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Designer umbilical cord-stem
cells induce alveolar wall
regeneration in pulmonary
disease models
Mayumi Iwatake1,2, Tokiko Nagamura-Inoue3, Ryoichiro Doi2,
Yukinori Tanoue2, Mitsutoshi Ishii 2, Hiroshi Yukawa1,
Keitaro Matsumoto2,3, Koichi Tomoshige2, Takeshi Nagayasu2

and Tomoshi Tsuchiya2,4*

1Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University,
Nagoya, Japan, 2Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate
School of Biomedical Sciences, Nagasaki, Japan, 3Department of Cell Processing and Transfusion, The
Institute of Medical Science, The University of Tokyo, Tokyo, Japan, 4Department of Thoracic Surgery,
Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
Background: Researchers are focusing on cellular therapy for chronic

obstructive pulmonary disease (COPD) using mesenchymal stem cells (MSCs),

with human bonemarrow-derived MSCs (hBM-MSCs) leading the way. However,

BM-MSCs may not be as optimal as therapeutic cells owing to their low growth

potential, invasive harvesting, and high expression of aging-related genes with

poor differentiation potential. Consequently, umbilical cord-derived MSCs (hUC-

MSCs), which have many excellent features as allogeneic heterologous stem

cells, have received considerable attention. Allogeneic and heterologous hUC-

MSCs appear to be promising owing to their excellent therapeutic properties.

However, MSCs cannot remain in the lungs for long periods after

intravenous infusion.

Objective: To develop designer hUC-MSCs (dUC-MSCs), which are novel

therapeutic cells with modified cell-adhesion properties, to aid COPD treatment.

Methods: dUC-MSCs were cultured on type-I collagen gels and laminin 411,

which are extracellular matrices. Mouse models of elastase-induced COPD were

treated with hUC-MSCs. Biochemical analysis of the lungs of treated and control

animals was performed.

Results: Increased efficiency of vascular induction was found with dUC-MSCs

transplanted into COPD mouse models compared with that observed with

transplanted hUC-MSCs cultured on plates. The transplanted dUC-MSCs

inhibited apoptosis by downregulating pro-inflammatory cytokine production,

enhancing adhesion of the extracellular matrix to alveolar tissue via integrin b1,
promoting the polarity of M2 macrophages, and contributing to the repair of

collapsed alveolar walls by forming smooth muscle fibers. dUC-MSCs inhibited

osteoclastogenesis in COPD-induced osteoporosis. hUC-MSCs are a promising

cell source and have many advantages over BM-MSCs and adipose tissue-

derived MSCs.
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Conclusion: We developed novel designer cells that may be involved in anti-

inflammatory, homeostatic, injury repair, and disease resistance processes. dUC-

MSCs repair and regenerate the alveolar wall by enhancing adhesion to the

damaged site. Therefore, they can contribute to the treatment of COPD and

systemic diseases such as osteoporosis.
KEYWORDS
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1 Introduction

Researchers are developing cell-based therapies for lung

diseases. The life-saving effects of mesenchymal stem cell (MSC)

therapy for patients with COVID-19-ARDS have been well

documented, and reports on the use of cell-based therapies in

preclinical experimental models of chronic obstructive pulmonary

disease (COPD) have been published (1, 2). Clinical trials exploring

the use of allogeneic bone marrow-derived MSCs (BM-MSCs) for

the treatment of COPD are underway in the U.S. and India, with

documented evidence of the anti-inflammatory effects of BM-MSCs

(3, 4). However, BM-MSCs are not preferred as therapeutic cells

because of their low proliferative potential and susceptibility to

invasive infections in recipients of transplanted BM-MSCs. BM-

MSCs express human leukocyte antigen (HLA) class II molecules

that induce immune reactions and inflammation (5).

Umbilical cord-derived MSCs (UC-MSCs) are suitable for

allogeneic transplantation because they do not express HLA-II and

show high immune tolerance (6, 7). Umbilical cord tissues can be

collected noninvasively and stored in banks to ensure a stable supply

of UC-MSCs. UC-MSCs exhibit greater immunosuppression than

BM-MSCs due to the secretion of soluble factors (prostaglandin E2

and galectin-1) and their high adherence ability (8).

Administration of human UC-MSCs (hUC-MSCs) for COPD

therapy has been clinically proven to be beneficial (9–11). Paracrine

action might underlie the improvement observed following MSC

administration, but it does not promote lung reconstruction (repair

of alveolar epithelial cells) (12). Therefore, cells that effectively promote

tissue regeneration must be developed. By standardizing the culture

conditions for hUC-MSCs to optimize their diverse functions, it is

possible to create therapeutic cells for COPD and ARDS treatment that

stimulate vascular induction and possess anti-inflammatory properties.

Modulation of hUC-MSCs induces the formation of adhesion

structures that connect cells to the extracellular matrix (ECM),

whereas cytoskeletal actin modulation promotes osteoblast

differentiation and neovascularization (13, 14). Interstitial matrix

proteins, including collagen and fibrin/fibronectin, serve as key

receptors that interact with endothelial cell (EC) surface integrins

to activate ECs (15–18). Therefore, the objective of the study was to

develop designer hUC-MSCs (dUC-MSCs) by modifying their ECM.
02
COPD coexists with various systemic diseases including

osteoporosis, hyperlipidemia, hypertension, and ischemic heart

disease. Here, we focused on osteoporosis, one of the major

complications of COPD, and analyzed the contribution of dUC-

MSC to osteoclastogenesis in a COPD mouse model. Our findings

provide new insights into the immunomodulatory functions of

dUC-MSCs used to repair lung injury in COPD mouse models

that could be used for the treatment of ARDS.
2 Materials and methods

2.1 Cell culture

hUC-MSCs were provided by Dr. Tokiko Nagamura (Tokyo

University, Tokyo, Japan). A two-dimensional collagen gel (Type

I-A, Nitta Gelatin Inc. Nitta Gelatin, Tokyo, Japan) culture

system was prepared following the manufacturer’s protocol.

The collagen gel solution containing hUC-MSCs was poured

into a plastic Petri dish, followed by incubation at 37°C to allow

the gel to polymerize. Subsequently, hUC-MSCs were seeded

onto the polymerized gels.

In this study, umbilical cord MSCs were seeded after coating

plastic culture dishes with fibronectin, collagen gel, collagen coat,

Laminin 211, Laminin 411, and Laminin 511 ECM. The cells were

characterized by seeding umbilical cord MSCs in different culture

environments created using these techniques. Normal culture

without ECM was described as non-coated.

In addition, plates coated with a mixture of collagen and

Laminin 411 were described as collagen coat-L411, in which 1

mL of diluted collagen concentration was mixed with 9 ml of

Laminin 411, added to the wells and allowed to stand at room

temperature for 1 hour. The collagen was used as collagen coat-

L411. Gel-L411 plates were also prepared and used by adding 9 ml of
Laminin 411 to 2 mL of dilute collagen solution, mixing, adding to

wells, and heating at 37°C for 30 minutes to gelatinize.

The cells from the Gel and Gel-L411 culture environment were

lysed from the gel using collagenase and used for gene expression

analysis and flow cytometry. Cells from other culture methods were

exfoliated using trypsin.
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2.2 Animal model of COPD

C57BL/6 (B6) mice were purchased from CLEA Japan Inc.

(Tokyo, Japan) and maintained under conventional conditions at

the Nagasaki University Animal Center. Induction of emphysema

was performed according to a previous protocol established as

previously reported (19, 20). Briefly, the animals were treated

with 3% isoflurane under oxygen anesthesia and challenged with

intranasal instillation of 30 mg porcine pancreatic elastase (catalog

number 058-05361; FUJIFILM Wako Pure Chemical Corporation,

Osaka, Japan) in 50 µl of 0.9% saline solution. The animals were

administered the dose only once on Day 0. Control animals were

administered 50 µl of 0.9% saline solution (vehicle). Lung samples

collected from treated and control animals were analyzed (see

online Data Supplement for details).
2.3 hUC-MSC administration

The mice were anesthetized (isoflurane: 3% induction and 1%

maintenance), and saline solution or cultured hUC-MSCs (3.0 × 106

cells, total volume 100 ml) were slowly injected via their tail veins.

Lung samples were collected at different time points, and their

histology, gene expression profiles, and cell surface proteins were

analyzed (see the online Data Supplement for details).
2.4 Statistical analysis

All values are expressed as means ± SD of three independent

experiments. Data were analyzed using analysis of variance

(ANOVA) followed by the Tukey–Kramer test. The statistical

significance of differences between concentrations was set at

*P < 0.05 or **P < 0.01, as indicated.
3 Results

3.1 Adhesion and activation of MSCs of
different origins under ECM
culture conditions

After 24 hours of incubation, non-adherent cells were removed

by washing with PBS. Cells that remained adherent to the well plate

were considered as cells with adhesive ability, and the number of

those cells was measured and evaluated using the cell counting kit-8

(CCK-8) assay. The results of CCK-8 assay showed that all types of

MSCs exhibited greater attachment to plastic surfaces than human

umbilical vein endothelial cells (HUVECs), especially at high cell

seeding densities (Figure 1A). The ratio of VEGF expression to

GAPDH gene expression in each MSCs was analyzed using

HUVECs, which are known to promote cellular responses

involved in angiogenesis, as a control. The mRNA expression of

vascular endothelial growth factor (VEGF), was upregulated in each
Frontiers in Immunology 03
MSCs group in comparison to HUVEC (Figure 1B), indicating that

the therapeutic potential of UC-MSCs is comparable to that of

hBM-MSCs and hADSC-MSCs. MSCs can secrete the angiogenic

factor VEGF, which promotes local angiogenesis, suggesting that

MSC-based therapy after tissue injury may increase microvascular

density and preserve organ function. For this VEGF gene expression

analysis, HUVECs, hBM-MSCs, hADSC-MSCs, and hUC-MSCs

were cells cultured on plastic surfaces to which no special coating

such as ECM or stimulating factors were added.
3.2 Characterization of hUC cultures

The cells isolated from the Wharton’s jelly of the human

umbilical cord exhibited a spindle-shaped fibroblast-like

morphology and adhered well to the plastic (Figure 1C). These

cells expressed stem cell-specific transcription factors such as

OCT4, NANOG, and SOX2. Flow cytometry analysis revealed up-

or downregulated expression of the following surface markers in the

sorted cells: CD105-PE, 90.2%; CD73-PE-Cy7, 92.3%; CD146-

FITC, 97.9%; CD90-PE, 97.3%, and 0.47% CD45-FITC. These

results suggest that our cell cultures exhibited the typical MSC

immunophenotype, i.e., CD105+/CD73+/CD146+/CD90+/

CD45- (Figure 1C).
3.3 Effect of ECM on the expression of
vasculogenesis- and myoblast
differentiation-related mRNAs in
hUC-MSCs

We assessed the expression of neovascularization-related

factors in hUC-MSCs cultured on different ECM proteins that

constitute the basement membrane of alveolar epithelial cells.

VEGF expression was higher in collagen I gel-coated wells than

in laminin- or fibronectin-coated wells (Figure 1D). Coating with

laminin 411, but not laminin 211 or laminin 511, promoted PDGFa
expression. Since type I collagen gel cultures of hUC-MSCs

exhibited vaso-inductive potential, cDNA microarray analysis was

performed to evaluate hUC-MSCs’ effects on the regulation of

vascular endothelium-related gene expression. A comparison of

the microarray data obtained from cells cultured without collagen-1

coating (non-coated) and cells cultured on type I collagen gel

revealed differences in the expression of VEGF induction-related

genes (Figure 1E).

High levels of induction of vascular EC growth factors, IL-6, and

BCL2 were found in cells cultured on type-I collagen gels.

Additionally, the expression of genes such as endothelial cell-

specific molecule 1 (ESM1) and meis homeobox 1 (MEIS1),

which negatively regulate cell proliferation, was suppressed

(Figure 1E). hUC-MSCs cultured on type I collagen gels also

exhibited high expression of several genes involved in myofiber

differentiation, indicating that these hUC-MSCs may heal injured

areas of the airway smooth muscles (Figure 1F).
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FIGURE 1

The human umbilical cord is a promising source of mesenchymal stem cells for COPD treatment. (A) Measurement of the viability of HUVECs and
hBM-, hUC-, and hADSC-MSCs using CCK-8 assays, and comparison analysis of values at different cell densities. ** p < 0.01; ++ p < 0.01; compared
to HUVEC on the same condition. (B) Relative mRNA expression of an angiogenic marker gene, VEGF, after culturing for 1 day; GAPDH was used as
a control. ** p < 0.01 compared to HUVEC on the same condition. (C) Flow cytometry of the principal mesenchymal stem cell (MSC) markers. In
each diagram, the name of the marker is indicated at the top, the fluorochrome used is indicated at the bottom, and the percentage of positive cells
is indicated at the top right. The lower panel presents brightfield images of hUC-MSCs; DAPI was used to label cell nuclei. Scale bar: 20 mm (D)
Relative mRNA expression levels of genes for angiogenic factors after culturing for 3 days; GAPDH was used as a control. * p < 0.05; ** p < 0.01;
compared to hUC on Non coat culture condition. (E) hUC-MSCs were cultured on different ECM for 6 days; mRNAs were isolated and subjected to
mRNA microarray analysis. In the mRNA heatmap, red and green indicate upregulated and downregulated mRNAs, respectively, in cells on type-I
collagen gels. (F) Relative mRNA expression levels of genes encoding myogenic regulatory factors after culturing for 3 days; GAPDH was used as a
control. ** p < 0.01 compared to hUC on Non coat culture condition.
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3.4 Effect of ECM combination on vascular
endothelial cell markers

The additive effects of different combinations of ECMs on the

mRNA, protein, surface marker, vasoinductive marker expression,

and morphology of hUC-MSCs attached to these ECMs were

evaluated. ECMs containing a collagen coating, collagen gel, and

laminin 411 showed increased expression of vasoinductive markers

(Figure 1D). Although cells cultured on collagen gels (Gel: type I

collagen gel) and collagen gels containing mixed substrates (Gel-

L411: type I collagen gel and laminin 411) showed greatly enhanced

VEGF expression, laminin 411 did not exhibit an additive

effect (Figure 2A).

Flow cytometry was used to characterize the differentiation and

maturation processes. Changes in the expression of the cell surface

markers, CD31 and CD34, were analyzed in the CD73+/CD90+

MSC populations (these are the most reliable vascular endothelial

progenitor cell markers). High levels of CD31 were observed in cells

cultured on Gel and Gel-L411 (approximately 61.4, 71.5, and 13.3%

CD31+ cells grown in Gel, Gel-L411, and uncoated-cell culture

conditions, respectively). The collagen-coated cultures did not show

marked changes in the expression of these markers. The percentage

of CD31+/CD34+ double-positive cells increased from 1.26% in

uncoated cells to 5.64% in gel cells and 7.49% in Gel-L411 cells

(Figure 2B), suggesting that vascular endothelial progenitor cell

differentiation was induced in cultures grown in the presence of

collagen gel, and cell differentiation was further enhanced by the

combination of collagen gel and laminin 411. To observe the effects

of ECM on cell morphology, hUC-MSCs were extracted from

coated culture dishes, isolated by collagenase digestion, and

seeded onto plastic slides. Although spindle-shaped fibroblast-like

cells were observed in hUC-MSCs extracted from uncoated cells,

hUC-MSCs extracted from Gel or Gel-L411 exhibited a

heterogeneous morphology, including small round cells and

spindle-shaped cells that showed spontaneous aggregation,

suggesting that culturing on collagen gels induced cell-to-cell

adhesion of hUC-MSCs. The aggregated cells comprised Nanog-

positive undifferentiated MSCs and CD31+ vascular endothelial

progenitor cells (Figure 2C).

Given these observations, we evaluated whether cell aggregation

enhanced the angiogenic potential by inducing spheroid formation

(Figure 2D). Spheroids formed from uncoated cultured cells

exhibited regular, tightly packed aggregates, whereas cells cultured

on Gel and Gel-L411 formed loose, irregularly shaped aggregates.

Regardless of the culture conditions, none of the hUC-MSC

spheroids were positive for Nanog or CD31, indicating that the

aggregation of undifferent iated hUC-MSCs promoted

differentiation and angiogenesis. Western blot analysis revealed

that the expression of the cell adhesion molecule integrin was

markedly upregulated in cells cultured on Gel and Gel-L411;

however, there was no observable difference in integrin expression

in hUC-MSCs cultured in the presence or absence of laminin

411 (Figure 2E).
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3.5 In vitro effects of hUC-MSCs in lung
injury models

Alveolar epithelial progenitor cells (AEpCs) were isolated from

adult human lung tissues for in vitro analysis (Figure 3A). These

progenitor cells express the MSC surface marker CD90 and factors

associated with alveolar type II cells, such as the epithelial cell

adhesion molecule (EpCAM) and pro-surfactant protein C (pro-

SPC). The half-maximal inhibitory concentration (IC50) value of

elastase against these AEpCs was 65.063 mg/ml (Figure 3B). To

evaluate the effect of UC-MSC signaling on the alveolar epithelium,

hUC-MSCs and AEpCs were indirectly co-cultured on Transwell®

membranes (Figure 3C). qRT-PCR showed significant inhibition of

expression of the inflammatory marker, tumor necrosis factor

(TNF)-a , and upregulation of expression of the anti-

inflammatory marker, interleukin (IL)-10, in hUC-MSCs that

were co-cultured with AEpCs.
3.6 hUC-MSCs cultured on ECM promote
lung regeneration and macrophage
polarization after elastase treatment in vivo

A preclinical COPD model was used to determine the in vivo

effects of human MSC therapy. The COPD model was established

by intranasal administration of elastase to mice over 4 weeks to

induce emphysema-like changes in the lungs (Figure 3D).

Four weeks after elastase administration, hUC-MSCs were

administered to the mice, and the lungs were harvested on day 12

for analysis (Figure 4A). Alveolar damage was assessed using

hematoxylin and eosin (H&E) staining. The total surface area of

the alveoli increased after administration of hUC-MSCs, with a

significant tissue repair effect, especially in the Gel-L411 cultured

cell group (Figure 4B). The localization of alpha-smooth muscle

actin (a-SMA)-positive cells was examined by immunostaining to

confirm the contribution of hUC-MSCs in the formation of vascular

smooth muscle cells along the small airways (bronchioles) and

alveolar walls of the lungs. Immunofluorescence analysis of the

elastase-treated lungs showed that the expression of elastin, a major

component of the connective tissue that organizes the alveoli, was

suppressed, whereas that of a-SMA increased after hUC-MSC

injection (Figure 4C). The expression of CD31, also known as

platelet/endothelial cell adhesion molecule-1 (PECAM-1, an

adhesion molecule that accumulates at adhesion sites between

vascular endothelial cells and increases integrin binding activity),

was markedly upregulated in the Gel and Gel-L411 cell groups. The

expression of the hematopoietic progenitor cell marker, CD34, did

not markedly increase (Figure 4C). The antioxidant protein heme

oxygenase-1 (HO-1) was detected mainly in alveolar type II cells,

indicating the co-localization of HO-1 with proSPC (Figure 4C).

Alveolar macrophages may play an important role in the

pathogenesis of COPD because they express proteases such as

matrix metalloproteinases (MMPs) and cathepsins (21).
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Therefore, we examined the polarity of macrophages and analyzed

the mechanisms underlying alveolar regeneration. hUC-MSCs were

co-immunolabeled with CD11b, a monocyte marker, and CD206,

an M2 anti-inflammatory macrophage marker, to investigate the

phenotypic changes that occur upon the administration of hUC-
Frontiers in Immunology 06
MSCs to macrophages present in lung tissues. Flow cytometric

analysis of isolated lung monocytes revealed an overall increase in

CD11b levels in all elastase-treated groups. The hUC injection,

especially the injection of Gel-L411 cells, resulted in an increased

number of M2 macrophages (Figure 4D).
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To determine whether the injected hUC-MSCs interacted

wi th macrophages , lungs co l l ec ted on day 12 were

immunostained with antibodies against F4/80 (a pan-

macrophage marker) and CD206 (Figure 4E). In line with the
Frontiers in Immunology 07
fluorescence-activated cell sorting (FACS) analysis, we

confirmed that the overall polarization of macrophages in lung

tissues shifted toward an M2-predominant type after injection of

Gel-L411 cells.
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FIGURE 3

In vitro models of epithelial–mesenchymal crosstalk in the lung and establishment of COPD mouse models. (A) Flow cytometry of the principal
mesenchymal stem cell (MSC) markers. In each diagram, the name of the marker is indicated at the top, the fluorochrome used is indicated at the
bottom, and the percentage of positive cells is indicated at the top right. (B) Dose-response curves of IC50 for elastase: AEpCs cells were treated for
24 h with 0, 1, 10, 50 and 100 mM of elastase. (C) Establishment of the AEpC-hUC-MSC co-culture system. The transwell co-culture systems were
established in 6-well plates. To assess the effect of co-culture system on AEpCs, we used AEpCs as a control group. Inflammation was evaluated
using TNFa and anti-inflammatory effects using IL-10. * p < 0.05; ** p < 0.01; compared to AEpCs on Elastase treatment culture condition.
(D) Induction of a COPD-like phenotype in C57BL/6 wild-type mice induced with elastase exposure: representative weekly histopathology based on
single intranasal administration of elastase for 4 weeks (n = 5 per group); scale bar: 200 mm.
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3.7 Therapeutic efficacy of administered
hUC-MSCs in COPD-related osteoporosis

We examined whether Gel- and Gel-L411-cultured cells, when

co-cultured with receptor activator of NF-kB ligand (RANKL)-
Frontiers in Immunology 08
induced osteoclast progenitors and hUC-MSCs, affected

osteoclastogenesis in vitro. Bone marrow from wild-type mice was

extracted, seeded in well plates, and cultured in the presence of M-

CSF and RANKL to differentiate into mature multinucleated

tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts.
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FIGURE 4

Modified hUC-MSCs exert therapeutic effects on lung tissue in a mouse model of COPD. (A) Schematic representation of the COPD model based on
cell administration after intranasal administration of elastase. (B) Histopathological evaluation in the lung tissue of elastase-induced mice after 12
days of treatment (n = 5 per group): H&E staining, scale bar: 200 mm. ** p < 0.01 compared to hUC injection group on Non coat culture condition.
(C) Detection of Elastin, a-SMA, CD34, CD31 HO-1, and proSPC-positive cells in UC-MSCs using indirect immunofluorescence and a confocal laser
scanning system (n = 5 per group). Magnification, 400×; scale bar: 20 mm. (D) Flow cytometry gating strategy to quantify macrophage cell
populations (n = 5 per group). (E) Representative images of immunofluorescence staining of F4/80 (green) and CD206 (red) in hUC-MSCs (n = 5 per
group). Magnification 400×.
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The contact approach between osteoclasts and hUC-MSCs was

evaluated using a non-contact co-culture model of osteoclasts and

hUC-MSCs using Transwell (left side of Figure 5A; insert group)

and a direct co-culture model in which hUC-MSCs were added
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directly to osteoclasts (right side of Figure 5A; direct group). The

group of bone marrow cells to which only M-CSF was added was

designated “macrophages” and the group to which M-CSF and

RANKL were added was designated “control (no hUCs)”. The
A

B

D

C

FIGURE 5

Modified hUC-MSCs exert therapeutic effects on osteoporosis in a mouse model of COPD. (A) Schematic of osteoclast induction from the bone
marrow extracted from wild-type mice. To examine the interaction between osteoclast differentiation and modified hUC-MSCs, we established co-
culture systems. The left group is a transwell-based non-contact culture, and the right group is a direct culture. Purified TRAP-positive osteoclasts
formed in cocultures of hUC-MSCs and bone marrow cells. (B) Schematic of osteoclast induction from the bone marrow extracted from a mouse
model of COPD after cell injection. TRAP-positive osteoclast formation induced after bone marrow extraction from mice treated with hUC-MSCs
injections. Quantitative analysis showing the number of osteoclasts per well and TRAP mRNA expression. (n = 5 per group) (C) Characterization of
gene expression of the inflammatory markers interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS). ** p < 0.01 compared to hUC injection
group on Non coat culture condition. (D) TRAP staining and increased osteoclast formation in the femoral head in COPD-induced osteoporosis.
mRNAexpression levels of TRAP were determined by qPCR.
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hUCs added to osteoclasts in both the insert and direct groups were

hUC-MSCs cultured without coating and “non-coated”, “gel” on gel

and “Gel-411” on gel with Laminin 411.

TRAP staining (red) showed that osteoclastogenesis was almost

completely inhibited in the Direct assay, indicating that cell-to-cell

contact stimulated osteoclastogenesis, which occurs in the presence

of soluble mediators (Figure 5A).

We also evaluated the morphology and number of osteoclast

progenitor cells by culturing bone marrow cells (obtained from the

tibiae of the control and experimental mice) in the presence of

RANKL and M-CSF for five days. Numerous TRAP-positive

multinucleated osteoclasts were observed in the control group.

The number of osteoclasts and expression of the mature

osteoclast marker, TRAP, in cultures of COPD mouse models

were significantly lower in the Gel and Gel-L411 groups than in

the control group (Figure 5B). Expression of the M1 markers, IL-6

and inducible nitric oxide synthase (iNOS), in bone marrow cells

(isolated from experimental mice) decreased in the hUC-MSC-

treated group and was suppressed to a greater extent in the Gel

group than in the Gel-L411 group (Figures 5C, D).
3.8 Gel and Gel-L411 interact with
macrophages in the mouse lung
after infusion

To investigate the function of hUC-MSCs in vivo, we analyzed

their behavior using luciferase-expressing cells (Luc-hUCs). hUC-

MSCs almost disappeared 24 h after intravenous administration of

Luc-hUCs. Several Luc-hUCs cultured on the Gel or Gel-L411 were

observed in the lung samples (Figure 6A). To determine whether

hUC-MSCs interacted with macrophages in vivo after injection,

lung samples were immunolabeled with antibodies against the

macrophage marker F4/80. In the Gel and Gel-L411 groups,

hUC-MSCs were distributed throughout the lung tissue,

accumulated on the outer margins, and co-localized with

macrophages. Injection of hUC-MSCs induced the generation of

CD206+ M2-type macrophages, while CCR7+ M1-type

macrophages were not formed, suggesting that the injection of

hUC-MSCs induced an M2 polarization shift in macrophages,

resulting in anti-inflammatory effects.

A noticeable change in TNFa expression was not observed in

the lungs 24 h after cell administration (Figure 6B) but those of IL-

1b and IL-6 were suppressed, indicating that cells cultured on the

ECM induced anti-inflammatory effects in the lungs.
3.9 Laminin-411 promotes
epithelial spreading

Integrin b1 co-localized with proSPC in the COPD mouse

models injected with Gel or Gel-L411 cells (Figure 6C).

Considering that attached hUC-MSCs are phagocytosed by

macrophages, in vitro experiments (Figures 2C–E) suggested that

integrin b1 may be the key factor that induced the adhesion of hUC-
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MSCs, leading to alveolus formation in the COPD model. This

result is agreement with previously reports that human

mesenchymal stem cells cultured on collagen gels differentiate

into epithelial cells through the formation of cytokeratin-18 (22).
4 Discussion

In this study, we developed dUC-MSCs by culturing UC-MSCs

on a type I collagen gel and laminin 411. dUC-MSCs were injected

via the tail vein of COPDmice, where they were attached to the lung

tissue and survived for a long duration. Mice injected with dUC-

MSCs showed a greater alleviation of elastase-induced COPD

symptoms than those injected with hUC-MSCs. Our experimental

data suggest that tissue regeneration occurs because of the binding

of dUC-MSCs to the ECM through integrin-mediated cell adhesion

mechanisms (23–26). Thus, dUC-MSCs promoted macrophage

differentiation through cytokine secretion or direct contact. To

the best of our knowledge, this is the first report on the role of

modified cells in stimulating lung epithelial cell induction and lung

tissue regeneration for COPD treatment. Notably, gene

modification was not required to strengthen MSCs. Overall, we

developed novel designer cells that may be involved in anti-

inflammatory, homeostatic, injury repair, and disease

resistance processes.

Research in this field is typically conducted using BM-MSCs or

AD-MSCs. MSCs obtained from other sources, such as the

umbilical cord and placenta, are also used for therapeutic

angiogenesis (27). Perinatal stem cells (hUC-MSCs) exhibit

pluripotency, multipotent tissue maintenance, a high degree of

plast ic i ty , and immunomodulatory act iv i ty and lack

tumorigenicity; they are considered the best sources of allogeneic

xenografts (28–30). Furthermore, UC-MSCs secreted VEGFs and

uniformly expressed endothelial markers without altering their

cellular organization or morphology (30). We examined VEGF

expression in MSCs derived from various tissues and confirmed

that UC-MSCs exhibited enhanced VEGF production (31). hUC-

MSCs are a promising cell source and have many advantages over

BM-MSCs and AD-MSCs.

hUC-MSCs cultured on collagen I and laminin 411 (Gel-L411

dUC-MSCs) showed the highest expression levels of vascular

endothelial markers and myofibroblast progenitor cell markers in

vitro and retained their anti-inflammatory effects without

undergoing genetic modifications. During the regeneration of the

destroyed basement membrane and ECM, MSCs differentiate into

myofibroblasts (32) and pulmonary capillary endothelial cells (33),

and their interaction contributes to angiogenesis and alveolus

formation (Figure 4C). dUC-MSCs exhibited a higher adhesion

capacity than normally cultured hUC-MSCs. ECM interactions and

their processes in tissue repair are mediated by integrins, generally

through the intracellular signaling molecules, Rho and Rac, which

also have synergistic effects on differentiation into the epithelial

lineage (34–38). Integrin b1 activity was upregulated in both Gel-

and Gel-L411-dUC-MSCs, demonstrating the positive and

significant effects of these substrates (Figure 6D).
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D
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FIGURE 6

dUC-MSCs promote epithelial spreading and lung regeneration (A) Luciferase-labeled hUC-MSCs were injected, and their biological kinetics were
analyzed using fluorescence imaging. Immunostained images of lung tissue collected after 24 h of cell injection into COPD model mice: Luc-hUC
(green) and F4/80 (red). Scale bar: 40 mm (B) Gene expression of inflammation markers in RNA extracted from lung tissue 24 h after hUC-MSC injection
* p < 0.05, ** p < 0.01, n.s. = Not significant; compared to hUC injection group on Non coat culture condition. (C) Immunostained image of lung tissue
using confocal laser microscopy (12 days after cell injection): integrin b1 (green) and proSPC (red). Scale bar: 40 mm. (D) Regeneration of the alveolar
epithelium after injury. Elastase-mediated injury results in extensive destruction of all alveolar epithelial cells. Surviving ATII cells are activated and
proliferate after injury, restoring the alveolar epithelium. A progenitor cell population that expresses high levels of integrin b1 appears to contribute to
alveolar epithelial regeneration.
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Furthermore, MSCs contribute to changing the phenotype of

macrophages from M1 (inflammatory) to M2 (anti-inflammatory).

M2 macrophages play important roles in regulating inflammation,

angiogenesis, debris removal, and tissue remodeling (21, 39–42).

This was confirmed by flow cytometry (Figure 4D), which showed a

polarity change toward the M2 macrophage state (along with an

increase in macrophage number) in the dUC-treated group,

suggesting the involvement of M2 macrophages in tissue repair.

In cell injection experiments using COPD mouse models, dUC-

MSCs adhered for a long time, whereas hUC-MSCs adhered for

shorter periods in normal cultures. The primary issue in using

therapeutic cells to treat lung diseases is the failure of the cells to

attach to the target area. In previous clinical trials, two doses of

MSCs were administered in one cycle for at least two cycles (four

doses in total) (ClinicalTrials.gov; No.: NCT00683722; URL:

www.clinicaltrials.gov). In our study, dUC-MSCs survived for a

longer period than normally cultured UC-MSCs in COPD mouse

models. Therefore, the use of dUCs may reduce the number of times

these therapeutic cells need to be administered.

Systemic inflammation associated with COPD can contribute to

the pathogenesis of osteoporosis. Key inflammatory cytokines, such

as iNOS and IL-6, interact with RANKL (43). dUC-MSCs inhibit

the formation of abnormal osteoclasts by suppressing the

expression of inflammatory mediators. Therefore, dUC-MSCs can

be used to treat osteoporosis and other comorbidities caused by

inflammatory reactions.

Integrin b1 expression in the lung epithelium is required for

airway branching morphogenesis, alveolus formation, and

homeostasis (44). Integrin b1 regulates epithelial cell adhesion

and migration, alveolar cell differentiation, and ECM deposition

in the alveolar septum (45). Integrin b1 promoted angiogenesis by

stimulating smooth muscle formation by modulating the

production of reactive oxygen species (Figures 4C, 6C). This

appears to be a novel mechanism by which cell–ECM interactions

modulate lung inflammation and alveolar septum formation.

However, while culture with gel-form type I collagen activates

signal transduction that regulates the induction of differentiation

and other factors, it also induces growth suppression. Therefore,

for clinical applications, it is necessary to establish a culture

environment that allows for mass production while maintaining

cellular characteristics; further research is required to confirm this

hypothesis. Moreover, dUC-MSCs are not suitable for practical

use because they are cultured on gels and require collagenase

treatment for cell harvesting. Therefore, we are researching

peptides that can mimic collagen-gel culture to secure cell

numbers in normal planar culture; accordingly, we have

commenced an attempt to mass-produce therapeutic cells with

high tissue-repair capacity.

In summary, in this study, we developed therapeutic cells to

overcome the nonviability of transplanted cells during cell

transplantation therapy. The adhesion properties of dUC-MSCs

were modified by binding to cell adhesion molecules, allowing the

cells to maintain their adhesive function even after detachment. We

focused on elucidating the mechanisms underlying the immune

regulation mediated by UC-MSCs and aimed to establish a culture
Frontiers in Immunology 12
method optimized for the induction of endogenous signaling

pathways that could alter cell behavior. This innovative cell therapy

method can enable the large-scale production of cell products for

transplantation without using any genetic manipulation strategies.
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