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Bone regeneration is a complex pathophysiological process determined by

molecular, cellular, and biomechanical factors, including immune cells and

growth factors. Fracture healing usually takes several weeks to months, during

which patients are frequently immobilized and unable to work. As immobilization

is associated with negative health and socioeconomic effects, it would be

desirable if fracture healing could be accelerated and the healing time

shortened. However, interventions for this purpose are not yet part of current

clinical treatment guidelines, and there has never been a comprehensive review

specifically on this topic. Therefore, this narrative review provides an overview of

the available clinical evidence onmethods that accelerate fracture healing, with a

focus on clinical applicability in healthy patients without bone disease. The most

promising methods identified are the application of axial micromovement,

electromagnetic stimulation with electromagnetic fields and direct electric

currents, as well as the administration of growth factors and parathyroid

hormone. Some interventions have been shown to reduce the healing time by

up to 20 to 30%, potentially equivalent to several weeks. As a combination of

methods could decrease the healing time even further than one method alone,

especially if their mechanisms of action differ, clinical studies in human patients

are needed to assess the individual and combined effects on healing progress.

Studies are also necessary to determine the ideal settings for the interventions,

i.e., optimal frequencies, intensities, and exposure times throughout the separate

healing phases. More clinical research is also desirable to create an evidence base

for clinical guidelines. To make it easier to conduct these investigations, the

development of newmethods that allow better quantification of fracture-healing

progress and speed in human patients is needed.
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trauma, injury, bone, smart implant, growth factors, parathyroid hormone,

biomechanics, electromagnetic stimulation
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1 Introduction

Fracture healing is a lengthy process that, in humans, usually

takes several weeks to months, depending on the fracture location,

severity, and treatment (1). During fracture healing, patients are

frequently unable to work for an extended period, which results in

substantial socioeconomic costs, especially when healing is delayed

(2, 3). Throughout the healing process, patients are usually less

mobile and active than they are in their normal lives, be it due to

bed rest or partial weight-bearing instructions, pain, or, in more

severe cases, the inability to mobilize (4). Numerous negative health

effects are associated with reduced physical activity and

immobilization, including decreases in muscle and bone mass (4,

5), cardiovascular pathology (6), and deep vein thrombosis (7). It

would therefore be desirable if fracture healing could be accelerated

and the healing time could be shortened. However, interventions

designed to accelerate fracture healing are not part of the current

treatment guidelines for bone fractures (8, 9).

An optimized mechanical environment is known to shorten the

healing time compared with the extended healing time in less

favorable mechanical situations (10). To achieve this

optimization, the fracture is usually reduced and immobilized in

plaster or cast. In some cases, implants such as plates, nails, screws,

or wires are positioned to keep the reduction and fragments in place

and to increase stability by fixation. The mechanical demands for

optimal healing are known to change throughout the healing

process from little to more movement and forces in the fracture

gap (10–12). This fact has led to the concept of dynamization (13)

and to the development of implants that become less stiff

throughout healing (14, 15). In addition to an improvement in

the local mechanical situation at the fracture site, mechanical axial

micromovement applied via external fixators was shown in the

1980s and 1990s to shorten the time a fracture needed to heal by

more than 20% in patients with tibial fractures (16, 17). This

facilitation was beyond the shortest healing time that could be

accomplished by creating an ideal mechanical situation. The effects

of other interventions, such as parathyroid hormone (PTH) and

bisphosphonate administration, on acceleration have also been

discussed (18, 19). Systematic reviews and meta-analyses

concluded that low−intensity pulsed ultrasound (LIPUS) and

pulsed electromagnetic fields (PEMFs) may accelerate the time to

clinical union (20). For these and several other possible

interventions (including drugs, growth factors, and others) that

are thought to accelerate fracture healing beyond ideal mechanical

conditions, the evidence for their ability to accelerate fracture

healing in clinical use has not been recently reviewed. Indeed, a

review of all available interventions that have been clinically studied

is completely lacking. Furthermore, many of the possible

interventions have only been tested in animal studies, and despite

their fracture-accelerating effects, they have never been studied in

humans with fractures.

Therefore, the aim of this narrative review article is to provide

an overview of the available evidence on methods that shorten the

healing time of bone fractures in patients with otherwise healthy

bones beyond the effects of an ideal biomechanical, nutritional, and

metabolic environment. ‘Patients with otherwise healthy bones’, in
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this case, are individuals without metabolic or structural bone

diseases (such as diabetes or osteoporosis) that slow bone healing

and require different and disease-specific therapeutic strategies than

those for otherwise healthy patients. This review focuses on clinical

evidence from studies involving fracture patients and reports some

findings from animal and cell experiments. In addition to

mechanical and electromagnetic stimulation, pharmacotherapy,

lasers, and other types of stimuli and interventions are reviewed,

as well as studies that combine several methods. This review also

provides information on knowledge gaps in the field of fracture-

healing acceleration, leading to advice on which research needs to

be conducted to create an evidence base for clinical guidelines.

Figure 1 illustrates the key fields of interventions covered by

this review.
2 Mechanical stimulation

2.1 Axial micromovement

To improve healing, axial massage of the fracture gap by axial

micromovement seems to be a beneficial intervention. The optimal

amount of axial interfragmentary movement (IFM) has been reported

to be in the range of 0.4–0.5 mm, depending on the distance of the

fracture gap (21, 22). In human patients with tibial fractures, 0.5 mm of

controlled cyclic axial micromovement in the fracture gap applied via

external fixators (23) reduced the healing time by 7.1 weeks (16), which

in this study was equivalent to a 23% reduction compared with regular

healing (23.7 weeks of healing time with stimulation and 30.8 weeks

without stimulation, in groups of 50 and 32 patients). Another study in

human patients showed a 6-week reduction in healing time (17), which

corresponds to a 21% reduction (23 weeks of healing time with

stimulation and 29 weeks without stimulation, in groups of 23 and

22 patients, respectively). The same effect had previously been shown in

sheep with osteotomies (24). Similar stimuli may not only be delivered

by external fixators but also, in the future, ideally be applied by active

implants that provide cyclic shortening and lengthening (15). External

fixators, such as those used in the named micromovement studies, are

frames that stabilize the fracture outside the skin and are attached to

screws and/or wires to connect them to the bone. Among their

disadvantages are low patient comfort due to the external frame,

risks of pin site infections, and implant breakage or loosening. It is

therefore of interest to develop active implants that can deliver axial

compression stimuli while being entirely covered by skin (25, 26). In

their review on whether biomechanical optimization can shorten

fracture-healing time, Barcik et al. (10) concluded that, ideally,

stimulation should predominantly be limited to the proliferative

phase of healing, and that adequate rest periods are required between

applications of stimulation. Thus, it is necessary to adapt the

stimulation properties to the individual situation. This may be

accomplished by combining the sensor and actor capabilities of the

implant in a control circuit (15, 27). As the resultant movement and

interfragmentary strain in the fracture gap certainly depend on the

fracture geometry and fracture gap width, CT-based finite element

simulations may help to determine the stroke of the micromovement

needed for the individual fracture (28, 29). Generally, increasing
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fracture gap sizes are associated with a longer healing process (30).

Smaller fracture gaps require stiffer fixation and a lower IFM (31). As

strain is applied over a larger distance of fracture fragments,

comminuted fractures tolerate relatively greater motion, which

reduces the local strain and leads to more timely healing (23).
2.2 Vibration

Exposure to whole-body vibration (WBV) by having a patient

stand on a vibration platform could in theory deliver a similar

stimulus to the fracture gap as the axial micromovement induced

by external fixators (16, 17). However, a difference is that force

transmission through tissues and joints and muscle contraction may

affect the IFM (32). The vibration settings that can be modified

include peak-to-peak displacement (amplitude), frequency and

acceleration (33). Low-magnitude high-frequency vibration

(LMHFV) is defined as vibration with an amplitude from 0.02 mm

to 1 mm at 20–90 Hz with less than 1.0 g (gravitational acceleration)

(34). In a systematic review on the effect of WBV on fracture healing,

Wang et al. (34) reported that stimulation frequencies of 35 Hz and

50 Hz yielded the best results. Their review, however, did not analyze

healing acceleration. Wehrle et al. (35) suggested caution when

treating fracture patients with LMHFV, as small changes in the

settings could considerably change the outcomes. In their study

involving mice, a frequency of 35 Hz did not affect fracture

healing, whereas a frequency of 45 Hz significantly reduced bone

formation and flexural callus rigidity. Wolf et al. (36) tested the effect

of exposure to a vibration platform in sheep with a frequency of 50

Hz and an IFM of approximately 0.02 mm magnitude, but did not

find an effect on bone healing with these settings. While vibration
Frontiers in Immunology 03
exposure was shown to normalize fracture healing in diabetic (37)

and ovariectomized rats with osteoporosis (38), it did not affect bone

healing in healthy rats (37). The vibration settings of these two studies

were a peak-to-peak vertical displacement of 1 mm at frequencies of

50 Hz and 60 Hz. The effect of vibration exposure on the speed of

fracture healing has not yet been investigated in a study of human

patients. However, a clinically relevant effect seems unlikely based on

the reported findings.
2.3 Ultrasound

LIPUS is defined as acoustic waves with a carrier frequency of

approximately 1.5 MHz with pulse clusters of 200 µsec at an

intensity of approximately 30 mW/cm2 and a repetition rate of

the clusters at 1 kHz (39, 40). The devices that usually work by

piezoelectric crystals are noninvasively positioned on the skin over

the fracture to apply the stimulus for approximately 20 to 30

minutes daily (41). A systematic review concluded that LIPUS did

not reduce the time to return to work or the days to weight bearing

in fracture patients (42). A recent Cochrane review, due to the

statistical heterogeneity of studies, was unable to pool the data for

time to fracture union, which means that the authors were unable to

analyze the available studies and draw a conclusion (43). The same

review concluded that studies did not show an effect on delayed

union or nonunion (43). A 2002 review of the effects of LIPUS on

time to fracture healing revealed evidence in randomized trials that

LIPUS treatment can significantly reduce the time to fracture

healing in nonsurgically treated fractures, while there appeared to

be no additional benefit after intramedullary nailing with prior

reaming (44). In 2014, another systematic review and meta−analysis
FIGURE 1

Fields of interventions covered by this review. (A) Mechanical stimulation, (B) Electromagnetic stimulation, (C) Pharmacologic interventions, and
(D) Heat exposure.
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of randomized controlled trials came to a similar conclusion,

reporting that the effect of LIPUS on bone growth stimulation

could only be found in patients with nonoperatively treated

fractures or fractures of the upper limb (20). The same study

revealed that the use of LIPUS for the treatment of diaphyseal

fractures accelerated the time to clinical union. More recent clinical

trials that tested LIPUS for effects related to fracture-healing

acceleration included a study by Murakami et al. (45) who did

not observe acceleration after LIPUS treatment of 101 proximal

stress fractures of the fifth metatarsal.

Based on the studies and reviews that have been published thus

far, it can be concluded that LIPUS at least does not have a

decelerating effect on fracture healing, whereas it also does not

have a massively accelerating effect that unambiguously appears in

most studies. The effect could be greatest in nonoperatively treated

fractures and diaphyseal fractures. It also seems that in addition to

the common LIPUS settings, further frequencies and settings

(intensity, clustering, daily stimulation time) have not been

systematically compared in patients regarding their effects on

fracture-healing time, and it thus remains unclear if the named

LIPUS settings are the optimum or if other settings would deliver

more favorable results. Apart from LIPUS, High-intensity focused

ultrasound (HIFU) is used to treat bone metastases (46, 47), but to

date no clinical study has tested the effect of HIFU in patients with

fractures with the aim of accelerating healing (43).
2.4 Shock wave therapy

Extracorporeal shock wave therapy (ESWT) applied though

single pressure waves of approximately 300 bar activates

mechanotransduction (48) and thereby (re-) activates fracture

healing via the release of growth factors, such as BMPs, TGF-b,
Frontiers in Immunology 04
and VEGF (49). Shock waves are generated by electrohydraulic,

piezoelectric, or electromagnetic mechanisms (50). Its application

led to increases in bone microcirculation in the scaphoid (51).

ESWT was shown to accelerate endochondral ossification and

fracture healing in a rat femur delayed-union model (52). It also

seems to be effective in stimulating the healing process in delayed

unions and nonunions, where it has convincing evidence of a

beneficial effect (53). However, studies to generate evidence for an

accelerating effect on human fracture healing are lacking. It would

be beneficial, if large randomized clinical interventional studies

could assess the effect of ESWT on fracture-healing speed in human

fracture patients.
3 Electromagnetic stimulation

Bone is a bioelectric tissue in which charges, streaming potentials,

and piezoelectricity can be observed (54, 55). Several modes of

electromagnetic stimulation seem to have an effect on fracture-

healing speed (56). The options differ widely in terms of their

properties and intensities and include exposure to electromagnetic

fields (i.e., capacitive coupling (CC) or inductive coupling (IC)),

direct electrical stimulation with a current running through the

fracture (direct current electrical stimulation (DCES)), or indirect

fracture stimulation by neuromuscular electrical stimulation

(NMES). Figure 2 illustrates the different types of electromagnetic

stimulation. To promote regeneration, electromagnetic fields can be

applied in a pulsed, constant, or alternating manner (57). In a recent

review on the effects of electrical stimulation on acute fractures (not

specifically on fracture acceleration), Nicksic et al. (58) reported a lack

of evidence and study comparability and suggested a protocol to

conduct repeatable, well-reported studies. This is particularly needed

due to the large variety of possible settings. In their review addressing
FIGURE 2

Types of electromagnetic stimulation. (A) Inductive coupling (IC), such as pulsed electromagnetic fields (PEMF). (B) Capacitive coupling (CC).
(C) Direct current electrical stimulation (DCES). (D) Neuromuscular electrical stimulation (NMES).
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the question of why more surgeons do not use electromagnetic

stimulation despite its effectiveness, Bhavsar et al. (59) pointed out

that surgeons would likely be open to using this treatment if

advancements in the technology are able to provide an easy-to-use,

cost-effective method to deliver electrical stimulation to their fracture

patients. The authors also noted that complications included skin

irritation and infections, pain, dislocation of the device, device failure,

and poor patient compliance.
3.1 Noninvasive application of
electromagnetic fields

PEMF is a type of IC that is applied via coils outside the body. It

is thought to induce osteogenic differentiation of osteoprogenitor

cells, and to promote angiogenesis, and bone mineralization (60). It

has also been shown to induce vasodilation (61). Combined electric

and magnetic field therapy in a sheep model showed enhanced bone

healing, resulting in better new bone structure, callus morphology,

and superior biomechanical properties compared to those of a

nonintervention control group (62). Among the options for

electromagnetic field application in human fracture patients, the

most clinical evidence seems to exist for PEMF. Several studies have

been conducted in human fracture patients. The time to cast

removal was significantly shorter in patients with distal radial

fractures treated with PEMF (33 ± 5.9 days) than in patients in

the sham group (39.8 ± 7.4 days), equivalent to a 17% reduction in

time (63). In 40 patients with closed or Grade-1 open tibial

fractures, Fontanesi et al. (64) reported a significant reduction in

time to union from an average of 109 to 86 days (a difference of 25

days, a reduction of 21%). In these successful studies, the hardware

and settings were as follows: the magnetic field was 2–2.8 mTesla,

and each impulse lasted 1.3 milliseconds. The tension induced in

the calibrated probe was 2.5 ± 1 mVolt. In acute distal radial

fractures, Factor et al. (63) reported a 17% reduction in the fracture

healing time. For this study, a PEMF device called a fracture healing

patch (FHP) (Pulsar Medtech Ltd., Bnei Brak, Israel) was used with

a pulse frequency of 20 kHz, a cycle frequency of 10 Hz, and a pulse

intensity at the fracture site of between 0.05 and 0.5 mTesla. In

addition, Wahlström (65) studied the effect of electromagnetic fields

with extremely low frequency (EMF of ELF) with an alternating

magnetic field with a frequency of 1–1000 Hz and a magnitude of 4

Gs. Progress in the bone healing of 50 women with distal radius

fractures was observed with scintigrams (accumulation of

99mTechnetium). The findings indicated a significantly shorter

time until normal scintigram values were achieved in the

stimulated group. According to a systematic review and meta

−analysis of randomized controlled trials, PEMF significantly

shortened the time to radiological union for acute fractures

treated without surgery and for acute fractures of the upper limb

(20). Thus, exposure to electromagnetic fields seems to be a useful

option for accelerating fracture healing.

CC usually involves the placement of electrodes on the skin on

opposite sides of the fracture, and the application of alternating

currents. In human patients with vertebral fractures, CCs showed

faster resolution of vertebral bone marrow oedema, less pain and
Frontiers in Immunology 05
reduced pain-medication consumption (66, 67). Clinical studies on

the effect of CC on long-bone nonunions have been published, but

to date (68, 69), to the author’s knowledge, no study on CC has

focused on fracture-healing speed or acceleration in long-bone

fractures. One reason may be that due to the extensive soft tissue

mantle in humans, external electromagnetic field application has

the disadvantage of field intensities that are mostly too low to

achieve the desired effect in the bone, which is why invasive and

implant-based DCES options should be further explored (70).
3.2 Treatment with direct electric currents

Apart from noninvasive electromagnetic field application,

electromagnetic fields can also be applied by implanted electrodes

(58, 70, 71). This application mode allows the delivery of the

electromagnetic field in a more optimized intensity range for the

local tissue. Finite element simulations of the electromagnetic field

distribution are also beneficial for determining the required settings

before a clinical trial, as these settings highly depend on the local

tissue properties (72). In addition, the success of electromagnetic

stimulation was shown to depend on the local oxygen tension,

which means that it only works with adequate blood supply (73).

DCES treatment is usually applied at dosages between 5 and 40

mA (59). In 24 human patients with tibial fractures treated with a

Hoffmann external fixator, Jorgensen (74) used insulated bone

screws as electrodes to induce a pulsating voltage at 1 Hz and

approximately 0.7 V and 40 µA. A voltage of 1.5 volts or more was

considered painful for the patients. Changes in the stiffness of the

fracture were recorded through the Hoffmann apparatus. The

results showed a 30% decrease in fracture-healing time in the

intervention group (2.4 months) compared to the control group

(3.6 months). With a fully implanted device for direct current

fracture stimulation, named ‘direct current bone growth

stimulation’ (DCBGS, constant current at 20 µA, 3 V), Paterson

et al. (75) confirmed the short period until healing (average of 16

weeks) in 84 patients with delayed union or nonunion when using

the device. Many further DC clinical studies were conducted with

the aim of treating nonunion (59), but the effects of healing

acceleration were not followed up for translation into clinical

practice. As the early findings appear to be extremely promising,

large clinical studies should now test the effects of the application of

modern DC devices on fracture-healing time. As the invasiveness of

this intervention is certainly a disadvantage, it may be an option to

add this functionality to smart implants such as plates or nails,

when they are implanted anyway (15). For example, an implantable

electric pulse stimulator that combines a hybrid tribo/piezoelectric

nanogenerator with a conductive bioactive hydrogel was recently

presented and very promising data from experiments with mice

were obtained (76).
3.3 Neuromuscular electrical stimulation

NMES can be used to induce involuntary muscle contractions

with a mechanical effect on fracture biomechanics, including strain
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and movement in the fracture gap (77, 78). These effects, however,

are difficult to standardize, as the individual muscle contractile

properties, which are known to change with immobilization, need

to be taken into account (79, 80). NMES has been shown to enhance

fracture healing in mice (81), but studies on the effects of NMES use

on fracture-healing speed in humans are lacking. It would be of

interest to explore this possible intervention, as it is noninvasive and

might be helpful, especially when combined with other methods.

NMES may be particularly beneficial in bed-ridden patients, e.g.,

those with spinal cord injury, as they lack movement and strain in

the fracture.
4 Pharmacologic interventions

Pharmacologic interventions can either be applied systemically

or directly to the fracture site (injection or intraoperative

application) (82, 83). Local drug delivery by injecting a

medication into the fracture gap could be an option for

conservative treatment or for application when delayed healing

occurs following surgery. In a review, Per Aspenberg listed and

discussed drugs that impair or improve fracture healing (84). The

drugs he listed that improve fracture healing were growth factors

(fibroblast growth factors (FGF) 1 and 2, transforming growth

factor 1 (TGF-1), growth hormone (GH), and bone morphogenetic

proteins (BMPs)), PTH, selective prostaglandin agonists, statins,

and beta blockers. In another review on fracture repair acceleration

from 2013 (85), he named bisphosphonates, BMP and PTH as

potentially accelerating fracture healing, but a clear conclusion at

that time was not possible due to the need for more and better

studies. Nielsen & Low (86) published a review focusing on bone-

targeted ligands to accelerate fracture healing and highlighted dose-

limiting toxicities such as hypercalcaemia with the systemic use of

many osteoporotic drugs when administered to accelerate fracture

healing, which can be reduced with selective drug delivery.
4.1 Growth factors

Accelerated fracture healing was observed after traumatic brain

injury (TBI) in patients whose serum concentrations of BMP-2,

FGF-2, IL-1b, and platelet-derived growth factor (PDGF) were

increased (87). Furthermore, GH, interleukin-6 (IL-6), and

prolactin levels were elevated in TBI patients who had increased

callus formation (88). In TBI patients, the time to callus formation

was also shortened (89). These acceleration effects appear clinically

very impressive and relevant. The injection of the same factors in

patients without TBI may lead to the same effects, which should be

tested in clinical intervention studies. In fracture patients, brief

periods of ischaemia generated by pneumatic cuff compression were

also shown to accelerate bone fracture healing, likely through the

release of BMP-2 and other growth factors (90). This promising

method requires further well-designed clinical studies.

The injection of mesenchymal stem cells that locally produce

growth factors for the acceleration of fracture healing has been

discussed and studied. In mice, injections of mesenchymal stem
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cells (MSCs) that overexpress basic fibroblast growth factor (bFGF)

accelerated fracture healing (91). Encapsulated nerve growth factor

(b-NGF) in injectable microrods in mice led to a significant increase

in the percentage of bone in the fracture callus, trabecular

connective density, and bone mineral density relative to those in

controls (92). In addition, stimulation of the Wingless and Int-1

(Wnt) pathways by Wnt1 was found to significantly accelerate

fracture healing by enhancing bone formation in mice (93). In early

experimental studies, inhibition of Ca2+/calmodulin (CaM)-

dependent protein kinase kinase 2 (CaMKK2) was shown to

accelerate endochondral ossification, resulting in more rapid and

efficient fracture healing (94). However, no studies with patients

have assessed the effect of these growth factors on fracture-healing

speed. The available clinical studies on the amelioration of fracture-

healing by MSCs in patients (not specifically focusing on healing

acceleration) were summarized in a systematic review and meta-

analysis by Yi et al. (95), which revealed no decrease in healing time

in the MSC group. The included studies with human patients

differed largely in their patient collectives and modes of MSC

application (96–99). A fracture-accelerating effect thus seems

possible, however, more sufficiently large and prospective

intervention studies in human patients are required to be able to

reach a conclusion. Bone morphogenetic proteins (BMPs) are

thought to initiate fracture healing and to thereby reduce

nonunions (85). Local intraoperative application of mineral-

coated microparticles loaded with VEGF and BMP-2 induced the

healing of atrophic nonunion in mice (100). In rats, a single

percutaneous injection of recombinant human BMP-2 accelerated

fracture repair (101). Among the larger studies in patients is a

clinical trial with 277 patients with open tibial fractures treated with

reamed intramedullary nail fixation that was not significantly

accelerated by the addition of rhBMP-2 delivered by an

absorbable collagen sponge (102). A Cochrane review on the

effects of intraoperative application of BMP on fracture healing

concluded that there is limited evidence that BMP is more effective

than control treatment, and the efficacy of BMP for the treatment of

nonunion remains unclear (103). The injection of BMPs may be

associated with ectopic bone formation, which has been identified

as a clinical complication (104). It can be concluded, with uncertain

evidence, that BMPs at least do not markedly accelerate fracture

healing but rather have a lesser effect, if any.

Further clinical studies in patients are needed to quantify the

effects of the above growth factors and combinations of several of

growth factors, also considering the mode of application on

healing time.
4.2 Medications

In osteoporosis, bone healing is generally slower, and

bisphosphonates have been shown to facilitate healing in terms of

normalizing the fracture-healing speed (18, 85, 105). However,

there is no indication that bisphosphonates also accelerate healing

in patients without osteoporosis (85). PTH, marketed as the

osteoporosis drug teriparatide, increases bone remodeling by

increasing the number and activity of osteoblasts, thereby
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affecting early callus formation (85). PTH had no effect on the

chondroid phase of fracture healing, but an effect was observed once

bridging bone developed (106). Although the evidence for fracture-

healing acceleration is limited, there seems to be at least a promising

beneficial effect that makes PTH an interesting candidate (18, 19,

85, 107, 108). In 65 postmenopausal women with pelvic fractures,

PTH accelerated fracture healing by more than 30% (7.8 weeks in

the PTH group compared with 12.6 weeks in the control group) and

improved functional outcomes (19). In 102 postmenopausal women

with distal radial fractures, daily placebo, 20 µg teriparatide or 40 µg

teriparatide (34 patients in each group) resulted in a shorter healing

time with teriparatide 20 µg but not with 40 µg teriparatide,

compared with placebo (18). Intermittent PTH accelerated stress

fracture healing more effectively following cessation of

bisphosphonate treatment (109).

Acidic oligopeptides such as desatinib have been proposed for

the acceleration of fracture healing, as their systemic side effects

could be very low when targeted to the fracture site (selective drug

delivery), while a strong effect on healing time is expected with local

administration; however, clinical studies involving fracture patients

are currently unavailable (86, 110). Other drugs that have been

considered to accelerate fracture healing include selective

prostaglandin agonists (111), cyasterone (112), statins, and anti-

sclerostin antibodies (113), but there is a lack of evidence from

clinical studies in patients. In animal studies, amlodipine (114),

cilostazol (115), L-arginin (116), sildenafil (117), and metformin

(118) were shown to facilitate fracture healing. Aditionally, irisin

(119), tumeric acid (120), aqueous extract of Prunus dulcis (121),
and the Chinese acupuncture and herbal formula powder

prescription ‘Zhèng Gŭ Zĭ Jın̄ Dān’ (122) are thought to

accelerate fracture healing, but this has not yet been shown in

clinical studies with patients and with an appropriate study design.

In summary, PTH is currently the medication with the best

evidence for accelerating fracture healing. When considering

pharmacotherapy to accelerate fracture healing, side effects must

be considered. These can be significant compared to the side effects

of mechanical or electromagnetic interventions; therefore, patient-

specific comorbidities and current medications need to be

considered much more for pharmacological interventions than

for other interventions.
5 Heat exposure

Light amplification by stimulated emission of radiation (laser) is

a method developed in the 1960s that generates and emits coherent

and focused light. It has various applications in medicine, including

for analgesia (123, 124). Laser light with a power of more than 500

mW is called a high-intensity laser (HIL), and it acts by producing

heat in the tissue. Lasers with a power of less than 500 mW are

called low-level lasers (LLLs). The latter are usually applied at

wavelengths of 600 to 1000 nm and do not produce heat but still

seem to have effects on pain, inflammation, tissue repair and

regeneration by stimulating cellular and enzymatic processes,

including those involving stem cells (125). These effects seem to

occur in the early but not in the later stages of fracture healing (125).
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In rats with bone defects, low-level laser therapy (LLLT) accelerated

the development of newly formed bone during the initial phase of

bone healing (126). A combination of bone marrow aspirate (BMA)

and LLLT was reported to enhance bone healing in rats (127). Only

a few studies have investigated the effects of HIL therapy on fracture

healing. Kim et al. (128) showed that high-intensity Nd: YAG laser

irradiation significantly increased new bone formation in bone

defects by approximately 45%. However, in human patients, such

studies are rare. Among the few clinical studies that have tested

LLLT on closed bone fractures of the wrist and hand, LLLT

improved the VAS score, Quick-DASH score, and hand and

finger grip strength (129). However, no clinical studies in patients

have assessed the effects of LLLT or HIL on fracture-healing speed.

Based on the promising findings from animal studies, such trials

appear highly desirable. Aditionally, clinical studies with other heat

sources, such as transdermal heat application, are needed.
6 Combination of interventions

Figure 3 provides an overview of the available methods and a

possible combination of methods as a priority suggestion for clinical

trials. In theory, a combination of interventions that have been shown

to accelerate fracture healing could decrease the healing time even

more than one intervention alone, especially if their mechanisms of

action differ. Several studies have combined interventions to examine

their joint effects on fracture-healing speed, such as a combination of

stem cells and PTH (130) or a combination of human PTH and

LIPUS (131). However, none of these studies were designed to assess

the individual and combined effects separately or to compare them to

a control group. This is the desirable study design for determining

whether there is an advantage in administering two or more

interventions at once, compared to only one intervention. Based on

the findings collected in this review, combinations of axial

micromovement and electromagnetic stimulation and the

therapeutic application of growth factors and/or PTH could be

interesting to explore in such studies. In addition, the ideal settings

(i.e., frequencies, intensities) and exposure times need to be explored

for each method alone and for several combined. These may differ

depending on which and how many interventions are combined

methods. Such studies are difficult to conduct, as they need large

patient groups and suitable outcome measures. They are, however,

urgently needed in the clinic.
7 Discussion

The main findings of the present review are summarized

in Figure 4.

Fracture healing occurs in several phases over several weeks (23,

132). These include the acute inflammatory response, recruitment

of mesenchymal stem cells, generation of a cartilaginous and

periosteal bony callus, revascularization and neoangiogenesis at

the fracture site, and mineralization and resorption of the

cartilaginous callus, followed by bone remodelling (1). In regular

healing, numerous cellular components are involved, including
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growth fractures and cytokines that induce vascularization of the

fracture callus within 2 to 5 weeks (133). New blood vessels provide

cells, hormones, and nutrients for callus development from

avascular cartilaginous tissue to mineralized woven bone (134).

Direct or indirect fracture healing may occur (1), also called contact

healing when the bone ends are in direct contact and gap healing

when they are not directly apposed. On average, the healing time

(also known as the union time) is increased in smokers (135), in
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patients with osteoporosis (136), in patients receiving

bisphosphonate therapy (137), in patients in a hypoxic

environment, such as at high altitude (138), in patients with more

complex fractures, including those associated with compartment

syndrome (139), and in older patients and patients with several

comorbidities (140).

In the clinical routine, in addition to clinical appearance, X-ray

radiography and computed tomography (CT) scans are used to
FIGURE 4

Summary of the findings of this review.
FIGURE 3

Overview of methods and suggestion for clinical trials.
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objectively monitor the progress of fracture healing (141). These

two X-ray based imaging techniques are, however, associated with

health risks connected to radiation exposure (142). Nonetheless, in

some cases, ultrasound imaging can be used with limited

informative power (143, 144). In addition to radiation exposure,

X-ray-based imaging has the disadvantage of showing healing

progress with a time lag, as it reflects only the progress in

calcification and not the actual improvements in stiffness (145).

The development of additional methods to measure the progress of

fracture healing that can be used in the clinical environment is

highly desirable (146). These interventions are also urgently needed,

as they have not become part of the standard of care to date, despite

the highly promising evidence presented in the present review.

Moreover, no inexpensive and easy-to-use alternative to

radiography-based methods for monitoring fracture healing has

made its way into clinical routine. However, gait and motion

analyses are currently being explored for this purpose (147), and

the development of implants with sensors that measure changes in

stiffness has recently shown some innovations (15, 25, 148). In

addition, bioimpedance and perfusion measurements seem to be

promising (133, 149, 150). Among the current ideas under

development are also autonomous implants with combined

sensing and acting capabilities that have a feedback loop and that

apply interventions depending on live measurements to accelerate

healing (15). Pulsatile electrical stimulation on cells was combined

with such a real-time readout by impedance sensing to design a

control loop as an example of how an active implant could be

regulated in the future (27). Patient compliance is a problem when

the intervention requires active patient cooperation (151). The

automated application of an intervention by an implant or the

automated release of a medication could improve this aspect.

Shorter fracture-healing times could reduce the likelihood of

secondary fracture displacement and complication rates, leading

to changes in clinical practice. In some cases, these include the

decision of when to operate and when to choose conservative

treatment. While fractures with displacement in the joint line

almost always require surgery to avoid osteoarthritis, simple

closed shaft fractures, which are now often operated on to reduce

immobilization-related complications, could be treated

conservatively in more cases if it turns out that some of the above

interventions allow fracture-healing times to be reduced. This could

be particularly relevant for patients who need to return to work as

quickly as possible, as well as for geriatric patients.

Fracture healing in the clinical setting has many influencing

factors for the treating clinical team, which challenges the

translation from simplified preclinical findings into clinical

practice. Among these challenges are the individuality of patients

and their compliance (151), economic pressures, and structural

issues that often make it difficult to conduct large randomized,

longitudinal clinical trials in hospitals. It is therefore of the highest

priority to support and prioritize this kind of research and to

conduct the clinical studies suggested in the present review in

human patients. The acceleration of fracture healing shows a large

gap between the very clear preclinical evidence and the clinical
Frontiers in Immunology 09
studies needed to translate these findings into clinical practice, and

generate a real benefit for the patients.
8 Conclusions

In summary, despite the massive health and socioeconomic

benefits of shorter fracture-healing times, there is a large research

gap regarding the actual benefits of possible interventions to reduce

these healing times in patients. The most promising methods to

accelerate fracture healing appear to be the application of axial

micromovement, electromagnetic stimulation with electromagnetic

fields and direct electric currents, and the administration of growth

factors, and PTH. The optimal stimulation settings with the most ideal

results, e.g., frequencies and energies, have not yet been sufficiently

researched. As a combination of these interventions could decrease the

healing time further than one intervention alone, especially if their

mechanisms of action differ, clinical multicenter studies involving

human patients are needed to assess the individual and combined

effects compared with a control group. To make it easier to conduct

such studies, the development of new methods that allow better

quantification of the progress of fracture healing is needed.
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