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The single-dose Janssen
Ad26.COV2.S COVID-19 vaccine
elicited robust and persistent
anti-spike IgG antibody
responses in a 12-month
Ugandan cohort
Jennifer Serwanga1,2*, Laban Kato1, Gerald Kevin Oluka1,2,
Violet Ankunda2, Jackson Sembera2, Claire Baine2,
Isaac Kitabye1, Angela Namuyanja1, Solomon Opio1,
Joseph Ssebwana Katende1,2, Peter Ejou1,
The COVID-19 Immunoprofiling Team1,2

and Pontiano Kaleebu1,2

1Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda, 2Viral Pathogens
Research Theme, Medical Research Council, Uganda Virus Research Institute and London School of
Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
Introduction: The study investigation examined the immune response to the

Janssen Ad26.COV2.S COVID-19 vaccine within a Ugandan cohort, specifically

targeting antibodies directed against spike (S) and nucleocapsid (N) proteins. We

aimed to examine the durability and robustness of the induced antibody

response while also assessing occurrences of breakthrough infections and

previous anti-Spike seropositivity to SARS-CoV-2.

Methods: The study included 319 specimens collected over 12 months from 60

vaccinees aged 18 to 64. Binding antibodies were quantified using a validated

ELISA method to measure SARS-CoV-2-specific IgG, IgM, and IgA levels against

the S and N proteins.

Results: The results showed that baseline seropositivity for S-IgG was high at

67%, increasing to 98% by day 14 and consistently stayed above 95% for up to 12

months. However, S-IgM responses remained suboptimal. A raised S-IgA

seropositivity rate was seen that doubled from 40% at baseline to 86% just two

weeks following the initial vaccine dose, indicating sustained and robust

peripheral immunity. An increase in N-IgG levels at nine months post-

vaccination suggested breakthrough infections in eight cases. Baseline cross-

reactivity influenced spike-directed antibody responses, with individuals

harbouring S-IgG antibodies showing notably higher responses.
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Discussion: Robust and long lasting vaccine and infection-induced immune

responses were observed, with significant implications for regions where

administering subsequent doses poses logistical challenges.
KEYWORDS

Janssen Ad26.COV2.S vaccine, SARS-CoV-2 immunity, spike protein antibodies,
nucleocapsid protein antibodies, Ugandan vaccine cohort, single-dose vaccination,
breakthrough infections, antibody persistence
Introduction

The COVID-19 pandemic, brought about by the emergence of

the novel SARS-CoV-2 virus, rapidly escalated into a global health

emergency of unprecedented proportions. The advent of vaccines

emerged as a beacon of hope (1), providing relief to countries like

Uganda, already strained healthcare resources were further

stretched by the profound impact of the pandemic. The

Ad26.COV2.S vaccine by Johnson & Johnson–Janssen is a

recombinant human adenovirus type 26 (Ad26) vector. It carries

a full-length, prefusion-stabilized SARS-CoV-2 spike protein,

encoding it within its membrane. The single-dose Janssen

Ad26.COV2.S COVID-19 vaccine, strategically prioritized in

Uganda for key demographic groups such as teachers and hard-

to-reach populations, including mobile and remote communities,

due to its logistical practicality, offered a valuable opportunity to

examine the immune responses induced by this vaccine within a

sub-Saharan African context. This study informs local public health

strategies and contributes to the global discourse on vaccine efficacy.

Emerging research has underscored the critical role of spike (S)-

directed (2, 3) immune responses in conferring protection against

SARS-CoV-2 (4). Prevailing literature suggests that vaccine-induced

immunity against SARS-CoV-2 can significantly vary across vaccine

types and populations (5–8). While most studies have concentrated

on spike (S) protein-directed immune responses (7, 9), few study has

explored the concurrent context of nucleocapsid protein (N)-directed

responses, especially in the setting of the spike protein-based Janssen

Ad26.COV2.S COVID-19 vaccine (10). Here, we monitored both

spike (S) and nucleocapsid (N) protein-directed antibody responses,

recognizing that N-directed responses, which are unexpected in

spike-focused vaccines, could signal post-vaccination infections.

This dual-tracking approach provided critical insights into the real-

world effectiveness of the vaccine, shedding light not only its ability to

provoke an immune response but also on its potential to prevent

subsequent infections.

We hypothesized that the single-dose Janssen Ad26.COV2.S

COVID-19 vaccine would elicit a robust immune response, and

examined this through longitudinal analysis of 319 specimens from

60 individuals over 12 months. In our study, we measured both Spike

(S-IgG) and Nucleocapsid (N-IgG) antibody responses. This

approach enabled us to comprehensively delineate the patterns of
02
seroconversion, assess the longevity of immune protection, and track

the incidence of breakthrough infections. The significance of this

study was augmented by the evolving landscape of the SARS-CoV-2

virus, especially with the concurrent emergence of new variants (11)

that continually challenged the efficacy of existing vaccines (12, 13).

By delving into the immune responses elicited by the Janssen

Ad26.COV2.S COVID-19 vaccine in Uganda, our research informs

global insights into its immunogenicity within the African context

but also sets a precedent for similar investigations in other areas

where Janssen Ad26.COV2.S COVID-19 vaccine has been pivotal

(14, 15). This insight is crucial for informing vaccine-related public

health strategies and policies, especially in regions where logistical

challenges make single-dose vaccine regimens a more feasible option.
Materials and methods

Study population

We analyzed 319 specimens collected over 12 months from 60

individuals who received a single dose of the Janssen Ad26.COV2.S

COVID-19 vaccine. Participant demographic characteristics are

summarized in Table 1. Blood samples were obtained at baseline,

immediately prior to vaccination, and at 14 and 28 days after the initial

dose. Follow-up samples were taken at 6, 9, and 12 months after the

initial dose. Study samples were collected during the real-world

deployment of COVID-19 vaccines in Africa, aligning with the

national imperative to safeguard lives. The national initiative did not

mandate prior testing for infection status; the emphasis was on

widespread coverage as the primary goal. Consequently, this study
TABLE 1 Characteristics of the overall participants, n = 60.

Characteristic N (%)

Total participants 60

Age, Median (IQR) 22 (19-25)

Gender

Male 47 (78.3)

Females 13 (21.7)
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aligns with the Ministry of Health’s protocol and lacks data regarding

previous infections. Thus, baseline S-IgG seropositivity stands as our

surrogate measure for estimating prior exposure. Samples were

collected between November 15, 2021, and June 2, 2023, from

vaccine-naïve individuals aged 18 to 64 years, with a median age of

22 years (IQR: 19-25 years), during the epidemiologic waves of SARS-

CoV-2 variants outlined in Supplementary Table 2. The cohort

comprised 13 females (21.7%) and 47 males (78.3%). Baseline blood

samples were obtained from 58 of 60 participants. These individuals

were subsequently classified based on their baseline S-IgG responses

measured at day 0. Subjects with S-IgG levels above the established

cut-off were classified as baseline S-IgG positive (S-IgG+), while those

below this threshold were considered baseline S-IgG negative (S-IgG-).

Among the 58 subjects, 39 (67%) were S-IgG +, contributing 218

samples, while 19 (33%) were S-IgG-, providing 95 samples. This

categorization at baseline provided a foundational reference for

analyzing S-IgG responses in our cohort. Reinfections are typically

detected through genomic sequencing of nasopharyngeal swab

samples (16). Various methods have been employed to differentiate

between reinfection and initial infection. For instance, one macaque

study suggested that a 7.6-fold increase in N-IgG antibody levels could

indicate reinfection (14), while a study in West Africa proposed a 7-

fold rise (15). Similar trends were observed in studies conducted in

high-income settings (17, 18). Our previous serological analysis of two

confirmed SARS-CoV-2 reinfection cases in this population, validated

by rt-PCR, revealed an 11-fold surge in N-IgG antibody concentration

following reinfection (3). To strengthen our conclusion of the absence

of reinfection, we established a more stringent criterion, requiring no

more than a 2-fold increase in N-IgG antibody concentration.
Binding antibody ELISA to detect SARS-
CoV-2-specific IgG, IgM, and IgA levels

We used a validated ELISA (19, 20), to detect the presence of

SARS-CoV-2-specific IgG, IgM, and IgA antibodies against the

spike (S) and nucleocapsid (N) proteins. Both the Spike and

nucleocapsid were recombinant proteins based on the ancestral

SARS-CoV-2 (NCBI Accession numbers: YP_009724390.1 and

YP_009724397.2). ELISA plates were coated with antigen at a

concentration of 3 mg/ml, which had been verified to have the

highest possible specificity and sensitivity. The OD values were

measured at 450 nm to quantify antibody concentrations in

nanograms per millilitre (ng/ml). Seropositivity was determined

using previously established cut-off OD values specific to this

population, as described before (20). The OD seropositivity

thresholds were 0.432 for IgG, 0.459 for IgM, 0.226 for IgA for

spike-specific antibodies, 0.454 for IgG, 0.229 for IgM, and 0.225 for

IgA for nucleocapsid protein-specific antibodies. These values were

determined from an extensive analysis of a large sample population.
Statistical analysis

Seroconversion percentages at each follow-up time point were

visualized using diverging bar graphs. Boxplots were used to
Frontiers in Immunology 03
compare medians (represented by horizontal lines), means

(indicated by black dots), and quartile ranges (denoted by the top

and bottom edges of the box). The Wilcoxon test, with Hochberg

correction for multiple testing adjustments, was conducted to

determine differences in antibody responses between pairwise

comparisons at different time points. Unpaired tests were selected

due to missing data at various time points, and a significance

threshold of p > 0.05 indicated non-significance (ns). Statistical

significance was denoted as follows: * for p ≤ 0.05, ** for p < 0.01,

*** for p < 0.001, and **** for p < 0.0001.
Results

Dynamic patterns of seroconversion and
long-lasting immunity post-vaccination
with the Janssen Ad26.COV2.S COVID-
19 vaccine

This study presents evidence of longitudinal seroconversion

patterns in response to vaccination with the single dose Janssen

Ad26.COV2.S COVID-19 vaccine in Uganda. The data, captured

over 12 months since initial vaccination, show the temporal changes

in various immunoglobulin responses following a priming dose of

the vaccine, illustrated in Figure 1. The study demonstrated a

marked and sustained increase in S-IgG positivity, from 67% at

baseline to 98% by day 14 post-priming (D14PP). This elevated

seropositivity persisted till 12-months, highlighting the vaccine’s

ability to elicit a durable and robust hybrid immune response.

In contrast, initial S-IgM responses were minimal, with only

10% seropositivity at day 0, maintaining these levels over an

extended period, until 12 months (M12PP) when the

seropositivity rate eventually reducing to 0%. The decline in S-

IgM seroprevalence highlights the typical switch to a predominantly

IgG-mediated immune responses (21). Meanwhile, S-IgA

seropositivity substantially rose from a 40% baseline seropositivity

to 86% by day 14 post-prime (D14PP). This seropositivity was

sustained over the 12-month follow-up, with proportions at 75%,

67%, and 84% at subsequent intervals, concluding with 67% at the

12-month mark. Approximately 70% of subjects exhibited

consistent S-IgA seropositivity throughout the study following the

first vaccine dose, indicating durable serum IgA titres. N-IgG

responses were detected in 21% of subjects at baseline, with a

notable rise to 55% nine months after the primary dose (M9PP),

followed by a drop to 28% at 12 months. This indicates an increase

in breakthrough infections between 6 months (M6PP) and 9

months (M9PP) after vaccination. N-IgM seropositivity exhibited

an initial modest increase from a baseline of 22% to 26% by 28 days

post-primary dose, followed by a decline to 16% at six months, and

ultimately reached low level of 2% by 12 months post-vaccination.

The persistent levels of S-IgG and S-IgA seropositivity, implies the

vaccine’s effectiveness in inducing a robust and lasting immune

response, but as these responses were more pronounced among

individuals who were S-IgG seropositive at baseline, the role of prior

infection or antigenic exposure is highlighted. These results show

the longevity of Janssen Ad26.COV2.S COVID-19 vaccine-induced
frontiersin.org
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immunity in a context of prior infection/antigenic exposure, within

the landscape of a continuing epidemic, which is crucial for

evaluating the effectiveness of dosing schedules, shaping future

vaccination strategies and informing public health policies.
A temporal analysis of the evolving
antibody response dynamics
following vaccination

Our analysis delineated the temporal dynamics of antibody

responses post-vaccination (Figure 2). After conducting unpaired

Wilcoxon tests with Hochberg corrections for multiple comparisons,

we observed a notable increase in S-IgG OD values and antibody

concentrations 14 days post-vaccination. The rise in S-IgG

concentrations reached a plateau by day 28 post-vaccination

(D28PP). However, a marked decline in these antibodies was

observed by month six post-vaccination (M6PP), indicating a time-

dependent waning of immunity (Table 2). A notable surge in S-IgG

antibody levels detected at 12 months may indicate a significant

increase in the number of breakthrough infections, as shown in

Table 1. However, the surge in N-IgG between 6 and 9 months

suggests that breakthrough infections were already occurring after 6

months post-vaccination. In contrast, S-IgM antibody OD levels and

concentrations were largely suboptimal. The S-IgA antibodies

showed an immediate significant post-vaccination increase, a

gradual decline, and a notable resurgence 9 months after

vaccination, possibly indicative of re-infection/breakthrough

infection. Throughout the study, N-IgG responses period remained
Frontiers in Immunology 04
predominantly low failing to reach optimal thresholds, except for the

marginal, non-significant increase observed at 9- months, as

attributed to some breakthrough infections in this period. In

parallel, N-IgM levels maintained a consistently low profile, ending

in a significant decrease at 12 months. These findings show the

diversity of antibody responses following Janssen Ad26.COV2.S

COVID-19 vaccine vaccination advancing our understanding of

post-vaccination immunological processes.
Antibody fold changes and breakthrough
infections following SARS-CoV-
2 vaccination

Fold change analyses revealed notable increases in antibody

responses following vaccination, with S-IgG and S-IgA OD levels

exhibiting 2-fold and 3-fold elevations respectively, within 14 days

after the primary vaccination (Figure 3). This initial surge reached a

stable plateau, as evidenced by negligible fluctuations in OD levels at

subsequent time intervals. A modest 1.2-fold rise in S-IgM OD levels

occurred two weeks post-prime, alongside minimal changes in N-IgG

and N-IgM, reflecting a comparatively subdued N-directed response.

More pronounced changes were observed in antibody concentrations,

with S-IgG concentrations surged, registering over 9-fold and 6-fold

increases at 14- and 28-days post-prime, respectively. S-IgA

concentrations also rose significantly, showing 3.5-fold and 3-fold

increments at the same time points. However, N-directed IgG and

IgM concentrations remained relatively unchanged throughout the

study, as summarized in Figure 3A. Subjects were categorized as
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FIGURE 1

Twelve-Month Longitudinal Study of Seroconversion Dynamics Using S- and N-Protein-Directed Antibody Detection in Individuals Vaccinated with
Janssen Ad26.COV2.S COVID-19 Vaccine. This figure displays the percentage of subjects seroconverting against S (spike) and N (nucleocapsid)
proteins, segmented by the detection of S-IgG, S-IgM, S-IgA and N-IgG and N-IgM antibodies. Data is stratified based on baseline S-IgG
seropositivity: baseline positives are indicated in pink, and negatives in blue. N-directed antibodies were monitored as a proxy for predicting
potential infection, categorized as either IgG (indicating previous exposure) or IgM (indicating current exposure).
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TABLE 2 Summary statistics of the Spike-directed antibody responses over time.

Time point Antibody Median OD (IQR), 450nm Median Conc (IQR), ng/ml Median Conc (IQR), BAU/ml

D0 S-IgG 0.655 (0.312, 0.932) 4335.35 (2301.58, 13802.23) 71.405 (26.142, 227.131)

S-IgM 0.129 (0.066, 0.252) 257.450 (138.530, 545.890) 9.964 (5.576, 20.607)

S-IgA 0.162 (0.057, 0.345) 852.300 (389.250, 1784.05) 162.626 (74.253, 340.452)

D14PP S-IgG 1.161 (0.867, 1.220) 34865.4 (20867.85, 48259.10) 653.075 (390.914, 903.925)

S-IgM 0.214 (0.124, 0.296) 480.7 (291.65, 729.15) 18.20151 (11.226, 27.369)

S-IgA 0.478 (0.330, 0.867) 2654.1 (1488.6, 5552.8) 506.5017 (284.065, 1059.722)

D28PP S-IgG 1.127 (0.915, 1.205) 23856.05 (15389.02, 37047.03) 446.8804 (288.302, 693.934)

S-IgM 0.161 (0.094, 0.295) 347.3 (196.5, 631.8) 13.27945 (7.715, 23.777)

S-IgA 0.445 (0.239, 0.733) 2011.9 (912.7, 3889.8) 383.9372 (174.154, 742.336)

M6PP S-IgG 0.934 (0.772, 1.115) 13886.6 (6439.6, 27783.0) 260.163 (120.688, 520.428)

S-IgM 0.110 (0.065, 0.188) 217.0 (119.00, 399.65) 8.472 (4.856, 15.211)

S-IgA 0.381 (0.136, 0.560) 1706.4 (525.70, 2769.95) 325.6322 (100.294, 528.612)

M9PP S-IgG 1.157 (0.977, 1.342) 7924.6 (5162.125, 16456.775) 148.500 (96.762, 308.299)

S-IgM 0.154 (0.090, 0.262) 264.9 (153.20, 485.45) 10.239 (6.118, 18.377)

S-IgA 0.494 (0.278, 0.696) 1685.3 (723.75, 3116.80) 321.605 (138.093, 594.808)

M12PP S-IgG 1.096 (0.867, 1.205) 20332.8 (5368.387, 28429.275) 380.893 (100.625, 532.532)

S-IgM 0.110 (0.076, 0.173) 203.2 (145.3, 340.4) 7.963 (5.826, 13.025)

S-IgA 0.418 (0.167, 0.565) 4656.4 (1773.65, 7231.85) 888.643 (338.467, 1380.170)
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FIGURE 2

Longitudinal Analysis of Antibody Responses Over 12 months Following Administration of the Single-Dose Janssen Ad26.COV2.S COVID-19 Vaccine.
This figure illustrates the antibody response levels, measured in optical density (OD) and concentration (ng/ml), throughout the study period. Each
boxplot displays the interquartile range, with the mean represented by a black solid circle and the median by a horizontal line. Statistical analysis of the
antibody response variation over time was conducted using an unpaired Wilcoxon test, with a Hochberg correction for multiple comparisons.
Significance thresholds are indicated as: ‘ns’ for p > 0.05 (non-significant), ‘*’ for p ≤ 0.05, ‘**’ for p < 0.01, ‘***’ for p < 0.001, and ‘****’ for p < 0.0001.
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breakthrough cases if they demonstrated an 11-fold or greater rise in

N-IgG concentration, as described before (3), indicative of infection,

occurring at least 14 days after completion of the vaccination schedule.

A total of eight breakthrough COVID-19 cases, occurring at six, nine,

and twelve months post-primary vaccination with the Janssen

Ad26.COV2.S COVID-19 vaccine, were identified through analysis.

Of the total breakthrough cases observed, three occurred in individuals

initially negative for baseline S-IgG, while five cases manifested in

those initially positive, as outlined in Figure 3B.
Impact of baseline cross-reactivity on
spike-directed antibody responses
post-vaccination

Distinct patterns in Spike-directed antibody responses were

identified based on S-IgG serostatus at baseline. Participants with

S-IgG antibody levels at or above the baseline cutoff were

categorized as S-IgG positive (S-IgG+), while those below the

threshold were labelled as S-IgG negative (S-IgG-). Significant

increases in S-IgG responses were observed from baseline to both

day 14 and day 28 post-prime in both groups, as confirmed by

unpaired Wilcoxon tests, depicted in Figure 4. During the interval

between Day 14 and Day 28 following initial vaccination, both S-

IgG positive and negative cohorts exhibited a consistent plateau in

optical density (OD) levels and concentrations of S-IgG antibodies,

suggesting a critical window of immune response modulation

during this timeframe, regardless of baseline serostatus. Following

Day 28, a marked decrease in S-IgG levels was observed in the

baseline S-IgG negative cohort, persistently remaining below those
Frontiers in Immunology 06
of the baseline positive cohort throughout the study, indicating the

superiority of the antibody response elicited by multiple antigenic

exposure among individuals who had prior infection. S-IgM

antibody responses were consistently low in both groups, with

most participants showing OD levels below the threshold

throughout the follow-up period. Distinct disparities in S-IgA

antibody responses were evident between individuals possessing

pre-existing S-IgG (S-IgG+) and those lacking it (S-IgG-). Initially,

baseline S-IgG+ subjects displayed S-IgA levels surpassing the

established threshold, while S-IgG- counterparts exhibited lower

S-IgA levels. Following primary vaccination, both groups

demonstrated a significant rise in S-IgA levels by days 14 and 28

compared to baseline, with the S-IgG+ cohort consistently

maintaining higher S-IgA responses than the S-IgG- group

throughout the study. Both the S-IgG+ and S-IgG- cohorts

consistently exhibited low median levels of N-IgG and N-IgM

antibodies, with marginal disparities between them. A slight

elevation in N-IgG concentrations was detected between 6 and 9

months, followed by a subsequent decline below the predefined

threshold. These observations are further substantiated upon

exclusion of participants that had subsequent infections or re-

infections (Supplementary Figure 1) shown by a substantial 11-

fold increase in N-IgG.
Discussion

In this study, we assessed the immune response elicited by the

single-dose Janssen Ad26.COV2.S COVID-19 vaccine within a

Ugandan cohort, strategically prioritized for selected key
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FIGURE 3

Temporal Dynamics of Median Antibody Response and Incidence of Breakthrough Cases Post-Vaccination. (A) illustrates the median fold changes in
antibody responses between sequential time points. Fold changes are quantified as ratios, with a value of one indicating no change, values greater
than 1 denoting an increase, and values less than one signifying a decrease. Increases in antibody responses are highlighted in red, decreases in
green, and instances with no change are marked in orange. (B) delineates the prevalence of presumed infection and breakthrough cases in the study
cohort, measured by the change in N-IgG antibody levels, before and after completion of the COVID-19 vaccination regimen. Grey circles indicate
the percentage of subjects presumed infected at each time point before completing the vaccination regimen, while black circles represent the
percentage of breakthrough cases post-full vaccination. The y-axis quantifies these percentages. Breakthrough cases, defined as subjects with an 11-
fold increase in N-IgG levels indicative of infection occurring 14 days or more after the complete vaccination, amounted to three individuals, all of
whom were identified six months post-vaccination.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1384668
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Serwanga et al. 10.3389/fimmu.2024.1384668
demographic populations, such as teachers, highly mobile

populations, and residents in remote hard-to-reach areas. This

approach provided crucial data on the vaccine’s effectiveness in

diverse, and in logistically challenging communities, often

underserved in healthcare. Our investigation revealed a significant

and enduring rise in S-IgG responses post-administration of the

Janssen Ad26.COV2.S COVID-19 vaccine. Within 14 days of the

initial dose, S-IgG seropositivity surged from 67% at baseline to

98%, sustaining these heightened levels throughout the observed

duration. This result corroborates previous studies demonstrating

the vaccine’s effectiveness in generating robust and long-lasting

spike-specific antibodies (8, 22, 23). This is particularly significant

in scenarios where administering subsequent doses poses logistical

hurdles. However, we observed higher concentrations of S-IgG and

S-IgA, as well as more durable S-IgA in subjects that had previous

antigen exposure through prior-infection, suggesting an advantage

of multiple vaccine-doses analogous to the multiple vaccine-

exposure, unlike the single-dose regimen for the Ad26.COV2.S

vaccine used in this study.

We observed a significant increase in nucleocapsid protein-

directed IgG (N-IgG) and IgM (N-IgM) antibodies in eight fully

vaccinated recipients of the Janssen Ad26.COV2.S COVID-19

vaccine. This surge in N-IgG and N-IgM levels, contrary to the
Frontiers in Immunology 07
vaccine’s target on the spike protein, implies potential breakthrough

infections (3). These findings inform post-vaccination infection

rates and underscore the importance of continuous serological

surveillance to guide booster (24)vaccinations. The observed 13%

breakthrough rate (8 out of 60) post-Janssen vaccine administration

closely mirrors the 10% rate (6 out of 60) reported in comparative

studies using the Coronavac COVID-19 vaccine (Sinovac) within

the same demographic cohort during the concurrent period (1).

Recent studies have demonstrated comparable trends for Pfizer-

BioNTech’s BNT162b2 and Moderna’s mRNA-1273 vaccines, with

breakthrough rates of 23% (11 of 48) and 16% (3 of 19), respectively

(24, 25). However, these comparisons should be interpreted

cautiously due to the small sample sizes involved. The S-IgM

responses were minimal, decreasing to zero by 12 months post-

prime, aligning with the expected serological progression towards

an IgG-dominant response (26–28), which was complemented by a

marked increase in S-IgA responses post-vaccination with the

Janssen Ad26.COV2.S COVID-19 vaccine. This pattern of

prolonged immunity is consistent with the natural infection

responses previously observed within this population (3). This

study corroborates earlier South African research demonstrating

sustained, robust spike-specific immune responses for up to six

months post-administration of the Ad26.COV2.S vaccine,
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independent of prior infection history (29). However, in this study,

the role of previous infection in augmenting the levels of S-IgG and

S-IgA, as well as the durability of S-IgA was highlighted, as these

parameters were better among subjects that were S-IgG seropositive

at baseline. Furthermore, breakthrough infections were more

frequent among the participants who were S-IgG seronegative at

baseline, thus suggesting an advantage of multiple antigenic

exposure in eliciting protective vaccine-induced antibodies. Our

findings also align with responses elicited by other COVID-19

vaccines used in this demographic, such as Sinovac Biotech’s

CoronaVac COVID-19 vaccine (30), the Oxford/AstraZeneca

ChadOx1-S COVID-19 vaccine (31), the Pfizer-BioNTech

BNT162b2 Vaccine (24), and Moderna’s mRNA 1273 (25)

collectively supporting the vaccine’s effectiveness in this landscape

and could have implications for future vaccination and public

health strategies (32–34).

Our study demonstrates the elicitation of sustained immune

responses to the Janssen Ad26.COV2.S COVID-19 vaccine, offering

valuable insights for vaccine strategies in similar settings,

complementing global data that often overlook regional variations

in immune response due to demographic, genetic, and

epidemiological factors (35, 36). The findings highlight the

persistence of antibody responses for up to a year, despite

observed breakthrough infections primarily occurring after six

months, thus contributing to a broader understanding of vaccine-

induced immunity against SARS-CoV-2.

Our methodology, though robust, needed to be improved by

tracking breakthrough infections. The reliance on N-IgG as a post-

vaccination infection marker may not fully represent the immune

response spectrum of reinfections, particularly in cases with subdued

secondary responses after boosting (37). Future studies should

integrate viral sequencing and epidemiological insights to

determine breakthrough infections and vaccine efficacy against

diverse strains more accurately. The study’s analysis of antibody

responses, while informative, could have been enriched by

incorporating responses to other variants beyond the ancestral

spike and nucleocapsid proteins, cellular immunity assessments for

a fuller evaluation of vaccine efficacy and virus neutralization

function studies. Constraints such as high baseline exposure and

missing data at various points, necessitating the use of unpaired tests,

may have impacted the robustness of our findings. Additionally, the

unique demographic and epidemiological context of Uganda’s

equatorial positioning suggests the need for further studies in

diverse settings to enhance the generalizability of our results.

In conclusion, the single-dose Janssen Ad26.COV2.S COVID-19

vaccine demonstrated potent and lasting immune responses, which is

crucial for remote and hard-to-reach populations. The rise in N-

directed antibodies post-vaccination indicates possible breakthrough

infections, underscoring the need for vigilant surveillance and adaptive

vaccination strategies. These results contribute significantly to the

global understanding of COVID-19 vaccine effectiveness, informing

public health policy and vaccination strategies.
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SUPPLEMENTARY FIGURE 1

Comparative Profiling of Median Spike-Directed Antibody Responses Post-

Janssen Janssen Ad26.COV2.S COVID-19 Vaccination Stratified by Baseline

S-IgG Seropositivity, excluding all subjects with breakthrough infection.
Supplementary Figure 1 shows Individual profiles of subjects over time

categorized by S-IgG baseline seropositivity, excluding break through
subjects. Total participants, n = 50, Baseline S-IgG+, n = 34 and baseline S-

IgG-, n = 16. Subjects are classified as S-IgG positive (shown in red) if their
baseline S-IgG levels are at or above the established cutoff value and S-IgG

negative (illustrated in blue) if below this threshold. Differences in antibody

responses between D0 and D14PP as well as D0 and D28PP for each
subgroup were assessed using a Wilcoxon test. Significance bars (red for

baseline S-IgG positive and blue for baseline S-IgG negative) indicate the
levels of significance;: ‘ns’ for p > 0.05 (non-significant), ‘*’ for p ≤ 0.05, ‘**’ for

p < 0.01, ‘***’ for p < 0.001, and ‘****’ for p < 0.0001.

SUPPLEMENTARY TABLE 1

Summary of predominant strains of SARS-CoV-2 during the study period.
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