Infiltration by

macrophages is common in both OA and RA and leads to the

formation of multinucleated giant cells that enhance phagocytosis

(29). Usually, pro‐inflammatory cytokines such as TNF-a, IL-1b,
IL-6, IL-8, IL-15, IL-17, IL-21, inflammatory mediators such as

prostaglandin E2 (PGE2), nitric oxide (NO), adipokines, matrix

metalloproteinases (MMPs) such as MMP-1, MMP-3, MMP-9,

MMP-13 as well as aggrecanases, and adhesion molecules such as

intercellular adhesion molecule-1 (ICAM-1) and vascular cell

adhesion molecule-1 (VCAM-1) are abundant in OA and

contribute to its progression (19, 30–32). This disruption of

homeostasis results in elevated water content, reduced ECM

proteoglycans, a weakening of the collagen network due to

decreased synthesis, heightened collagen degradation, increased

chondrocyte apoptosis, and is responsible for histological changes

in the OA synovium (33).

The role of synovial fibroblasts in the pathophysiology of OA –

crosstalk between synoviocytes and the innate immune system – has

been increasingly investigated in the past years. Nevertheless, much is

still unknown. The study by Oehler and colleagues in 2002 (34)

examined pathologic changes of the synovial membrane in patients

with early-stage OA and identified four histological patterns of OA-

associated synoviopathy: (i) synovial lining hyperplasia, (ii) sublining

and capsular fibrosis, (iii) macromolecular cartilage and bone debris

(detritus-rich), and (iv) inflammatory manifestations and stromal
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vascularization (Figure 2) (29, 35–38). Synovitis is known to exist in

all stages of OA and is thought to be related to synovial fibrosis in late

stages (30, 39). Although the extent of synovitis in OA is, on average,

less than in RA (40), significant inflammatory and fibrotic alterations

have been found in the synovium of OA patients (41). Previous

studies indicate a correlation between the severity and progression of

OA with the amount of fibrin deposition and the extent of leukocyte

infiltration – with macrophages and T-cells being the predominant

immune cells in OA synovium (36). OA is characterized by

proliferating FLS, contributing to an imbalance of connective tissue

synthesis and catabolism. FLS act as key regulators and promote the

production of pro-inflammatory mediators and matrix destructive

factors, exacerbating synovial inflammation and initiating a vicious

cycle leading to cartilage degradation and joint stiffness ─
characteristic features of OA.
3 The physiology of the
synovial membrane

Synovium or synovial membrane is the connective tissue that

encapsulates the joints without an epithelial or endothelial cell layer.

The synovium provides structural support to the joint, lubricates

the joint surfaces, especially the cartilage surfaces, and supplies

nutrients to the cartilage (42, 43). It lines the inner surface of the

joint capsule and the joint cavity and consists of two anatomical and

functional layers: the intimal lining (intima) and sublining layer

(subintima). In 1962, Barland first reported the successful discovery
FIGURE 1

Synovial joint architecture and stressors contributing to osteoarthritis (OA). Schematic representation of healthy joint physiology (left) and OA
pathology (right). The joint comprises the femur and the tibia bone, covered with hyaline articular cartilage. To ensure smooth movement, the joint
cavity is filled with synovial fluid, which also supplies the avascular cartilage. From the outside, the joint is enclosed by the joint capsule. This consists
of an outer fibrous membrane and the inner synovial membrane. OA is characterized by cartilage degradation, bone erosion and bone cysts as well
as synovial fibrosis and synovitis. Stress factors contributing to OA include mechanical overload, injury, inflammation, obesity, and aging. Figure was
created with BioRender.com.
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of two distinct cell types of the lining layer “type A cells” and “type B

cells” (44). Since 1996, the term “fibroblast-like synoviocytes” has

been used to describe type B cells (45). Finally, in 2011, Smith

introduced the terms “type A synoviocytes” and “type B

synoviocytes” to describe the two types of synovial cells that

occur in relatively equal proportions in the lining layer (16, 43).

The synovial lining lacks a basement membrane and tight junctions.

It is, therefore, a loose composite of cells embedded in an

amorphous matrix composed of collagens such as types I, III, IV,

V, and VI (46). In addition, the lining layer is in contact with the

intraarticular cavity and responsible for the content of the synovial

fluid. Physiologically, it is one to four cell layers thick. The

underlying sublining layer, up to 5 mm in thickness, consists of,

e.g., fibrous and fatty tissue, blood vessels, and lymphatic vessels

and is composed of FLS with fewer macrophage type A cells

(Figure 2) (43). Type A synoviocytes are non-fixed cells that can

actively phagocytose or pinocytose cell debris and waste in the

synovial cavity and possess the ability to present antigens. These

cells are derived from blood-based mononuclear cells and can be

considered resident macrophages (47). Type B synoviocytes are the

major stromal cells of the joint synovium that physiologically

maintain the structural and dynamic integrity of joints. They can

be defined as non-vascular, non-epithelial cells of the synovium that

arise during embryogenesis by local division and are replaced by

local division (48). Lining layer FLS synthesize matrix components

such as hyaluronic acid, collagens, and fibronectin (FN) of the

synovial fluid, which performs a lubricating function and allows

joint surfaces to slide across each other smoothly (49). Large

amounts of hyaluronan are found mainly in the lining layers of

normal synovium. These seep into the sublining layer and

disappear, indicating diffusion of hyaluronan from the surface

toward the clearing lymphatic vasculature.
Frontiers in Immunology 04
4 The diversity of phenotypes and
functions of fibroblast

The joint’s microenvironment is exposed to constant

mechanical forces and occasional minor trauma caused by

locomotion. In order to maintain homeostasis, this dynamic

tissue is constantly being remodeled and repaired by FLS. FLS are

not uniform throughout the body. They are specialized in functions

depending on their anatomic location (50). Precisely, recent studies

using scRNA-seq transcriptomics defined that FLS are a

heterogeneous population with several distinct subtypes that

exhibit subtype-dependent phenotypic characteristics. Thereby,

they differ in their gene expression patterns, epigenetic marks,

and functions, which may explain why some joints are more

prone to develop certain types of arthritis than others (51). The

studies by Stephenson et al. (52) and Mizoguchi et al. (53) have

uncovered two major populations of FLS whose localization can be

distinguished between lining layer and sublining layer based on the

thymocyte differentiation antigen 1 (THY1) expression. These cells

from OA joints exhibit a less aggressive cellular behavior than cells

from RA joints, meaning proliferation rate, invasive ability,

expression, and secretion level of inflammatory cytokines (54).

In general, the more aggressive but quiescent podoplanin

(PDPN)+ CD34− THY1− FLS phenotype is restricted to the

synovial lining layer (Figure 3). These cells highly express CD55,

proteoglycan 4 (PRG4), chloride intracellular channel 5 (CLIC5),

FN1, and heparin-binding epidermal growth factor-like growth factor

(HBEGF) (51, 55, 56). In this context, CD55 was shown to colocalize

with collagen types I and III and with complement C3. It has also

been proposed as a protective factor in a mouse model of immune

complex-mediated arthritis (57). PRG4 has a known lubricating

property, while CLIC5 is localized to the inner mitochondrial
FIGURE 2

Synovial membrane architecture of the healthy (left) and osteoarthritic joint (right). The healthy synovium comprises a thin lining layer with barrier-
forming CX3CR1

+ TREM2+ MERTK+ resident macrophages (type A synoviocytes) and CD55+ PRG4+ THY1− fibroblasts (type B fibroblast-like
synoviocytes). The lining layer separates the synovial cavity from the tissue. The sublining layer hosts various fibroblast and macrophage populations,
adipocytes, and blood vessels. During osteoarthritis, the integrity of the barrier, maintained by tight junctions of resident macrophages, is disrupted
in the lining layer. Figure was created with BioRender.com.
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membrane and is associated with the modulation of ROS (58). In

addition, Stephenson et al. (52) and Mizoguchi et al. (53) reported an

increased expression of hyaluronan synthase 1 (HAS1) for synovial

fluid production and proteases such as MMP-1 and MMP-3, thus

contributing to joint homeostasis. Recent research reveals a

pronounced higher proportion of CD55+ CD34− THY1− FLS in

OA compared to RA (53, 55), whichmight explain the increased bone

formation activity in OA since this subpopulation expresses the bone

morphogenetic protein (BMP)-6 (53). In addition, this aligns with the

fact that OA is characterized by alterations of the synovial lining layer

(59). Lining CD34− CD55+ THY1− FLS and sublining CD34– THY1+

FLS did not differ in their abilities to stimulate osteoclastogenesis via

receptor activator of NF-kB ligand (RANKL) and CC motif

chemokine ligand (CCL) 9 expression, thereby promoting bone

erosion (53).
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The THY1+ FLS are restricted to the sublining layer and known

to act as e.g., invasive, proliferative cells with immune effector

function, capable of promoting synovitis. Positive PDPN and THY1

expression characterize three sublining FLS subsets: (1) perivascular

CD34+ THY1+ HLA-DRlow, (2) pro-inflammatory THY1+ CD34−

HLA-DRhigh, and (3) THY1+ CD34− Dickkopf (DKK)3+ HLA-

DRlow (Figure 3) (55, 60). The CD34+ THY1+ HLA-DRlow FLS

subset is located within the perivascular region surrounding blood

vessels and interacts closely with endothelial cells through

NOTCH3 signaling (61). This subset expresses high amounts of

complement C3, microfibril-associated protein (MFAP)5,

chemokine C-X-C motif ligand (CXCL)14, and genes involved in

immune-inflammatory processes and stromal memory (56, 62, 63).

Consequently, this FLS subset mediates tissue priming and

immunoregulatory function. Zhang et al. performed a
frontiersin.or
FIGURE 3

Synovial fibroblast subpopulations are depicted graphically, illustrating surface markers, transcriptional profiles, and functions of distinct subsets
within an arthritic joint. The identification of these main subsets involved scRNA-seq studies, mass spectrometry, and histological evaluations.
However, it is crucial to emphasize the presence of distinct activation states in human arthritic joints. Therefore, drawing from comprehensive
analyses detailed in the text, we propose the existence of an additional lining and sublining layer myofibroblast-like phenotype. Broadly, lining layer
FLS lacking thymocyte differentiation antigen 1 (THY1) expression play a pivotal role in lubrication, with this subset being more prominent in
osteoarthritis (OA) compared to rheumatoid arthritis (RA). In contrast, sublining layer FLS expressing THY1 expand during inflammation and exhibit
different spatial distributions within the joint. This illustration is derived from human data and the figure was created using BioRender.com.
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subpopulation analysis of synovial fibroblasts isolated from synovial

tissue of patients with RA or OA (55). They observed a higher

proportion of the second THY1+ CD34− HLA-DRhigh population in

RA with increased expression of major histocompatibility complex

(MHC) class II, collagens, the interferon (IFN)-g signaling, IL-6,

CCL2, and CXCL12, indicating that these cells are in an active

cytokine-producing state (55). The FLS subset THY1+ CD34−

RANKLhigh OPGlow demonstrates the ability to promote

osteoclast differentiation in vitro (53, 64). Micheroli et al.’s in

silico study, integrating an in-house dataset with four published

scRNA-seq datasets, affirmed the identification of four distinct

fibroblast populations in RA synovial tissue (56). In the sublining

layer, CD34+ FLS displayed the highest THY1 expression,

contrasting with CD34- HLA-DRhigh FLS, which exhibited the

lowest. The third fibroblast subtype, marked by elevated periostin

(POSTN) expression, demonstrated intermediate THY1 expression

(56). Zhang and colleagues showed that this FLS subpopulation

expresses high levels of DKK3, cell adhesion molecule 1 (CADM1),

collagens such as COL8A2,MFAP2, and osteoglycin (OGN) (55). By

silencing CADM1 in rats with inflammatory bowel disease, Sun and

colleagues demonstrated that CADM1 can improve intestinal

barrier function (65). Furthermore, Snelling and colleagues

investigated the expression of DKK3 in human OA cartilage,

synovial tissue, and synovial fluid (66). They demonstrated that

DKK3 is upregulated in adult human OA cartilage and synovial

tissue, decreases during chondrogenesis, and protects against

cartilage degradation in vitro (66). Overexpression of DKK3 in

FLS upregulated the expression of B-cell lymphoma 2 (BCL2)-

associated X apoptosis regulator (BAX) promoting apoptosis,

suppressed cell proliferation, and reduced collagen synthesis

through transforming growth factor (TGF)-b1/Smad2/3 signaling

(67). THY1+ DKK3+ FLS might play a role in immune regulation

and restoration of joint homeostasis.

In inflammatory diseases such as acute and chronic arthritis,

pathogenic subsets of fibroblasts express the fibroblast activation

protein alpha (FAPa). The total number of cells expressing FAPa+

THY1+ correlates positively with the severity of joint inflammation

(51). However, knocking out FAPa expressing fibroblasts in mice

did not suppress inflammation but reduced the extent of tissue

damage, confirming the pathogenic role of FAPa in arthritis.

Furthermore, the overproduction of ECM proteins and

excessive fibrosis can be caused by the activation of a specific

subset of fibroblasts called myofibroblasts that can contract

wound edges by the contractile protein alpha-smooth muscle

actin (a-SMA; encoded by ACTA2).

In addition, a subpopulation of fibroblasts known as

myofibroblasts produces the contractile protein alpha-smooth

muscle actin (a-SMA; encoded by ACTA2) that can contract

wound edges and contributes to the production of ECM protein

(68). Under physiological conditions, these myofibroblasts are

eliminated by apoptosis when repair scars form. In certain

pathologic scenarios, ACTA2+ myofibroblasts persist, leading to

excessive fibrosis, a known contributor to the progression of OA

(Figure 3). Membrane-bound proteins such as platelet-derived growth
Frontiers in Immunology 06
factor receptor (PDGFR)-b, a11b1 integrin, a5b1 integrin, and av
integrins are frequently found on activated myofibroblasts (69–71). It

is important to note that although no specific studies have been

performed on synovial myofibroblasts in OA, integrins containing the

av-, a5-, and b1-subunit are increased in the synovial lining layer in

OA (72). The av-subunit forms heterodimers with the b1, b3, b5, b6
or b8 subunits (70). Myofibroblast av integrins are fundamental

elements of a central pathway commonly observed in various solid

organs affected by pathological fibrosis.

Cell positive for a-SMA+ were observed in the synovial

membrane in both mice with post-traumatic OA (PTOA) (73)

and degenerated anterior cruciate ligaments of patients with OA

(74). Hasegawa et al. (74) and Kasperkovitz et al. (75) histologically

examined arthritic knee joints and found a-SMA+ cells in dense

collagenous tissue, in the perivascular area, and the synovial lining

layer. The present findings align with those of Bauer and colleagues,

who histologically identified a subpopulation characterized by a-
SMA+ FAPa+ FLS within the lining layer and a-SMA+ FLS

surrounding blood vessels in the sublining layer of both OA and

RA synovial tissues (76). Kragstrup and colleagues showed that a-
SMA+ myofibroblasts isolated from OA synovial tissue also express

extra domain A containing fibronectin (ED-A-FN) capable of

stimulating macrophage TNF-a production (77). Regarding the

localization of a-SMA+ cells within the synovium, they further

observed a co-localization of ED-A-FN and a-SMA in the OA

synovium. While ED-A-FN staining was most intense in lining

layer FLS, a-SMA staining was most intense in FLS around the

blood vessels. However, most ED-A-FN+ FLS in the OA synovial

membrane were also a-SMA+, demonstrating the presence of

myofibroblasts in both the lining and the sublining layer (77).

The detection of a-SMA+ cells within both the lining and sublining

layers aligns with our findings (Figure 4). Immunofluorescence

staining of OA synovium revealed a-SMA+ cells in the lining layer,

concurrently expressing PRG4. Additionally, we observed

significant a-SMA expression surrounding blood vessels,

primarily associated with THY1+ cells. This concurrence

underscores the heterogeneity of fibroblastic populations in OA

synovium and suggests a potential role in maintaining joint

homeostasis, vascular remodeling, and synovial pathology.

The in silico study by Micheroli et al. identified the third

POSTN+ FLS subtype, which is most pronounced in a fibroid

pathotype and expresses COL1A1, COL3A1, OGN, TGFB1, and

serpin family E member 1 (SERPINE1) (56). Mizoguchi et al. found

high expression of POSTN and PDGFRB in the CD34− THY+ subset

(53). A spatial atlas illustrating the diversity of synovial fibroblasts

in RA was established by Smith et al. (79). Their comprehensive

analysis of gene expression in FLS and non-synovial fibroblasts in

different tissues and diseases revealed an activated FLS subset (FLS-

11) that exhibited transcriptional similarities to ACTA2+

myofibroblasts and Wnt family member 5B (WNT5B)+

fibroblasts in the colon and two distinct fibroblast populations in

scleroderma of the skin. In particular, high expression levels of

POSTN, COL3A1, NOTCH3, secreted protein acidic and rich in

cysteine (SPARC), THY1, asporin (ASPN), decorin (DCN), and
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DKK3 were detected in the FLS-11 subset (79). For instance,

COL3A1 was detectable in inflammatory fibroblasts in the colon,

myofibroblasts in the lung, and DKK3+ synovial sublining FLS,

suggesting a potential shared modulatory function of the ECM (80).

In particular, the DKK3+ FLS subpopulation is elevated in OA

(55). This is consistent with recent studies showing that POSTN is

associated with the prevalence, risk of development, and

progression of knee OA (81, 82). In addition, the study

conducted by Chen et al. revealed a distinctive trajectory in

DKK3+ FLS within the sublining layer, transitioning from

fibroblasts to myofibroblasts (83). This finding implies a possible

link between the activation of the DKK3 subpopulation and the

differentiation process leading to myofibroblasts in OA (83).

However, further studies are needed to investigate the role of

fibroblast subsets in synovial tissue fibrosis and to identify their

characteristic phenotype. Although the technical innovations of

recent years have made tremendous progress, there are still many

uncertainties in OA research regarding the spatial arrangement of

the various fibroblast subpopulations and the expression of

biomarkers that enable early diagnosis of the disease.

In conclusion, examination of the distribution and

characteristics of FLS in the synovial sublining and lining layer

revealed significant differences between OA and RA. The CD55+

THY1− PDPN+ CD34− FLS phenotype, which is restricted to the

lining layer, is predominant in OA. This subpopulation in OA,

which expresses BMP6, may be responsible for the increased bone

formation activity observed in this disease. The THY1+ FLS are

located in the sublining layer and have distinct functional

properties, including perivascular, pro-inflammatory and DKK3

expression, each of which is associated with different aspects of

synovial pathology. Notably, the DKK3+ FLS subpopulation is

highly elevated in OA. In addition, a-SMA+ myofibroblasts,

which are important for tissue repair and fibrosis, have been

identified around blood vessels and in the synovial lining layer.

This nuanced understanding of FLS phenotypes improves our

knowledge on their role in the pathophysiology of OA and may

serve as a basis for targeted therapeutic strategies.
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5 Metabolic pathways in fibroblasts
and myofibroblasts

Fibrosis results from a dysregulated wound-healing process

characterized by transitioning from mesenchymal cells, such as

fibroblasts, into myofibroblasts and excessive deposition of ECM

components (77, 84, 85). Fibrosis leads to tissue scarring that can

impair organ function in many chronic diseases, including

pulmonary fibrosis, liver cirrhosis, and systemic sclerosis, but also

in musculoskeletal diseases, such as RA and, more importantly,

OA (86, 87). At the cellular level, fibroblasts play a central role in

maintaining tissue homeostasis and responding to stressors.

Under prolonged injury, inflammation, or mechanical stress,

fibroblasts can phenotypically transform into myofibroblasts

characterized by a-SMA expression, synthesis of collagen-rich

ECM, and fibroblast proliferation (88). Not all activated

fibroblasts necessarily transform into myofibroblasts (89).

The transition from fibroblasts to myofibroblasts is a dynamic

and reversible process driven by multiple signals. Among the

most important are (i) the TGF-b signaling pathway that

triggers downstream events such as the expression of connective

tissue growth factor (CTGF), (ii) pathological mechanical

forces (mechanotransduction) that occur through overload,

repetitive stress or injury, (iii) pro-inflammatory cytokines and

innate immunity in a persistent inflammatory environment,

and (iv) excessive oxidative stress leading to cellular aging and

senescence (Figure 5) (90). In the context of OA, joints’ constant

and intense mechanical stress, high TGF-b levels, and low-grade

inflammation create an environment that promotes fibroblast

activation and transition into myofibroblasts, as explained below.
5.1 Crosstalk among TGF-b/Smad-signaling
pathway, integrins, and ECM

The pleiotropic cytokine TGF-b is a multifaceted regulator that

affects fundamental biological processes such as cell division,
FIGURE 4

Localization of a-SMA positive cells within the synovial membrane of patients with osteoarthritis. Representative image for PRG4 (yellow), a-SMA
(magenta), THY1 (cyan), and DAPI (gray). Scale bars indicate 100 µm (78).
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proliferation, apoptosis, and tissue homeostasis. Three isoforms of

TGF-b are known so far. TGF-b is stable as a non-covalently bound

complex with the latency-associated peptide (LAP). This complex is

associated with latent TGF-b binding protein (LTBP) via disulfide

bonds and is stored within the ECM post-secretion (91, 92). Various

factors and conditions, including bioactivation through integrins,

mechanical forces, and acidic pH, can trigger the activation of TGF-

b in vitro (92–95).

Integrins, transmembrane proteins consisting of an a-subunit
and a b-subunit, mediate communication between the ECM and

fibroblasts. They play a crucial role in the dynamics of tissue fibrosis

(70, 72). By connecting the inner cytoskeleton to the ECM, integrins

contribute to important catabolic reactions for ECM degradation

(70). Despite limited data on the interaction between integrins and

OA FLS, differences in integrin expression were observed between

the lining and sublining layers of the synovium. In particular,

increased expression of integrins such as a5, av and b1 were

found in the lining layer compared to the sublining layer (96).

Furthermore, there is convincing evidence that lining layer FLS in

OA consistently show strong expression of the integrin subunit av,
while being more diverse and heterogeneous among synovial lining

FLS in RA (97).

Upon binding to av integrins on adjacent cells, the latent

complex releases the captive TGF-b through mechanisms specific

to the types of av integrins on the given cell. Integrins avb6 and

avb8 on fibroblasts activate TGF-b1 by binding the RGD-motif on

LAP and inducing a conformational change (98, 99). By blocking av
integrins with the small molecule CWHM 12, it is possible to inhibit

TGF-b1 signaling and achieve the desired anti-fibrotic effect (69). In
OA FLS, integrin avb6 plays a critical role due to its upregulated

expression upon TGF-b1 stimulation and in mediating the

activation of TGF-b. Furthermore, the vitronectin fragment VTN

(381-397 a.a.), highly abundant in the serum of OA patients, competes
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with TGF-b1 for integrin binding and can attenuate TGF-b1
activation (100). Fibronectin can bind to integrins such as a5b1,
anb3, anb5 (101) and ED-A-FN is associated with myofibroblasts

and OA (77). Injection of fibronectin fragments into rabbit joints is

now an established animal model of OA, characterized by cartilage

degradation and osteophyte formation (77, 102). Kragstrup further

showed that ED-A-FN is produced in response to TGF-b and self-

induces the production of TNF-a in macrophages (77), suggesting

ED-A-FN as an interesting target for therapeutic intervention to

reduce pro-inflammatory responses in OA.

The initiation of the canonical TGF-b signaling pathways

involves b-glycan serving as a co-receptor to present TGF-b1 to

transmembrane serine/threonine kinase type I and type II receptors

(TGFBR1 and TGFBR2, respectively) (103). The receptor complex

formation upon TGF-b1 binding by TGFBR2 leads to the

phosphorylat ion of TGFBR1 (ALK5) , which in turn

phosphorylates Smad2 and Smad3 forming a complex with

Smad4 (Figure 6). The trimeric complex translocates to the

nucleus and regulates different target gene expressions in concert

with transcriptional co-activators and co-repressors. One of these

target genes is the myofibroblast marker a-SMA (104, 105). Smad

signaling is attenuated by inhibitory Smads (I-Smads, Smad6 and

Smad7), dephosphorylation and dissociation from the trimeric

complex, allowing for either Smad recycling or degradation (106).

Apart from the canonical TGF-b1/Smad2/3-signaling TGF-b
can signal via non-canonical pathways. Upon TGF-b stimulation,

ALK1 another TGFBR1 forms a complex with ALK5, leading to

Smad1/5 activation (107). Furthermore, it has been demonstrated

that TGF-b activates a number of other non-canonical (non-Smad)

signal pathways in different cell types, such as mitogen-activated

protein kinases (extracellular signal-regulated kinase (ERK), c-Jun

N-terminal kinase (JNK), and p38), phosphatidylinositol-3-kinase,

and GTPases that resemble Rho (Figure 6) (108).
FIGURE 5

The fibroblast to myofibroblast transition. Schematic overview of stressors and corresponding phenotype alterations (left), and downstream
intracellular processes (right) that contribute to myofibroblast differentiation and ultimately lead to synovial fibrosis. Fibroblasts are activated by
various types of stimuli such as mechanical and oxidative stress, which initiate different intracellular processes. Initially the proto-myofibroblast
develops followed by the myofibroblast. However, activation can sometimes be reversed or lead to apoptosis of the myofibroblasts. At the cellular
level, the transition of fibroblast to myofibroblast leads to a pronounced increase in intracellular stress fibers containing alpha-smooth muscle actin
(a-SMA) and the expression of collagen 1, extra domain A fibronectin (ED-A-FN), and extracellular matrix remodeling enzymes. Moreover, they
produce cytokines such as transforming growth factor (TGF)-b, vascular endothelial growth factor (VEGF), connective tissue growth factor (CTGF),
interleukin (IL)-1, IL-6, and IL-8 and are in close contact with their environment via integrins. Figure was created with BioRender.com.
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RA synovial fluid, rich in TGF-b, has been demonstrated to

induce a-SMA expression in adipose-derived mesenchymal stromal

cells (MSCs) via Smad2 signaling, indicating TGF-b’s pivotal role in
fibrotic phenotype progression (109). Moreover, the deletion of

Tgfbr1 prevented TGF-b-mediated differentiation (110) whereas a

constitutively active TGFBR1 mutant promoted myofibroblast

formation (111) confirming the importance of the canonical

signaling in myofibroblast differentiation. Furthermore, inhibition

of TGF-b-mediated activation of ALK4/5/7 in osteoarthritic human

FLS prevented the induction of the pyridinoline cross-linking

enzyme pro-collagen lysine-2-oxoglutarate 5-dioxygenase 2

(PLOD2), which suppresses collagen degradation, as well as CTGF

and COL1A1. In contrast, inhibition of ALK1/2/3/6 blocked the

induction of CTGF and COL1A1 (112). However, the non-canonical

TGF-b-mediated signaling cascades are also implicated in fibrosis.

In patients with the fibrotic disease systemic sclerosis, again TGF-b-
dependent upregulation of COL1A1 and CTGF is conveyed via

ALK1/Smad1/5- and also ERK1/2-signal pathways rather than

ALK5/Smad2/3-activation (113). The activation of the

aforementioned non-canonical TGF-b-mediated signaling

cascades have been implicated in the pathogenesis of fibrosis and

fibrotic diseases including renal fibrosis, liver fibrosis, systemic

sclerosis and osteoarthritis (107, 108).

In cells from articular cartilage, synovial tissue and fluid from

patients with OA, elevated levels of the transcription factor hypoxia

inducible factor (HIF)-1a were found, indicating hypoxic

conditions, that are associated with progressive joint damage

(114, 115). Once hypoxia is established in the tissue
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microenvironment, cellular HIF-1a is not hydroxylated and

therefore forms a heterodimer with HIF-1b initiating a cellular

adaptive program by inducing the transcription of genes such as

vascular endothelial growth factor A (VEGFA), TGFB, insulin-like

growth factor 2 (IGF2), collagen type 2 alpha 1 (COL2A1), and

aggrecan (ACAN). This adaptive transcriptional program promotes

angiogenesis, shifts the metabolic program towards glycolysis and

maintains ECM homeostasis (116, 117). Hypoxia-mediated TGF-b1
expression led to the release of IL-1b and further induces TGF-b1,
suggesting a positive self-enhancing feedback loop between

inflammation and fibrosis during myofibroblast activation. This

emphasizes the importance of studying synovial fibroblasts in the

context of OA with a focus on hypoxia. Boer et al. performed a

genome-wide association analysis for OA across 21 cohorts (118).

They investigated differential gene expression, methylation or

protein abundance in osteophytic cartilage compared to low-

grade (intact) cartilage. This study identified genes that are

important in TGF-b signaling and function and that fibrosis is a

major contributor to the degenerative changes in OA (118).

Additional fibrosis-associated genes activated by TGF-b in OA

include ECM-encoding genes COL1A1, COL3A1, COL5A1, FN1,

and key enzymes important for collagen synthesis such PLOD2,

prolyl 4-hydroxylase subunit alpha 3 (P4HA3), and lysyl oxidases

(LOXs) (91, 106, 119). In FLS from OA patients stimulated with

TGF-b, Remst et al. further observed an upregulation of the tissue

inhibitor of metalloproteinase-1 (TIMP1), indicating inhibition of

MMPs (120). Furthermore, exposure of OA FLS to TGF-b has been

shown to upregulate PRG4 (121). This molecule also plays a distinct
FIGURE 6

TGF-b signaling via canonical and non-canonical pathways. Cell surface TGF-b type II receptor binds soluble active TGF-b, which causes association
and phosphorylation of TGF-b type I receptor. TGF-b type I receptor/ALK5 activation can induce the canonical phosphorylation of Smad2/3
signaling or non-canonical signaling via non-Smad pathways by phosphorylation of, e.g., ERK1/2. Alternatively, TGF-b type I receptor/ALK1 activation
can induce the non-canonical phosphorylation of Smad1/5/8. Phosphorylated Smad2/3 and Smad1/5/8 form complexes with Smad4, which
translocate into the nucleus and regulate target gene expression. Inhibitory Smad6 and Smad7 can repress canonical or non-canonical signaling via
Smad. Figure was created with BioRender.com.
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role in myofibroblast differentiation and in the expression of pro-

fibrotic genes (122). For in vitro studies, various groups have

utilized a broad range of TGF-b concentrations over different

time intervals, as summarized in Table 1. The pathophysiological

concentrations of active TGF-b in the synovial fluid of patients with

OA and RA were determined to be 4 ng/mL and 10 ng/mL,

respectively (129, 130). However, after acidic activation, increased

concentrations of up to 12 ng/mL and 37.5 ng/mL were detected in

the synovial fluid of OA and RA patients, respectively, indicating

the presence of higher concentrations of latent TGF-b (129).
5.2 Role of the CTGF signaling pathway in
OA synovial fibrosis

The TGF-b target CTGF, also known as CCN2, plays a crucial

role in physiological and pathological processes such as

inflammation, wound healing, tumorigenesis, and fibrosis (131).

Several factors such as TGF-b (120), macrophage-colony

stimulating factor (M-CSF) (132), VEGF (133), PGE2 (134), and

mechanical stressors (135, 136) induce high expression of CTGF.

However, CTGF can function independently and promote a

positive feedback loop itself by increasing e.g., TGF-b, VEGF, and
integrins (137). Along with TGF-b, CTGF is abundantly expressed

in the synovial fluid of OA (138, 138) and RA patients (139)

positively correlating with disease severity. The transfection of the

synovial lining layer of mice with an adenovirus expressing human

CTGF exacerbated synovial fibrosis, as evidenced by increased pro-

collagen type 1 levels, accumulation of ECM, and depletion of

proteoglycans in articular cartilage (140). Cartilage degradation

may be triggered by CTGF expression or CTGF-mediated

cytokine secretion from fibrotic synovial tissue. Davidson et al.
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further demonstrated that CTGF-induced fibrosis is transient (140),

in contrast to the relatively persistent fibrosis induced by TGF-b
(39). Liu and colleagues showed that stimulation of OA FLS with

CTGF induced concentration-dependent production of the pro-

inflammatory cytokine IL-6 via the CTGF-avb5-JNK pathway

(141). They further revealed that CTGF can trigger the migration

of monocytes in OA by enhancing monocyte chemoattractant

protein-1 (MCP-1) expression through interaction with integrin

avb5 (142). The study by Yang et al. reported that CTGF increased

the activity of focal adhesion kinase (FAK), mitogen-activated

protein kinase kinase (MEK), and ERK proteins (143), which is

consistent with the findings of Tan and colleagues that CTGF

promotes chondrosarcoma cell migration by increasing the

expression of MMP-13 via the avb3 integrin, FAK, ERK, and

NF-kB signal pathways (144). In summary, CTGF causes synovial

fibrosis by activating fibroblast and their transition into

myofibroblast, stimulates the production of pro-inflammatory

cytokines and thus promotes synovitis and catabolic, destructive

processes in the articular cartilage of OA patients.
5.3 Mechanical stress-mediated
fibroblast activation

The binding of cytokines and growth factors such as TGF-b or

CTGF to their respective receptors is the predominant way of

transmitting a signal and triggering signaling cascades in the

responding cell, while electrical and mechanical stimuli also play

an important role in signal transmission in a rather non-selective

manner (145). In this way, mechanical forces are capable to regulate

downstream signaling within the TGF-b pathway at multiple levels

and influence both gene and protein expression (146). Additionally,

myofibroblast contraction, tissue stiffening and aberrant tensile

forces in the ECM activate latent TGF-b from ECM stores,

thereby inducing e.g., Smad2/3-signaling and contributing to

fibrosis (147). Beyond tensile forces, cells also respond to other

forms of mechanical stimuli including compression, shear stress,

and hydrostatic pressure (Figure 7) (148).

In joint tissues, shear and compression are the predominant

mechanical forces. However, tensile forces notably influence the

joint tissues as well. The sinister combination of high levels of pro-

fibrotic factors such as TGF-b and CTGF in osteoarthritic joints

with short- and long-term pathologically high mechanical forces

facilitate the differentiation of FLS into myofibroblasts ─ a hallmark

of OA (149–152).

While most research in OA in recent decades has focused on the

role of cartilage and subchondral bone, synovial tissue and

fibroblasts are gaining increasing attention. They are, in

particular, recognized for their role in maintaining cartilage

homeostasis and mitigating “wear and tear maintenance” (153).

The gathered research demonstrates a nuanced correlation between

mechanical stimuli and TGF-b signaling regulating various cellular

pathways (Table 2). Upregulation of COL1A1 and FN1 genes in OA

FLS and elevated levels of pro-inflammatory markers such as PGE2,

IL6, and IL8 in mechanically loaded samples demonstrate the

interchangeable influences of mechanical forces and TGF-b
TABLE 1 Summary of TGF-b concentrations used in different studies in
the context of synovial fibroblasts and/or osteoarthritis (OA)/rheumatoid
arthritis (RA).

TGF-b
[ng/mL]

Time
interval

Cell type Ref’s

0.2 24 h, 48 h,
96 h

Human adipose-derived mesenchymal
stromal cells

(109)

1 24 h OA synovial fibroblasts (121)

5 24 h Healthy, OA and RA
synovial fibroblasts

(123)

10 24 h, 48 h,
72 h

RA synovial fibroblasts (124)

10 3 weeks Cell suspension from OA synovium or
RA FLS with CD14+ monocytes

(125)

10 4 h RA synovial fibroblasts (126)

10 6 days RA synovial fibroblasts (127)

10 3 or 7 days OA synovial fibroblasts (100)

20 30 min or
24 h

RA synovial fibroblasts (128)

1, 3, 10, 30 24 h OA synovial fibroblasts (37)
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signaling (154, 155). Cyclic strain on FLS elevates their TIMP1

levels, while MMP1 and MMP13 appear to be diminished,

suggesting regulation of ECM dynamics (157). PRG4 expression,

which plays a role in lubrication, is also induced and is further

enhanced by TGF-b stimulation (159). Furthermore, mechanical

stimulation of FLS increases the expression of TGFB1, with the

resulting conditioned medium increasing pro-inflammatory

markers in untreated FLS (161). Lysyl oxidases, crucial for

collagen and elastin cross-linking, are generally increased after 6

h of physiological stretch (except LOXL-3) and decreased after

pathological stretch (except LOXL-2). Here, a distinct temporal
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profile is evident, with a maximum of expression around 2-3 h and

variations noted under differing stretching conditions (162). While

some observations, such as IL-1a-mediated mechanosensitivity, are

not analogous to TGF-b effects, they may contribute to the

complexity of the fibroblast response to mechanical and

biochemical stimuli (158). Table 2 summarizes the mechanical

stimuli applied to synovial fibroblasts, their intensity and mode of

application, their effects, and any analogies to TGF-b signaling.

However, a critical limitation of the studies performed on

synovial fibroblasts exposed to mechanical stimuli is the lack of

studies on the key molecule a-SMA, which is encoded by the
TABLE 2 Application of various mechanical stimuli on synovial fibroblasts, including types of forces, application methods, time intervals, and
observed effects.

Mechanical
stimulus

Force and application Time
interval

Cell type Effects/TGF-b analogy (indicated
by *)

Ref’s

Compression 2 g/cm2 with a glass disk 48 h OA FLS COL1A1 and FN1 upregulation in OA
fibroblasts*, additionally increase of pro-
inflammatory markers

(154)

Cyclic
compression

40 kPa at 0.5 Hz with a cyclic load stimulator (CLS-5J-
Z, Technoview, Japan)

1 h
followed
by 6
h
incubation

FLS in a
collagen
matrix

PGE2, IL-6, and IL-8 upregulation in loaded
samples, no differences in IL-1b and TNF-
a expression*

(155)

Cyclic
mechanical
stretch

6% at 1 Hz in a FX-4000 Flexercell Tension Plus
System (Flexcell Inc., USA)

2 h RA and
non-RA FLS

Physiological stretch decreases RA FLS
proliferation (* context-dependent)

(156)

Cyclic strain Peak-to-peak compressive replacement, equivalent to
2% axial strain

1 h at 6
rev./min

RA
synovial cells

TIMP1 increase*, downregulation of MMP1 and
MMP13 (*)?

(157)

(Continued)
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FIGURE 7

Schematic overview of the different mechanical forces that physiologically act on the joint during locomotion. Figure was created with BioRender.com
with elements from (148).
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ACTA2 gene and is a well-documented marker for myofibroblast

differentiation to underpin the impact of mechanical strain

on fibrosis.
5.4 Persistent inflammation and innate
immunity drive fibroblast activation

Acute sterile inflammation is usually a transient and controlled

response aimed at eliminating the cause of the injury and

promoting tissue repair. However, if inflammation persists and

becomes chronic, this well-controlled process can be pathologically

disrupted (163). Inflammatory stimuli and innate immune

responses play a central role in the development of OA, leading

to chronic inflammation and tissue remodeling closely associated

with the development of fibrosis. In OA, synovitis is a feature in the

early stages and is characterized by the release of pro-inflammatory

cytokines such as TNF-a, IL-1b, and IL-6 (164). Cytokines and

other inflammatory mediators initiate cascades that contribute to

the perpetuation of inflammation, synovial hyperplasia, hypoxia,

subsequent synovial angiogenesis, progressive joint degradation, the

activation of fibroblasts and their transition to myofibroblasts.

Inflammatory cytokines contribute directly to the activation of

synovial fibroblasts and promote the recruitment and activation

of immune cells that further enhance inflammatory and fibrotic

responses (165). Current studies do not provide evidence to

conclude whether fibrosis can occur independently of synovitis,

so it is not yet entirely clear which is the hen and which is the egg.

Usually, the early host defense of acute inflammation against

invading pathogens implicates the recognition of conserved
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pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) (165, 166). The latter

include calcium phosphate crystals, hydroxyapatite crystals, and

uric acid found in the knee and hip joints of patients with OA.

PAMPs and DAMPs are recognized by the pattern recognition

receptors (PRRs) (167). and activate mechanisms of NLRP3

inflammasome activation leading to the production of

inflammatory cytokines such as TNF-a and pro-IL-1b. Three
prominent PRRs have been discovered, namely TLRs, nucleotide-

binding oligomerization domain–like receptors (NLRs), and

intracellular retinoic acid–inducible gene I receptors (RIG-I) (168,

169). They are present in various cell types, including immune cells

and structural cells such as fibroblasts. Fibroblasts express a

repertoire of PRRs, including TLRs, NLRs and IL-1R. For

instance, DAMPS can activate mechanisms of NLRP3

inflammasome activation which trigger an innate immune

response profile (167). This includes the production of numerous

pro-inflammatory cytokines such as TNF-a and pro-IL-1b and

chemokines which induce signaling cascades that promote the

differentiation of FLS into myofibroblasts via auto- and paracrine

signaling (169). Ospelt et al. compared FLS derived from trauma,

RA, or OA patients, demonstrating constitutive gene expression for

TLR1-6 but not for TLR7-10 (170). The TLR3 and TLR4 were the

most abundant among TLR genes expressed in FLS, followed by

members of the TLR2 subfamily. TLR2/4-signaling can be activated

by hyaluronan fragments of distinct sizes which usually interact

with CD44, a receptor for hyaluronic acid and other ligands, such as

collagens, and MMPs (171, 172). As a result, a cellular pro-

angiogenic and immunostimulatory response is initiated.

Moreover, ED-A of FN, an endogenous TLR4 ligand, triggers the
TABLE 2 Continued

Mechanical
stimulus

Force and application Time
interval

Cell type Effects/TGF-b analogy (indicated
by *)

Ref’s

Fluidic
shear stress

0.5 dyn/cm2 in a parallel plate flow chamber 2 min Bovine FLS
on gelatine-
coated
glass slides

Mechanosensitivity mediated by IL-1a (158)

Intermittent
hydrostatic
pressure

100 kPa in a custom pressurized stainless-steel
chamber (Dentaurum Corporation, Germany)

4 h/day
for 48 h

Murine non-
OA FLS

Induction of PRG4 expression*, further increase
with TGF-b stimulation

(159)

Static and
dynamic
stretching

16% (static), 10% (dynamic, short), 2% and 15%
(dynamic mixed), and 15% (dynamic advanced); the
static strain was applied through bioplex plates and a
silicone stamp, dynamic strain in a custom-made
cell stretcher

48 h, 4 h,
48 h, 48 h

Non-
OA FLS

Decrease of COL1A2 expression in static
stretching and no effects in short and mixed
dynamic stretching with increase in advanced
stretching*, increase of pro-inflammatory markers

(160)

Stretch 6%, 10% (with or without OA-conditioned media) in
an Automated Cell Stretching System (STB-1400-10;
Strexcell, USA)

24 h OA FLS in
collagen type
I coated
silicone
chambers

Higher TGFB1 expression*, with conditioned
media, higher pro-inflammatory markers

(161)

Stretch 6% (physiological) and 12% (injurious) in an equi-
biaxial stretch chamber (Country Machines and
Plastics, USA)

1 h, 2 h, 3
h, 6 h

Non-
OA FLS

Upregulation of LOXs except LOXL3 after
physiological stretch* further upregulation of
LOXs between 1-3 h* and decrease after 6 h
injurious stretch; decrease of MMPs at 6%,
upregulation at 12%

(162)
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Asterisks indicate analogies to TGF-b stimulation.
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upregulation of MMP-9 supporting fibrosis (173, 174). Abdollahi-

Roodsaz et al. showed that overexpression of IL-1b─ a key cytokine

in OA pathogenesis ─ triggers TLR4-mediated synovitis, whereas

TLR2 plays a less significant role (175). Moreover, the severity of IL-

1b-induced joint degradation in TLR4-/- mice was reduced, with

similar levels of inflammation, suggesting independent processes

(175). Therefore, interfering with TLR signaling may be an

approach to limit the activation of the FLS-mediated innate

immune response, reducing inflammation, and limiting fibrosis.

Besides TLR-mediated FLS stimulation, FLS stimulation with

pro-inflammatory cytokines such as TNF-a and IL-17A caused an

increase in matrix mineralization, thereby inducing the expression

of Wnt5a (176). Canonical Wnt/b-catenin signaling and

inflammatory processes are strongly activated in OA synovium in

mice and humans (177, 178). Using a PTOA mouse model, Knights

and colleagues revealed that the Wnt/b-catenin signaling agonist

Rspo2 was strongly upregulated after injury and exclusively secreted

by Prg4+ lining layer FLS (73). In rats with collagen-induced

arthritis, activation of the Wnt/b-catenin signaling pathway was

triggered by TNF-a, leading to a concomitant upregulation of a-
SMA and cadherin-11 (CAD-11) expression in synovial fibroblasts

(179). This subpopulation was found predominantly in the synovial

lining layer in RA and was associated with high expression of PDPN

(180). The strongest expression of PDPN+ FLS is also present in the

lining layer in OA (181), suggesting a myofibroblast-like a-SMA+

ED-A-FN+ CAD-11+ PDPN+ phenotype. In addition, XAV-939, an

inhibitor of the Wnt/b-catenin signaling, decreased the

proliferation of human OA FLS and further inhibited the

synthesis of collagen type I (178). This underscores the

importance of the canonical Wnt/b-catenin signaling pathway in

OA progression, which ultimately leads to synovial fibrosis in which

the lining layer appears to be predominantly affected.
5.5 Cellular aging and its causes
in osteoarthritis

The onset and progression of OA are closely linked to the

cellular aging process in which cells accumulate in a state of

senescence (182, 183). These senescent cells (SnCs) are

characterized by permanent growth arrest, enhanced ROS

synthesis, resistance to apoptosis, and a permanent low-level

release of pro-inflammatory molecules. This phenotype is known

as senescence-associated secretory phenotype (SASP). Removal of

SnCs by administration of UBX0101(a compound inducing

apoptosis in SnCs) in transgenic mice with anterior cruciate

ligament transection (ACLT)-induced OA, inhibited cartilage

erosion, reduced pain, and decreased inflammatory markers such

as mmp13 and il1b, and enhanced the number of ki-67-positive

synovial fibroblasts (184).

While senescence’s impact on OA has been extensively studied

in chondrocytes, its role in synovial fibroblasts and myofibroblasts

still remains unclear (182, 185). In pulmonary fibrosis, the

senescence of fibroblasts is evident (186), while senescence of

other cell lineages such as macrophages, chondrocytes or

cardiomyocytes have been related to various aging associated
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pathologies such as OA or cardiomyopathy (184, 187). Recently,

Chen et al. demonstrated that FLS which are associated with

impaired autophagy, show a SASP and accumulate in OA (188).

These OA FLS express GATA binding protein 4 (GATA4), a

regulator of cellular senescence, which is linked to increased

expression of p16INK4a, p21 and a SASP. Restoration of

autophagy in OA FLS by rapamycin treatment was effective in

reducing the expression of GATA4 (188). Impaired autophagy (and

mitophagy) leading to an accumulation of dysfunctional

mitochondria and excessive ROS production (189). Chronic

inflammatory diseases such as OA are characterized by elevated

oxidative stress and ROS production (190, 191). Excessive ROS

production is a major contributor to mitochondrial damage and

dysfunction and to genomic damage as a cause for the onset of

cellular senescence (189). In addition, mitochondrial dysfunction

has been observed in the development of synovial fibrosis in OA

(192). Mitochondrial ROS (mtROS) represent by-products of

(patho)physiological processes with profound cellular

consequences, ranging from modulation of intracellular signaling

cascades to posttranslational modifications. The primary source of

superoxide (O2
─) in the cell, which is a product of NAD(P)H

oxidase, arises from electron losses at complexes I and III in the

electron transport chain (ETC). In various cell types, ROS

formation is enhanced in response to TGF-b1 (193–195). These

observations are of great importance for fibrogenesis, as fibroblasts

are not only responsible for the generation of ROS, but ROS are also

directly associated with the transformation of fibroblasts into a-
SMA expressing myofibroblasts. A study conducted by Jain and

colleagues demonstrated that the elevated mtROS generated at

complex III are required for TGF-b-induced gene expression

(193). In addition, the transcriptional activation of NADPH

oxidase 4 (NOX4) by TGF-b requires the generation of mtROS.

Notably, TGF-b-exposed fibroblasts derived from patients with

pulmonary fibrosis exhibited higher mtROS production and

increased pro-fibrotic gene expression compared to healthy

subjects. Noteworthy reductions in TGF-b-induced pro-fibrotic

gene expression and NOX4 expression were observed upon the

inhibition of mtROS production (193). These findings underscore

the crucial role of complex III generated mtROS in TGF-b-
mediated fibroblast to myofibroblast transition and suggest

potential therapeutic avenues.

A study by Bondi and colleagues showed that rat kidney

fibroblasts stimulated in vitro with TGF-b induced the expression

of a-Sma, Fn, Nox2, and Nox4 and increased NAD(P)H oxidase

activity, leading to mtROS production (195). The siRNA-mediated

reduction of Nox4 significantly reduced the expression of a-Sma

and Fn. Inhibition of TGF-b receptor 1 blocked Smad3

phosphorylation, decreased TGF-b-induced NADPH oxidase

activity, and reduced the expression of Nox4, a-Sma, and Fn.

Furthermore, TGF-b stimulated the phosphorylation of ERK1/2,

which was inhibited by blocking TGF-b1 receptor 1 or Smad3.

ERK1/2 activation also increased a-Sma and Fn (195). These results

demonstrate that TGF-b-induced transition from fibroblasts to

myofibroblasts involves canonical TGF-b/Smad2/3 signaling, non-

canonical TGF-b/ERK1/2 signaling, and ROS production via NAD

(P)H oxidase. Guido and colleagues generated fibroblasts
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overexpressing the mitochondrial fission factor (MFF). This factor

regulates the mitochondrial network by continuous fission

expanding the interconnected network of mitochondria when

expressed at physiological levels. Overexpression of MFF caused

mitochondrial dysfunction, mitophagy and autophagy, intracellular

ATP depletion, increased ROS production, L-lactate secretion, and

increased expression of a-SMA (196). Thus, MFF-induced

mitochondrial dysfunction shifts cellular metabolism to a

catabolic state in fibroblasts inducing a-SMA a key marker

of myofibroblasts.
6 Metabolic pathways in fibroblasts
and myofibroblasts

In contrast to the extensively examined metabolic profile of

chondrocytes in OA, little is known about the metabolic properties

of FLS in OA (197). Previous studies on FLS metabolism primarily

concentrated on FLS derived from RA patients. However, various

stimuli, such as complement activation in the early stages of OA,

pro-inflammatory cytokines, and in the later stages of OA a hypoxic

environment, activate FLS. The transformation from fibroblasts to

myofibroblasts is initiated by factors including cytokines, hormones,

ligands (e.g., TGF-b, angiotensin II), ions (especially Ca2+), and

mechanical forces (198, 199). The initial activation of fibroblasts

leads to increased aerobic glycolysis, even in the presence of oxygen,

leading to increased lactate production. This metabolic shift from

oxidative phosphorylation (OXPHOS) in mitochondria, the primary

ATP source, to aerobic glycolysis is known as the Warburg effect
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(Figure 8) (200). While most cells typically rely on mitochondrial

OXPHOS for energy generation, glycolysis usually occurs in the

absence of oxygen. The metabolic profile of initially activated

fibroblasts differs from that of fully differentiated myofibroblasts.

During fibroblast differentiation, a significant increase in ATP

production is observed, as ATP is essential for the functionality of

the contractile actin structure (198). Since fibroblast activation is

accompanied by increased proliferation, synthesizing building

blocks such as nucleotides and phospholipids is crucial. In

contrast, myofibroblasts, representing fully differentiated senescent

cells, are non-proliferative. Mitochondrial dysfunction, which leads

to increased ROS formation and thus cell apoptosis and impaired

energy metabolism ─ glucose, fatty acid, and glutamine metabolism

─ contribute to OA pathogenesis (201–203).
6.1 Glucose metabolism

Metabolic alterations in glycolysis play a central role regarding

energy supply, biosynthesis, cell growth, and cell differentiation.

Bardon, Ceder, and Kollberg were the first to demonstrate

significantly increased activities of glycolytic enzymes such as

hexokinase (HK), phosphofructokinase-1 (PFK1), pyruvate kinase

(PKM) and lactate dehydrogenase (LDH) in activated fibroblasts

from cystic fibrosis patients (204). The upregulation of numerous

glycolytic genes that act as metabolic checkpoints has already been

verified in various fibroblast populations. Aguilar and colleagues

cultured rat cardiac fibroblasts in 5 mM glucose (normal) or 25 mM

glucose (high) for 48 h (205). The results show that the O-

GlcNAcylation of proteins and the protein content of TGF-b1 in
FIGURE 8

Metabolic shifts upon transition from fibroblast activation and expansion to senescent myofibroblasts. This transition involves an enhanced glycolysis,
pentose phosphate pathway (PPP), fatty acid oxidation (FAO), lipolysis, and glutaminolysis as key processes in fibroblast activation and expansion.
Quiescent myofibroblasts instead use glycolysis to generate acetyl-CoA fueling the TCA and mitochondrial oxidative phosphorylation to generate
ATP and to feed lipid and fatty acid synthesis (FAS). Figure was created with BioRender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fimmu.2024.1385006
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Damerau et al. 10.3389/fimmu.2024.1385006
cardiac fibroblasts increases with higher glucose concentrations,

thereby activating pro-fibrotic signaling pathways and inducing an

increase in collagen synthesis (205).

Assuming that extracellular glucose concentration alone is

sufficient to induce fibroblast to myofibroblast transformation and

thus fibrosis, Xie et al. inhibited glycolysis in lung fibroblasts by

inhibiting 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

(PFKFB3) (206). In glycolysis, PFK1 is the first glycolysis-specific

enzyme, a rate-limiting enzyme, and a key control point for

regulating glycolytic flux. PFK1 is allosteric activated via the

derivative fructose-2,6-bisphosphate, regulated by PFKFB3

(feedforward regulation). Therefore, inhibiting PFKFB3 prevented

the differentiation of lung fibroblasts isolated from patients with IPF

into myofibroblasts and attenuated the pro-fibrotic phenotype

(206). Furthermore, upregulation of PFKFB3 was shown to be

dependent on TGF-b1-activated Smad2/3, as both blocking the

TGF-b1 receptor and silencing Smad2/3 abolished the induction of

PFKFB3. Moreover, HIF-1a is downstream of increased glycolysis

and represents a direct mechanism by which glycolysis is involved

in pathologic myofibroblast differentiation (206). Activation of

hepatic stellate cells (HSCs) is a key event during liver fibrosis.

Since aerobic glycolysis is one of the metabolic hallmarks, Ban and

colleagues investigated the effects of targeted inhibition on HSC

activation (207). The glycolysis inhibitor 2-desoxy-D-glucose (2-

DG) and costunolide showed similar effects in inhibiting the rate-

limiting enzyme HK2, leading to decreased expression of HSC

activation markers such as a-SMA and collagen I. This could be

reversed by overexpression of HK2 induced by plasmid

transfection, suggesting that inhibition of HK2 represents a new

therapeutic option for (liver) fibrosis (207).

Another glycolytic enzyme that appears to be crucial for the

formation of myofibroblasts is pyruvate kinase M2 (PKM2). PKM2

is an important factor in the Warburg effect of cancer cells (208)

and can occur in two forms in proliferating cells such as fibroblasts:

a catalytically highly active tetrameric and a less active dimeric

form. While the tetrameric form is routing glucose metabolism to

pyruvate and into the tricarboxylic acid (TCA) cycle for energy

metabolism, the PKM2 dimer transfers the metabolic pathway to

the pentose phosphate pathway (PPP), the uronic acid pathway

(UAP), the polyol pathway (PYP), etc. for the material synthesis

such as the synthesis of the subsequent five-carbon ribose and non-

essential amino acids (209). Satyanarayana et al. analyzed the

expression of PKM2 forms in cultured fibroblasts and

myofibroblasts from tissues with fibrotic diseases (210). They

showed that the less catalytically active PKM2 dimer is

upregulated in myofibroblasts with a concomitant increasing

NADPH production. This protects myofibroblasts from apoptosis,

thereby feeding the de novo glycine synthesis needed for

myofibroblasts’ collagen production and deposition. Moreover,

conversion of the dimeric form to the catalytically active,

tetrameric PKM2 form inhibited fibrosis progression in mouse

models of liver, lung, and pancreatic fibrosis (210).

Smith and Hewitson showed that renal fibroblasts stimulated

with TGF-b1 downregulate acetyl-CoA biosynthesis by inhibition

of the pyruvate dehydrogenase complex (211). The increase in

PDK1 in response to TGF-b1 stimulation corresponds to the
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increase in inactive PDH-E1a (211). Although lactate has

traditionally been considered a by-product of the glycolytic

pa thway , r e c en t s t ud i e s sugg e s t a po s s i b l e d i r e c t

pathophysiological role of lactate in the development of fibrosis.

The study by Nho et al. showed increased lactate formation in

fibrotic lung fibroblasts due to increased LDHA and a concomitant

decrease in LDHB (212). LDHA converts pyruvate into lactate and

NAD+, while LDHB is responsible for the conversion of lactate into

pyruvate (213). High lactate concentrations lead to the conversion

of lactate into pyruvate and the production of NADH, which results

in an inhibitory feedback on glycolysis (213). In addition, lactate

itself was shown to promote the differentiation of myofibroblasts

into normal lung fibroblasts (from deceased individuals with no

evidence of lung disease) via the lactate receptor GPR-81 (212).

LDH5, one of the five isoenzymes of LDH, is most effective in

catalyzing the conversion of pyruvate to lactate. In cancer cells,

overexpression of LDH5 results in an increased glycolytic

metabolism and a decreased need on oxygen. Consistently, Schruf

and colleagues demonstrated that inhibition of LDH5 in primary

lung fibroblasts attenuated TGF-b1-mediated metabolic switch to

aerobic glycolysis (214). Nevertheless, LDH5 inhibition had no

significant effect on TGF-b1-mediated transformation of

fibroblasts to myofibroblasts in primary human lung fibroblasts,

suggesting that the LDH5-dependent metabolic shift to aerobic

glycolysis alone is not the decisive factor (214).
6.2 Fatty acid metabolism

The fatty acid metabolism, encompassing de novo synthesis,

uptake, oxidation, and disposal of fatty acids, serves crucial roles at

the cellular and organ levels. Fatty acid oxidation (FAO) is the

preferred energy source for cells with a high metabolism. FAO

generates more ATP than the oxidation of glucose, which is why it is

necessary for the activation and proliferation of fibroblasts. In FAO,

long-chain fatty acids are more easily absorbed via CD36. Medium-

chain and short-chain fatty acids enter the cell without the need for

specific transporters. Here, the FAO pathway is promoted by the

upregulation of carnitine O-palmitoyltransferase 1 (CPT1) and

peroxisome proliferator-activated receptor (PPAR) signaling. Nan

and colleagues demonstrated that treatment with rosiglitazone, a

ligand activating PPARg, prevents the development of fibrosing

steatohepatitis induced by a methionine-choline deficiency (MCD)

diet in C57BL6/J mice (215). Furthermore, targeted overexpression

of PPARg by an adenovirus reduced the extent of liver fibrosis in

male C57BL6 mice on MCD diet (216).

Basal autophagy is ubiquitously present in all cell types. It is

rapidly upregulated as an adaptive response under cellular stress

conditions to obtain intracellular nutrients and energy. In liver

injury, it has been shown that autophagy is primarily upregulated in

activated stellate cells while inducing fibrogenic markers. In this

context, autophagy contributes to the intracellular degradation of

lipids and correlates with increased fatty acid b-oxidation and

mitochondrial OXPHOS (217) . Hernández-Gea et a l .

demonstrated that HSCs from autophagy-deficient C57BL/6 mice

were unable to process cytoplasmic lipid droplets, reducing the
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availability of free fatty acids (218). As a result, mitochondrial b-
oxidation and ATP production were reduced, which attenuated

fibrogenesis. Targeted inhibition of b-oxidation with etomoxir,

simulating the effect of autophagy blockade, resulted in reduced

expression of the fibrogenic genes a-Sma, collagen 1a1, collagen
1a2, Pdgfr-b, and Mmp-2 (218). Obviously, blockade of autophagy

is different to impaired autophagy and mitochondrial dysfunction

since the later induces mtROS and cellular senescence also capable

of inducing a-SMA expression supporting fibrosis (188, 192, 196).

Conversely, glycolysis upregulation and FAO downregulation

associated with higher lipid accumulation and accompanied by

succinate accumulation has been demonstrated in fibroblasts and

myofibroblasts from idiopathic pulmonary fibrosis (219).

Furthermore, TGF-b1 induced succinate dehydrogenase (SDH)

and succinate elevation. Elevated levels of succinate contribute to

enhanced glycolysis and reduced FAO by stabilizing HIF-1a.
Inhibition of SDH subunit A in fibroblasts prevents fibrosis

formation and respiratory dysfunction deeming SDH as a new

therapeutic target in fibrosis (219).

Moreover, acetyl-CoA carboxylase (ACC) catalyzes the rate-

limiting step of de novo lipogenesis and regulates fatty acid b-
oxidation. Using HSCs, Bates and colleagues investigated the role of

ACC in liver fibrosis (220). Based on a-SMA expression and

collagen production, they showed that inhibition of ACC reduces

the activation of TGF-b-stimulated HSCs and thus reduces fibrosis.

Inhibition of de novo lipogenesis also blocks glycolysis and induces

FAO, demonstrating that de novo lipogenesis is required for

fibroblast activation (220). It is known that the fibroproliferative

effects of TGF-b are dependent on metabolic adaptation to maintain

pathological growth. Herein, fatty acid synthase (FASN) is an

essential anabolic enzyme in TGF-b-mediated fibrosis. Jung et al.

showed that TGF-b increases FASN expression, which is mediated

via the mammalian target of rapamycin complex 1 (mTORC1)

(221). FASN expression correlated with the extent of pulmonary

fibrosis in bleomycin-treated mice. Inhibition of FASN reduced the

expression of pro-fibrotic targets and stabilized lung function, as

analyzed by peripheral blood oxygenation (221). Metabolic

comparison of synovial fibroblasts obtained from patients with

RA, patients with OA, and seronegative controls showed that

basal and maximal mitochondrial respiration was significantly

lower in RA FLS compared to control FLS. In all donors, basal

respiration was largely dependent on FAO, whereas glycolysis was

highly utilized in FLS from RA patients (222). However, the

evidence for the significance of FAO and FAS in OA and synovial

fibrosis remains insufficient ly understood and needs

further research.
6.3 Glutamine metabolism

Glutamine is the most abundant amino acid in the human body.

It plays an anaplerotic role replenishing the TCA cycle

intermediates a-ketoglutarate (a-KG) during increased aerobic

glycolysis and reduced OXPHOS (223). Fibroblasts stimulated

with TGF-b show increased glutaminolysis, which contributes to

increased a-KG content (224). The increased glutaminolysis can be
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achieved in fibroblasts by upregulation of the rate-limiting enzyme

glutaminase 1 (GLS1) (224) and TGF-b (223). The study by Ge et al.
found that increased glutaminolysis in myofibroblasts is required

for collagen translation and stability (224). The amino acid

composition of collagen is unique due to its high glycine content.

Targeted inhibition of glutaminolysis with the Gls1 inhibitor CB-

839 and BPTES, and genetic silencing by Gls1 short interfering (si)

RNA, only reduced the expression of collagens, but not that of FN

or a-SMA. This is consistent with the increased a-KG content in

myofibroblasts, as a-KG activates mTORC1, which promotes the

expression of collagen (224). Importantly, Bernard’s data from 2018

show that suppression of glutaminolysis after myofibroblast

d i ff e r en t i a t i on r ev e r s e s TGF-b i nduc ed me t abo l i c

reprogramming (223).

Myofibroblasts are synthetic and contractile cells, and these

functions are dependent on OXPHOS and ATP production.

Glutaminolysis stimulated by TGF-b may therefore support

myofibroblast functions by meeting bioenergetic needs by

increasing OXPHOS and biosynthetic needs by providing

anabolic carbons for e.g., FAS when succinate levels are high

(219). Depletion of extracellular glutamine as well as silencing of

GLS1 expression in the presence of glutamine prevented TGF-b
induced myofibroblast differentiation (223). Studies showed that

TGF-b induces the expression of the de novo serine

[phosphoglycerate dehydrogenase (PHGDH), phosphoserine

aminotransferase 1 (PSAT1) and phosphoserine phosphatase

(PSPH)] and glycine [serine hydroxymethyltransferase 2

(SHMT2)] synthesis pathways in human fibroblasts (225).

Genetic attenuation of PHGDH or SHMT2 and pharmacologic

inhibition of PHGDH in human lung fibroblasts have shown that

these enzymes are required for collagen synthesis downstream of

TGF-b. Thereby, PHGDH is the first and rate-limiting enzyme in

this pathway (225). Hamanaka and colleagues investigated whether

inhibiting de novo serine and glycine synthesis mitigates lung

fibrosis in vivo (226). TGF-b stimulation induces Phgdh

expression at both mRNA and protein levels in mouse fibroblasts,

and this effect is reflected by an increase in Phgdh expression in

mouse lungs after intratracheal administration of bleomycin.

However, treatment of murine and human lung fibroblasts with a

small molecule Phgdh inhibitor (NCT-503) reduced TGF-b
induced collagen protein synthesis. Moreover, mice treated with

the Phgdh inhibitor seven days after intratracheal instillation of

bleomycin exhibited attenuation of lung fibrosis (226). In summary,

these results demonstrate that glucose-derived serine and glycine

metabolism plays a pivotal role in the fibrotic response both in vitro

and in vivo.

The transition from functional fibroblasts to fibroblast

activation and expansion to senescent myofibroblasts involves

several steps of metabolic alterations, highlighting glycolysis, FAO

and glutaminolysis as key processes. This transition is critical in the

development and progression of fibrotic diseases. Interventions

targeting glycolysis, such as inhibition of PFKFB3, a key regulator

of glycolytic flux, demonstrate potential in attenuating

myofibroblast differentiation. Furthermore, Alterations in

enzymes such as PKM2 and shifts in metabolic pathways (e.g.,

from TCA cycle to PPP) play a critical role in myofibroblast
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1385006
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Damerau et al. 10.3389/fimmu.2024.1385006
functionality and survival, thus influencing fibrosis progression.

Similarly, FAO is essential for fibroblast activation. Targeting key

metabolic enzymes in FAO such as ACC and FASN could provide

promising anti-fibrotic effects. Moreover, TGF-b-induced
metabolic reprogramming leads to increased glutaminolysis and

serine/glycine synthesis, essential for collagen production and

myofibroblast differentiation. Thus, targeting key enzymes such as

GLS1 and PHGDH offers promising avenues for therapeutic

intervention in fibrotic diseases. These findings emphasize the

importance of metabolic pathways in fibrosis and the potential of

metabolic interventions as therapeutic strategies.
7 Therapeutic strategies

Although we have gained more and more knowledge about the

mechanisms of OA pathogenesis, there is still no effective cure. The

treatment approaches for OA are different and depend on the joints

affected (50). To date, they comprise physical, pharmacological, and

surgical treatments (227). Physical treatment aims to reduce body

weight, increase muscle strength, and reduce pain, e.g., through diet,

exercises, physiotherapy or acupuncture (228–233). Standard in

pharmacological treatment approaches do not yet prevent disability

but aim to reduce symptomatic burden and pain of the disease and

slow down tissue damage. For example, non-steroidal anti-

inflammatory drugs (NSAIDs) including ibuprofen and

acetaminophen, are effective as anti-inflammatory and analgesic

drug. Glucocorticoids such as prednisolone are highly effective anti-

inflammatory and immunosuppressive agents that primarily relieve

synovitis in OA (234, 235). However, due to their pleiotropic effect,

they also cause adverse clinical effects such as osteoporosis if not

used carefully and responsibly (236). More specifically acting anti-

cytokine drugs such as recombinant human IL-1ra counteract the

pro-inflammatory, matrix-destroying effects of cytokines such as

mediated by IL-1b (237). Chevalier et al. examined the safety of

intraarticular injections of recombinant human IL-1Ra in patients

with knee OA, which was well tolerated and did not induce any

acute inflammatory reaction in OA patients (238). However, IL-1Ra

treatment was not associated with improvements in knee pain,

function, stiffness, or cartilage turnover (239). The authors argued

that the lack of therapeutic efficacy could be due to systemic

distribution or distribution outside the joint after intra-articular

injection. Further studies with longer-acting and stronger IL-1

antagonists could lead to an improved clinical benefit.

In contrast, nerve growth factor (NGF) antibodies and opioids

act on the reduction of pain (240). Anti-NGF antibody injections

showed great effectiveness in reducing pain but also accelerated the

development of osteoarthritis, if recipients were already taking

NSAIDs (241–243). Chondroprotective agents, such as

glucosamine, chondroitin sulfate and hyaluronic acid support

lubrication and the viscoelastic properties of cartilage (244, 245).

In addition, regenerative therapies with intra-articular injections of

either platelet-rich plasma, MSCs, or Tissue Gene-C (TG-C) have

reported positive results (246–248). While MSCs can self-renew,

have immunomodulatory properties and a potential ability to
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differentiate into different cell lineages, TG-C is a cell-based gene

therapy based on chondrocytes that are retrovirally transduced to

overexpress TGF-b1. When conservative measures and medications

are ineffective to alleviate the worsening of osteoarthritis, surgery

arthroscopy to detect injuries of joints, repair injured soft tissues,

such as ligaments and tendons, and bones, and remove inflamed

and damaged tissue or artificial joint replacement is required.

Focusing on synovial fibrosis, we assume the transition from

quiescent tissue resident FLS to activated FLS and finally

myofibroblasts as a potentially initiating or contributing factor in

OA pathogenesis. Based on the data reviewed, we hypothesize that

micro lesions induced in the synovial membrane bymechanical stress

initiate a vicious circle of inflammation, angiogenesis, regeneration,

and fibrosis. This contributes to stress on the nervous system (pain),

cartilage erosion and subchondral bone defects and instability of the

ligaments and tendons further perpetuating the mechanical stress

induced fibrotic synovitis. Notably, synovial fibrosis in OA seems to

occur primarily in the lining and secondarily in the sublining layer,

suggesting a mechanical stress-induced fibrosis. Several mechanisms

in the fibrotic transformation of synovial fibroblast into

myofibroblasts have been identified including the TLR engagement,

NLRP3 inflammasome activation, pro-inflammatory cytokines (e.g.,

TNF-a, IL-1b), growth factors (e.g., TGF-b, CTGF), metabolic

reprogramming (characterized by succinate accumulation,

enhanced glycolysis, and glutaminolysis), hypoxia-induced HIF

activation, and mitochondrial dysfunction leading to ROS

generation and the SASP.

Some of the above strategies for managing OA are also aimed at

treating synovitis and synovial fibrosis by interfering with e.g. TLR

engagement, NLRP3 inflammasome activation, pro-inflammatory

cytokines (e.g., TNF-a, IL-1b). Adalimumab, known for its efficacy

in blocking the action of TNF-a, slows the progression of e.g., RA.

The study by Verbruggen and colleagues investigated its potential

effects on erosive hand OA (40 mg adalimumab or placebo) (249).

After oral treatment, the disease appeared to remain active, as 40.0%

of patients in the placebo group and 26.7% in the adalimumab

group developed at least one new erosive interphalangeal joint in

3.6% and 2.1% of their non-erosive interphalangeal joints,

respect ively , dur ing the 12-month fol low-up period,

demonstrating that adalimumab has no therapeutic effect on

degenerative OA of the hand. The authors argued that the study

design was not able to show effects of TNF blockade in individual

finger joints as it aimed to measure overall hand function (249).

Instead, neutralizing TNF-a significantly slowed down the

progression of structural damage in already inflamed

interphalangeal joints. Further studies are needed to confirm

these results. Based on experience in the treatment of other

fibrotic diseases, there are a variety of alternative intervention

strategies that target the mechanisms in the fibrotic

transformation of fibroblast into myofibroblasts such as small

molecules or compounds that are currently in clinical trials

demonstrating good anti-fibrotic properties (250). These anti-

fibrotic drugs include receptor tyrosine kinase inhibitors, anti-

TGF-b antibodies, TGF-b binding traps, TGF-b activation,

inhibitors TGF-b receptor kinases inhibitors, JAK inhibitors, an
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anti-CTGF antibody, small molecule drug targeting b-catenin, and
a TLR4 antagonist. In addition, altered metabolic programs might

offer additional possibilities for novel therapeutic options (251).

Consequently, targeting pivotal signaling pathways and key

molecules significantly influencing synovial inflammation and

fibrosis in early-stage OA could offer therapeutic advantages. By

interrupting the vicious cycle of damage-inflammation-

dysfunctional repair at its early stages, there is potential for

mitigating the progressive nature of OA and improving

patient outcomes.
8 Conclusion

Osteoarthritis represents most complex whole-joint disorder

involving multiple components including articular cartilage,

subchondral bone, synovial fluid, synovial membrane, ligaments,

tendons, adipose tissue, meniscus, and neurological routes.

Pathologic features include pain, immobility, and inflammation.

Despite extensive research, the pathogenesis of OA from onset to

late-stage progression remains incompletely understood,

highlighting the complexity of the disease’s underlying processes.

It is widely accepted that risk factors include excessive mechanical

loading, obesity, joint malalignment, prior joint injury,

inflammation, aging, and various metabolic and genetic factors.

These factors ultimately contribute to degradation of articular

cartilage, inflammation and fibrosis of the synovium, irritation of

the nociceptors (pain), aberrant angiogenesis of the synovium,

disruption of subchondral bone, and instability of ligaments and

tendons. These changes can play a role in the development and

progression of the disease, either jointly or individually. Although

synovial inflammation and fibrosis play crucial roles in OA

pathogenesis, the exact mechanisms remain incompletely

understood. Further research is needed to elucidate the interplay

between synovial tissue, cartilage degradation, and joint

inflammation in OA progression.

Furthermore, there is an urgent need for reliable biomarkers

and imaging techniques that can detect OA at an early stage so that

interventions can be carried out before irreversible joint damage

occurs. Currently, diagnosis often happens in later stages when

symptoms are pronounced and irreversible damage has already

taken place. Identifying and characterizing specific fibroblast

subsets associated with OA pathology could provide insights into
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the role of fibroblasts and their pathways. Translating these results

into clinically relevant biomarkers and therapeutic approaches still

remains a significant challenge. Bridging the gap between basic

research and clinical practice requires rigorous validation of

fibroblast-related targets and interventions in well-designed

clinical studies.
Author contributions

AD: Conceptualization, Project administration, Funding

acquisition, Visualization, Data curation, Writing – original draft,

Writing – review & editing. ER: Writing – original draft, Writing –

review & editing. DA: Writing – original draft, Writing – review &

editing. FB: Writing – original draft, Writing – review & editing.

TG: Conceptualization, Project administration, Funding

acquisition, Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The work of

AD and TGwas supported by the set Foundation (grant number P-077).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Senthelal S, Li J, Goyal A, Bansal P, Thomas MA. Arthritis. Treasure Island (FL:
StatPearls (2021).

2. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not
osteoarthrosis!). Osteoarthritis Cartilage. (2013) 21:16–21. doi: 10.1016/
j.joca.2012.11.012

3. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. (2019) 393:1745–59.
doi: 10.1016/S0140-6736(19)30417-9

4. Murphy LB, Helmick CG, Schwartz TA, Renner JB, Tudor G, Koch GG, et al. One
in four people may develop symptomatic hip osteoarthritis in his or her lifetime.
Osteoarthritis Cartilage. (2010) 18:1372–9. doi: 10.1016/j.joca.2010.08.005
5. Allen KD, Golightly YM, White DK. Gaps in appropriate use of treatment
strategies in osteoarthritis. Best Pract Res Clin Rheumatol. (2017) 31:746–59.
doi: 10.1016/j.berh.2018.05.003

6. Long H, Liu Q, Yin H, Wang K, Diao N, Zhang Y, et al. Prevalence trends of site-
specific osteoarthritis from 1990 to 2019: findings from the global burden of disease
study 2019. Arthritis Rheumatol (Hoboken NJ). (2022) 74:1172–83. doi: 10.1002/
art.42089

7. Ackerman IN, Bohensky MA, de Steiger R, Brand CA, Eskelinen A, Fenstad AM,
et al. Substantial rise in the lifetime risk of primary total knee replacement surgery for
osteoarthritis from 2003 to 2013: an international, population-level analysis.
Osteoarthritis Cartilage. (2017) 25:455–61. doi: 10.1016/j.joca.2016.11.005
frontiersin.org

https://doi.org/10.1016/j.joca.2012.11.012
https://doi.org/10.1016/j.joca.2012.11.012
https://doi.org/10.1016/S0140-6736(19)30417-9
https://doi.org/10.1016/j.joca.2010.08.005
https://doi.org/10.1016/j.berh.2018.05.003
https://doi.org/10.1002/art.42089
https://doi.org/10.1002/art.42089
https://doi.org/10.1016/j.joca.2016.11.005
https://doi.org/10.3389/fimmu.2024.1385006
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Damerau et al. 10.3389/fimmu.2024.1385006
8. Loeser RF. Age-related changes in the musculoskeletal system and the
development of osteoarthritis. Clin Geriatr Med. (2010) 26:371–86. doi: 10.1016/
j.cger.2010.03.002

9. Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease? Best
Pract Res Clin Rheumatol. (2010) 24:15–26. doi: 10.1016/j.berh.2009.08.006

10. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of
the joint as an organ. Arthritis rheumatism. (2012) 64:1697–707. doi: 10.1002/art.34453

11. Poole AR. Osteoarthritis as a whole joint disease. HSS J. (2012) 8:4–6.
doi: 10.1007/s11420-011-9248-6

12. Buttgereit F, Burmester GR, Bijlsma JW. Non-surgical management of knee
osteoarthritis: where are we now and where do we need to go? RMD Open. (2015) 1:
e000027. doi: 10.1136/rmdopen-2014-000027

13. O'Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and
disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. (2018) 32:312–26.
doi: 10.1016/j.berh.2018.10.007

14. Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, et al. Osteoarthritis:
toward a comprehensive understanding of pathological mechanism. Bone Res. (2017)
5:16044. doi: 10.1038/boneres.2016.44

15. Cucchiarini M, de Girolamo L, Filardo G, Oliveira JM, Orth P, Pape D, et al.
Basic science of osteoarthritis. J Exp Orthop. (2016) 3:22. doi: 10.1186/s40634-016-
0060-6

16. Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis.
Bone. (2012) 51:249–57. doi: 10.1016/j.bone.2012.02.012

17. Chow YY, Chin KY. The role of inflammation in the pathogenesis of
osteoarthritis. Mediators Inflammation. (2020) 2020:8293921. doi: 10.1155/2020/
8293921

18. Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matisǐć V, et al. Knee
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