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Identifying antinuclear antibody
positive individuals at risk for
developing systemic
autoimmune disease:
development and validation of a
real-time risk model
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Katherine Walker1, Audrey Anderson1, Lannawill Caruth1,
Anish Katta1, Allison B. McCoy2 and Daniel W. Byrne2,3

1Division of Rheumatology & Immunology, Department of Medicine, Vanderbilt University Medical
Center, Nashville, TN, United States, 2Department of Biomedical Informatics, Vanderbilt University
Medical Center, Nashville, TN, United States, 3Department of Biostatistics, Vanderbilt University
Medical Center, Nashville, TN, United States
Objective: Positive antinuclear antibodies (ANAs) cause diagnostic dilemmas

for clinicians. Currently, no tools exist to help clinicians interpret the significance

of a positive ANA in individuals without diagnosed autoimmune diseases.

We developed and validated a risk model to predict risk of developing

autoimmune disease in positive ANA individuals.

Methods: Using a de-identified electronic health record (EHR), we randomly

chart reviewed 2,000 positive ANA individuals to determine if a systemic

autoimmune disease was diagnosed by a rheumatologist. A priori, we

considered demographics, billing codes for autoimmune disease-related

symptoms, and laboratory values as variables for the risk model. We performed

logistic regression and machine learning models using training and

validation samples.

Results: We assembled training (n = 1030) and validation (n = 449) sets. Positive

ANA individuals who were younger, female, had a higher titer ANA, higher platelet

count, disease-specific autoantibodies, and more billing codes related to

symptoms of autoimmune diseases were all more likely to develop

autoimmune diseases. The most important variables included having a disease-

specific autoantibody, number of billing codes for autoimmune disease-related

symptoms, and platelet count. In the logistic regression model, AUC was 0.83

(95% CI 0.79-0.86) in the training set and 0.75 (95% CI 0.68-0.81) in the

validation set.
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Conclusion: We developed and validated a risk model that predicts risk for

developing systemic autoimmune diseases and can be deployed easily within the

EHR. The model can risk stratify positive ANA individuals to ensure high-risk

individuals receive urgent rheumatology referrals while reassuring low-risk

individuals and reducing unnecessary referrals.
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1 Introduction

Positive antinuclear antibodies (ANAs) cause diagnostic

dilemmas for clinicians across multiple specialties (1–3).

Currently, no clinically available or validated tools exist to help

clinicians determine the significance of a positive ANA. While a

positive ANA serves as a diagnostic criterion for multiple

autoimmune diseases, the test alone only has a 11% positive

predictive value for systemic autoimmune disease (4). In US

studies, rates of positive ANAs in the general population without

autoimmune disease range from 14% to 27% (5, 6).

Frequent, inappropriate ordering of ANA testing has been

recognized as a clinical problem by the American Board of Internal

Medicine and the American College of Rheumatology in their

“Choosing Wisely” campaign. Specifically, it is recommended to

not order an ANA test unless specific symptoms for an

autoimmune disease are present (7, 8). Up to 22% of all

rheumatology referrals are for a positive ANA (1, 9). Only 11-20%

of individuals with a positive ANA have an autoimmune disease

diagnosed at referral (4, 10–13). Frequent ANA referrals in the setting

of an international shortage of pediatric and adult rheumatologists

(14–16) contribute to inefficient use of limited resources and lengthen

wait times for rheumatology consultation (1, 9, 12).

Triage systems and electronic consultations have attempted to

tackle the problem of frequent ANA referrals with limited success (12,

17–20). Risk models have been developed for systemic lupus

erythematosus (SLE) (21, 22) but not for multiple systemic

autoimmune diseases associated with a positive ANA. We aimed to

develop and validate a robust risk model for use in the rheumatology

clinic that uses readily available data in the electronic health record

(EHR) to identify which individuals with a positive ANA are at high

and low risk for developing systemic autoimmune disease.
2 Methods

2.1 Data source and patient selection

After receiving approval from the Vanderbilt University Medical

Center (VUMC) IRB (#210189), we used the Synthetic Derivative, a

de-identified version of the EHR that contains billing code and
02
clinical data on over 3.6 million individuals spanning across three

decades (23). Records from outside VUMC are not available.

We assembled all individuals within the Synthetic Derivative who

had a positive ANA, defined as a titer ≥ 1:80 (Supplementary

Figure 1). For ANA testing, the Hep-2 immunofluorescence assay

was used for the entire study period (Appendix). We selected a

random sample of 2,000 individuals with a positive ANA to perform

chart review to assess for the model outcome and collect covariates.

Model outcome was defined as developing a systemic autoimmune

disease diagnosed by a rheumatologist, as EHR notes often lack

systematic documentation of disease criteria (24). We performed

chart review for development of systemic autoimmune disease from

time of first positive ANA up to ten years later or individual’s last

EHR interaction. We allowed up to ten years, as individuals with

autoimmune diseases can face significant diagnostic delays (25).

Systemic autoimmune diseases are listed in Supplementary Table 1.

In addition to diseases classically associated with a positive ANA (i.e.,

SLE, Sjogren’s, systemic sclerosis, mixed connective tissue disease,

and idiopathic inflammatory myopathies), we included other

systemic autoimmune diseases such as rheumatoid arthritis (RA)

and seronegative conditions (i.e., psoriatic arthritis, ankylosing

spondylitis). Since the risk model will be used for triage to the

rheumatology clinic, we aimed to include individuals with systemic

autoimmune diseases who would be followed in that setting. While

the ANA is not part of clinical criteria for these conditions, the ANA

test is still frequently ordered in the evaluation of symptoms for these

conditions (26). We excluded individuals with organ-specific

autoimmune diseases such as autoimmune thyroiditis and

autoimmune hepatitis, who would not be primarily managed by a

rheumatologist. Individuals diagnosed outside of VUMC were

included only if notes documented the individual was seen by an

outside rheumatologist. For our primary analysis, we only analyzed

individuals who were incident cases, defined as newly diagnosed with

systemic autoimmune diseases at VUMC.
2.2 Model development

Based on clinical relevance and published SLE risk models (21,

22), prespecified predictors included demographics, laboratory

values, and billing codes up to the time of first positive ANA
frontiersin.org
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(Supplementary Table 2). Specifically, billing codes captured signs

and symptoms for autoimmune diseases. A collection timeline for

model covariates and outcome is detailed in Figure 1. Model

outcome was developing a systemic autoimmune disease

diagnosed by a rheumatologist within 10 years of first positive

ANA (25).

Age was defined as age at first positive ANA documented at

VUMC. The Synthetic Derivative defines race and ethnicity using a

mixture of self-report and administrative entry with a fixed set of

categories in accordance with NIH terminology. Studies have

validated that these race and ethnicity assignments reflect self-

report and genetic ancestry (27). For our primary analysis, race was

initially excluded from the model as it was not significant in

univariate analyses. Studies have shown that risk models that

include race could potentially disadvantage high-risk groups from

receiving appropriate care (28, 29). We performed a sensitivity

analysis where race was included in the model, as studies

demonstrate an increased risk of developing autoimmune disease

in racial and ethnic underserved populations (1, 5).

We examined laboratory values one year prior to the date of the

first positive ANA to allow for adequate data capture for individuals

in the EHR and up to one month after to ensure capture of send-out

studies such as the myositis antibody panel. We included

autoantibodies associated with multiple autoimmune diseases

(Supplementary Table 3). Autoantibodies were measured via

enzyme-linked immunosorbent assays with manufacturer values

to determine positivity (Appendix). We selected white blood cell

count, platelet count, and serum creatinine as leukopenia,

thrombocytopenia, and elevated serum creatinine have all been

associated with autoimmune diseases (22, 30, 31). In SLE risk

models (21, 22) and studies assessing presence of autoimmune

diseases in positive ANA individuals (30, 31), leukopenia and

thrombocytopenia were important predictors. Therefore, when

examining multiple laboratory values for an individual, we

selected the lowest white blood cell and platelet counts within the

study period. For serum creatinine, we used the highest value within

the study period to simulate how a rheumatologist might review lab

trends. These values were treated as continuous variables. For

missing laboratory values, we used median value imputation, as

this method has been shown to be comparable to multiple

imputation and is more feasible in real-time predictive models

(32). We included ANA titer, as higher ANA titers are associated

with risk of developing autoimmune disease (9, 30). Reporting of
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ANA titers are detailed in the Appendix. Briefly, ANA titer was

dichotomized to 1:80 and ≥ 1:160 categories due to limited

reporting of titers in some of the historical data. While different

ANA patterns may have associations with different systemic

autoimmune diseases (33), we did not include ANA pattern.

ANA patterns are not reported in a standardized fashion at our

institution according to the International Consensus on ANA

patterns (33). Multiple or inconsistent patterns are often reported,

particularly in the setting of changing technology over the study

period. Further, as pattern is reported as a text variable, extraction

from the EHR in real-time to input into the risk model would

be challenging.

We used both ICD-9 and ICD-10-CM billing codes to capture

signs and symptoms for systemic autoimmune diseases

(Supplementary Table 4). These codes were significant in a UK

SLE risk model (21) and were expanded upon to ensure capture of

signs and symptoms for multiple autoimmune diseases in addition

to SLE. Similar to the UK model, we searched for billing codes up to

five years prior to the date of first positive ANA (21). In model

development, we had an insufficient sample size to fit a model with a

unique predictor for each billing code, so we created a single

aggregated variable (Supplementary Table 5).
2.3 Statistical analysis

We derived separate training and validation sets using 2,000

positive ANA individuals. We estimated that 10-15% of our 2,000

positive ANA individuals would have an incident autoimmune

disease (4, 10–13), leading to 200-300 cases for the training and

validation sets combined. To prevent overfitting and applying the

rule of 10-15 outcomes per one degree of freedom (34), we fit a

logistic regression model with 13 degrees of freedom. Prespecified

variables are shown in Supplementary Table 2. Total number of

visits, white blood cell count, and serum creatinine were collinear

with included model variables and were removed from the final

model. We performed logistic regression using the following

predictors: age at time of first positive ANA, sex, ANA titer,

platelet count, and billing codes. Final model formula is in

Supplementary Figure 2. We also performed machine learning

methods including extreme gradient boosting (XGB) (35–37) and

neural networks. Hyperparameters are in the Appendix. We

assessed model performance in the training and validation sets

using c-statistic, Brier score, and calibration curves.
2.4 Model validation

We conducted an internal validation of the logistic regression

model using a bootstrap with 200 replications (38, 39). The

bootstrap validation can test the stability of a model across

different samples. In addition, a random selection of individuals,

separate from the training set, was set aside as a “hold-out” for

model validation (Supplementary Figure 1). Specifically, we

estimated needing 100-200 incident autoimmune disease cases to

avoid overfitting our model. To achieve this sample, we used 1384
FIGURE 1

Timeline of model covariates. We assessed billing codes up to 5
years prior to the first positive antinuclear antibody (ANA) test.
Laboratory values were assessed up to 1 year and 1 month after the
ANA test. We conducted chart review for the model outcome of
developing a systemic autoimmune disease diagnosed by a
rheumatologist up to 10 years after the first positive ANA test.
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individuals of which 1030 incident individuals were used for

analysis, resulting in 152 incident cases. We then used the

remainder of the original 2,000 set for a validation set with 616

individuals, of which 449 incident individuals were used for

analysis, resulting in 74 incident cases.
2.5 Sensitivity analyses and deployment
feasibility assessment

For our primary analysis, we excluded subjects with “unclear”

autoimmune diagnoses. In a sensitivity analysis, we treated

“unclear” subjects as not cases. We also included a sensitivity

analysis where race was included with categories of White, Black,

and Other. To account for longitudinal and censored data, we

conducted a Cox proportional-hazard model using the same

variables as the logistic regression model. Outcome was time from

first positive ANA to either autoimmune disease diagnosis or last

EHR follow-up (Appendix). We initially dichotomized ANA titer to

1:80 and ≥ 1:160 categories due to historical reporting in some of

our data (Appendix). We then conducted a sensitivity analysis using

more recent data (2017-2021) that incorporated multiple categories
Frontiers in Immunology 04
for the ANA titer (1:80, 1:160, 1:320, 1:640, 1:1280, and ≥ 1:2560).

We also conducted sensitivity analyses where seronegative

conditions were not counted as a case (Appendix).

We applied our logistic regression model to data extracted from

our EHR-provided data warehouse (Epic Clarity) to assess

feasibility of deploying the model in real-time. We calculated risk

probabilities for systemic autoimmune disease for individuals with a

positive ANA from 2017-2021. This time period captured the

updated ANA titer reporting to the most current data available at

time of analysis.
3 Results

3.1 Individual characteristics

Training (n = 1030) and validation (n = 449) sets are compared

in Table 1 with individuals having similar characteristics. In the

training set, 15% (n = 152) of individuals with a positive ANA

developed a systemic autoimmune disease. Individuals with

systemic autoimmune diseases were younger (41.8 ± 21.5 vs. 47.9

± 19.3 years, p = 0.003), more likely to be female (84% vs. 70%, p <
TABLE 1 Characteristics of incident positive ANA individuals in training and validation sets.

Characteristics Training set
n = 1030

Validation set
n = 449

p value*

Autoimmune disease % (n) 15% (152) 16% (74) 0.40

Age at positive ANA, years
mean ± SD

47.0 ± 19.8 48.0 ± 20.3 0.44

Race % (n)†

White 85% (807) 85% (355)
0.88

African American 12% (113) 12% (50)

Asian 2% (16) 1% (5)

Other 1% (11) 1% (5)

Ethnicity†

Hispanic 3% (32) 3% (11)
0.46

Not Hispanic or Latino/a 97% (889) 97% (397)

Sex

Female 72% (739) 74% (333) 0.34

ANA titer‡

1:80 20% (202) 19% (87) 0.92

≥ 1:160 80% (828) 81% (362)

White blood cell count†

K/uL, Mean ± SD
6.9 ± 3.4 6.9 ± 2.9 0.88

Platelet count†

K/uL, Mean ± SD
235 ± 100 233 ± 92 0.58

Serum creatinine†

mg/dL, Mean ± SD
1.1 ± 0.9 1.2 ± 1.4 0.25

Ever present autoantibody§ % (n) 15% (155) 15% (68) 0.96

(Continued)
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0.001), have a higher ANA titer (≥1:160 vs. 1:80) (90% vs. 79%, p =

0.002), lower serum creatinine (0.9 ± 0.6 vs. 1.2 ± 1.0 mg/dL, p

< 0.001), higher platelet count (274 ± 113 vs. 229 ± 96 K/uL, p <

0.001), and a disease-specific autoantibody (51% vs. 9%, p < 0.001)

(Table 2). No significant differences were found in race, ethnicity, or
Frontiers in Immunology 05
white blood cell count in individuals with vs. without systemic

autoimmune diseases. Individuals with systemic autoimmune

disease had a higher count of the nine billing code categories

(scale 0 to 9) compared to individuals without disease (0.9 ± 0.9

vs. 0.6 ± 0.8, p < 0.001). Individuals with systemic autoimmune
TABLE 1 Continued

Characteristics Training set
n = 1030

Validation set
n = 449

p value*

Total any billing codes mean ± SD 30 ± 60 37 ± 71 0.27

Count of specific billing codes|| mean ± SD 0.7 ± 0.8 0.8 ± 0.9 0.01

Alopecia % (n) 2% (21) 1% (6) 0.35

Arthritis 26% (264) 31% (140) 0.03

Fatigue 20% (207) 23% (104) 0.18

Interstitial Lung Disease 1% (14) 2% (11) 0.14

Pulmonary Hypertension 1% (11) 1% (6) 0.66

Rash 9% (97) 9% (42) 0.97

Raynaud’s 2% (19) 3% (12) 0.31

Serositis 4% (40) 5% (23) 0.28

Sicca 0.3% (3) 1% (5) 0.05
fr
*Mann-Whitney U test for continuous variables and chi-square test for categorical variables. P values calculated with excluding missing observations.
†Race, ethnicity, and lab values have missing data with 81 (8%) for race, 109 (11%) for ethnicity, 201 (20%) for white blood cell count, 211 (20%) for platelet count, and 210 (20%) for serum
creatine in the training set. In the validation set, 32 (7%) for race, 41 (9%) for ethnicity, 91 (20%) for white blood cell count, 95 (21%) for platelet count, and 100 (22%) for serum creatine.
‡For ANA titer, up until July 1, 2016, titers were reported as 1:40 (negative), 1:80, and ≥ 1:160. After this date, titers were then reported as 1:40 (negative), 1:80, 1:160, 1:320, 1:640, 1:1280,
and 1:2560.
§Presence of other autoantibodies included rheumatoid factor, cyclic citrullinated peptide, SSA (Ro), SSB (La), scl-70, centromere, RNP, Smith, dsDNA, ANCA, Jo-1, or any antibody from the
myositis antibody panel.
||See Supplementary Table 4 for full list of ICD-9 and ICD-10-CM billing codes and Supplementary Table 5 for details on scoring. For each individual, we counted if any billing code was ever
present (1 for present, 0 for absent) for each of the nine categories (i.e., arthritis, fatigue) and then summed this up across the nine prespecified billing code categories for a maximum score of nine.
TABLE 2 Characteristics of positive ANA individuals with vs. without systemic autoimmune disease in the training set.

Characteristics No systemic autoimmune
disease
n = 878

Systemic autoimmune
disease
n = 152

Proportion with systemic
autoimmune

disease*

p
value†

Age at positive ANA, years, mean
± SD

47.9 ± 19.3 41.8 ± 21.5 ·· 0.003

Race % (n)‡

White 85% (680) 85% (127) 16%
0.26

African American 12% (94) 13% (19) 17%

Asian 2% (16) 0% (0) 0%

Native American 0.1% (1) 1% (1) 50%

Other 1% (10) 1% (1) 9%

Ethnicity‡

Hispanic 4% (30) 1% (2) 6%
0.13

Not Hispanic or Latino/a 96% (744) 99% (145) 16%

Sex
Female 70% (612) 84% (127) 17%

< 0.001

Male 30% (266) 16% (25) 9%

(Continued)
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disease were more likely to have billing codes for arthritis (40% vs.

23%, p < 0.001) and Raynaud’s phenomenon (5% vs. 1%, p = 0.006)

but not the other seven code categories.

Of the 152 individuals with systemic autoimmune diseases, the

most frequent diagnoses were SLE at 18% (n = 28) followed by other

at 16% (n = 24), undifferentiated connective tissue disease at 16%

(n = 24), and RA at 15% (n = 22) (Supplementary Table 6). Other

consisted of psoriatic arthritis, unspecified inflammatory arthritis,

and inflammatory bowel disease (Supplementary Table 6).

Individuals with unclear diagnoses of systemic autoimmune

disease (n = 66) were excluded from the primary analysis but are

described in Supplementary Table 7. For individuals without
Frontiers in Immunology 06
systemic autoimmune diseases, when available alternative

diagnoses were documented by rheumatologists, the most

frequent diagnoses were fibromyalgia (n = 18), osteoarthritis

(n = 11), and gout (n = 6) (Supplementary Table 8).
3.2 Model description and validation

The final model included age at first positive ANA, sex, ANA

titer, presence of another autoantibody, platelet count, and billing

code category count. Age was fit with a three-knot restricted cubic

spline and interacted with sex and was prespecified based on prior
frontiersin.or
TABLE 2 Continued

Characteristics No systemic autoimmune
disease
n = 878

Systemic autoimmune
disease
n = 152

Proportion with systemic
autoimmune

disease*

p
value†

ANA titer§

1:80 21% (186) 11% (16) 8%
0.002

≥ 1:160 79% (692) 90% (136) 16%

White blood cell count‡

K/uL, mean ± SD 6.9 ± 3.4 7.1 ± 3.2 ·· 0.49

Platelet count‡

K/uL, mean ± SD
229 ± 96 274 ± 113 ·· <0.001

Serum creatinine‡

mg/dL, mean ± SD
1.2 ± 1.0 0.9 ± 0.6 ·· <0.001

Ever present autoantibody||

No 91% (800) 49% (75) 9% <0.001

Yes 9% (78) 51% (77) 50%

Total any billing codes, mean ± SD 32 ± 62 23 ± 43 ·· 0.02

Count of specific billing codes,¶

mean ± SD
0.6 ± 0.8 0.9 ± 0.9 ·· < 0.001

Alopecia 2% (16) 3% (5) 24% 0.24

Arthritis 23% (203) 40% (61) 23% < 0.001

Fatigue 19% (169) 25% (38) 18% 0.10

Interstitial Lung Disease 2% (13) 1% (1) 7% 0.42

Pulmonary Hypertension 1% (9) 1% (2) 18% 0.26

Rash 9% (81) 11% (16) 17% 0.61

Raynaud’s 1% (12) 5% (7) 37% 0.006

Serositis 4% (34) 4% (6) 15% 0.97

Sicca 0.3% (3) 0% (0) 0% 0.47
*Overall percentage of individuals with systemic autoimmune disease is 14.8%. P values calculated with excluding missing observations.
†Mann-Whitney U test for continuous variables and chi-square test for categorical variables.
‡Race, ethnicity, and lab values have missing data with 81 (8%) for race, 109 (11%) for ethnicity, 201 (20%) for white blood cell count, 211 (20%) for platelet count, and 210 (20%) for
serum creatine.
§For ANA titer, up until July 1, 2016, titers were reported as 1:40 (negative), 1:80, and ≥ 1:160. After this date, titers were then reported as 1:40 (negative), 1:80, 1:160, 1:320, 1:640, 1:1280,
and 1:2560.
||Presence of other autoantibodies included rheumatoid factor, cyclic citrullinated peptide, SSA (Ro), SSB (La), scl-70, centromere, RNP, Smith, dsDNA, ANCA, Jo-1, or any antibody from the
myositis antibody panel.
¶See Supplementary Table 4 for full list of ICD-9 and ICD-10-CM billing codes and Supplementary Table 5 for details on scoring. For each individual, we counted if any billing code was ever
present (1 for present, 0 for absent) for each of the nine categories (i.e., arthritis, fatigue) and then summed this up across the nine prespecified billing code categories for a maximum score of nine.
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literature (21). Our data demonstrated a higher probability of

systemic autoimmune disease in female vs. male individuals at

younger ages but a similar probability at older ages (Supplementary

Figure 3). The most important variables in the model were presence

of another autoantibody (i.e., dsDNA), billing code category count,

and platelet count (Figure 2). Model AUC was 0.83 (95% CI 0.79-

0.86) (Figure 3A) with a Brier score of 0.10 and calibration shown in

Figure 3B. XGBoost resulted in an AUC of 0.94 (95% CI 0.91-0.95)

and neural networks with an AUC of 0.83 (95% CI 0.79-0.87).

Based on the internal bootstrap validation, the logistic

regression model was stable and robust (Appendix). For the

validation set (n = 449), 16% of individuals had systemic

autoimmune disease (Supplementary Table 9). For the logistic

regression model, AUC was 0.75 (95% CI 0.68-0.81) (Figure 3C)

with a Brier score of 0.12 with calibration shown in Figure 3D.

XGBoost resulted in an AUC of 0.72 (95% CI 0.65-0.78) and neural

networks with an AUC of 0.74 (95% CI 0.68-0.81).
3.3 Sensitivity analyses

Race was included in the model with categories of White, Black,

and Other resulting in an AUC of 0.83 (95% CI 0.79-0.87). When

individuals of unclear case status for systemic autoimmune disease

were counted as non-cases, model AUC was 0.80 (95% CI 0.76-

0.83). When these unclear individuals were counted as cases, model

AUC was 0.74 (95% CI 0.71-0.77). The distribution of model risk

scores for these unclear individuals most closely matched

individuals who were not cases (Supplementary Figure 4). For the

Cox model with the outcome time to autoimmune diagnosis, model

predictors behaved similarly to the logistic regression model

(Supplementary Figure 5).

To reflect more updated ANA titer reporting, we used a cohort

of individuals with a positive ANA from 2017 to 2021 (n = 584)

(Appendix) to perform additional sensitivity analyses. For the 2017-

2021 cohort, there was a significant difference in the distribution of
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ANA titers between cases and non-cases (p < 0.001). Of the cases,

40% had an ANA titer greater than 1:640, while 18% of non-cases

had a titer greater than 1:640 (Supplementary Table 10). In this

cohort, using a dichotomized ANA titer (1:80 vs. ≥1:160), model

AUC was 0.85 (95% CI 0.81 – 0.90). For the model with full ANA

titer reporting (i.e., 1:80, 1:160, 1:320, 1:640, 1:1280, ≥ 1:2560),

model AUC was 0.89 (95% CI 0.84 – 0.92). Lastly, we assessed if a

higher ANA titer cutoff would impact model performance using the

above 2017-2021 cohort. We fit a model using an ANA cutoff at

1:160, which had an AUC of 0.83 (95% CI 0.78-0.87), identical to

the performance of the model using the original ANA cutoff at 1:80

(AUC of 0.83 (95% CI 0.78-0.87)).

For using an alternative case definition for systemic

autoimmune disease that did not count seronegative conditions

(i.e., psoriatic arthritis, ankylosing spondylitis) as cases, model AUC

was 0.86 (95% CI 0.83-0.89).
3.4 Distribution of risk scores by type of
autoimmune disease

We examined the distribution of model risk scores by type of

autoimmune disease (Supplementary Figure 6). Individuals with

SLE had the highest risk scores with a median of 0.481 and IQR of

0.312-0.685 followed by RA with 0.423 (0.144-0.582). Individuals

labeled as other, with predominantly seronegative conditions, had

the lowest median risk score of 0.107 (0.061-0.269). Seronegative

conditions included psoriatic arthritis, and inflammatory bowel

disease. Individuals with seropositive diseases had a higher median

risk score compared to individuals with seronegative diseases

(0.385 vs. 0.107, difference in medians = 0.278, 95% CI 0.195 –

0.332, p < 0.001).
3.5 Deployment feasibility

We assessed the feasibility of implementing the logistic

regression risk model in our Epic EHR using data for all

individuals with a positive ANA from 2017-2021 (n = 22,234).

We observed a similar distribution of risk scores in Epic compared

to our training set that used a de-identified EHR database (Synthetic

Derivative) (Supplementary Figure 7). A demonstration of how the

risk model works can be accessed at https://cqs.app.vumc.org/

shiny/AutoimmuneDiseasePrediction/ (Figure 4). A disclaimer is

included that the application is not intended for clinical practice.
4 Discussion

We developed and validated a risk model that predicts risk for

developing systemic autoimmune disease in individuals with a

positive ANA. The model is important because it utilizes readily

available clinical data in the EHR, can be deployed easily within

clinical practice, and helps risk stratify individuals with a positive

ANA, a source of frequent rheumatology referrals. Our risk model
FIGURE 2

Importance of Variables in ANA Risk Model. The list of variables in
the final ANA risk model are shown to the left with p values to the
right. The x axis shows variable importance using a Wald statistic.
Ever-present antibody refers to having a disease-specific
autoantibody such as a rheumatoid factor or dsDNA. ICD count
refers to billing code category count that ranges from 0 to 9.
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identifies high-risk individuals, who are most likely to develop a

systemic autoimmune disease, to ensure they are seen urgently for

prompt diagnosis and treatment. Our risk model also identifies low-

risk individuals who could be reassured, reducing unnecessary

rheumatology referrals.
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To our best knowledge, a risk model that focuses on individuals

with a positive ANA and predicts risk for multiple systemic

autoimmune diseases does not currently exist. One SLE risk

model used UK EHR data (21) but did not focus on positive

ANA individuals or examine risk for other autoimmune diseases.
B

C D

A

FIGURE 3

Model performance for training and validation sets. (A) shows ROC for the training set with an AUC 0.83 (95% CI 0.79-0.86). (B) shows calibration
curve with a slope of 1 and intercept of 0 for the training set. Slopes that approach 1, as shown by the shaded grey line, demonstrate ideal
calibration, agreement between predicted risk for systemic autoimmune disease and observed rate. (C) shows ROC for the validation set with an
AUC 0.75 (95% CI 0.68-0.81). (D) shows calibration curve for the validation set. Calibration slope was equal to 0.71 and intercept was equal to 0.08.
FIGURE 4

Screenshot of Shiny app for risk model for systemic autoimmune disease. The screenshot shows the risk model covariates used to estimate risk for
systemic autoimmune disease. This app demonstrates how the risk score is calculated and is not intended for clinical practice. The Shiny app can be
accessed at the following link: https://cqs.app.vumc.org/shiny/AutoimmuneDiseasePrediction/.
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In this model, billing codes such as arthritis, rash, sicca, and fatigue

were most significantly associated with risk of developing SLE along

with female sex, younger age, and a higher number of clinic visits.

We found similar results in our model and used similar billing

codes but expanded our codes to identify not just SLE but also other

systemic autoimmune diseases. Similar to the UK SLE model, we

used a non-linear age and an age-sex interaction term. Despite its

strengths, the UK SLE model had limited performance with a

positive predictive value of 7-9%, a sensitivity of 24-34%, and an

AUC of 0.75. Further, this model was not deployed in the EHR. Our

model attained a higher AUC of 0.83 and can be easily deployed in

real-time in the EHR.

Another SLE risk model from a Greek center (22) used random

forests and Lasso-LR models. Not surprisingly, clinical items from

the ACR SLE classification criteria accurately identified SLE cases

with a high model AUC. While this study had a relatively large

sample and a validation set, the model was developed using

rheumatology clinic individuals and not in a general practice

setting where there is often diagnostic dilemma. This model

would be challenging to deploy in the EHR as it relies on SLE

diagnostic criteria that may not be documented systematically, even

in rheumatology notes (24).

The most important variable in our model was having another

autoantibody in addition to the positive ANA, which is more

specific for autoimmune diseases (1–3). Individuals with disease-

specific autoantibodies may have a higher pretest probability for

autoimmune disease by simply having these tests ordered. We tried

to mitigate this bias by only including incident positive

ANA individuals without established diagnoses of systemic

autoimmune disease. Further, our institution conducts reflex

testing where disease-specific autoantibodies are sent if an ANA

is positive. Disease-specific autoantibodies may not be available

fully in real-time at centers that do not perform reflex testing with a

positive ANA, which may impact the performance of the model.

The next most important variable was count of the nine prespecified

billing code categories. A priori, we selected billing codes that

captured signs and symptoms for autoimmune diseases and were

significant in the UK SLE risk model (21). As expected, a higher

count of these billing codes was predictive for systemic autoimmune

disease. While billing codes may not always adequately capture an

individual’s symptoms, ICD billing codes allow for automation of

the risk model in real-time and allow for portability of the model to

other EHRs and databases that use common data models. Platelet

count was also an important variable in our model. We originally

hypothesized that a lower platelet count would be associated with

systemic autoimmune disease. Prior SLE risk models identified

thrombocytopenia as an important model predictor (21, 22), and

other studies demonstrated an association of thrombocytopenia

with autoimmune disease in positive ANA individuals (30, 31).

Instead, we found a higher value of an individual’s lowest platelet

count was associated with systemic autoimmune disease. Higher

platelet counts have been observed in individuals with RA and

correlate with increased disease activity (40) and may also signal

inflammation (41). A priori, we elected to not include inflammatory
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markers such as sedimentation rate (ESR) and C-reactive protein

(CRP), as we had significant missingness of these values in the EHR.

Further, these markers are nonspecific and can fluctuate widely in

an individual (42–44). Elevations in these markers can be unrelated

to an underlying systemic autoimmune disease, for example, in the

setting of infection and malignancy (42–45).

A priori, we included race and ethnicity in our risk model.

African American and Hispanic individuals have higher

frequencies of positive ANAs compared to White individuals

and are at higher risk of developing autoimmune disease,

particularly SLE (1, 5). In univariate analysis, neither race nor

ethnicity were significantly associated with systemic autoimmune

disease, so race and ethnicity were not initially included. Studies

have shown that risk models that include race could potentially

disadvantage high-risk groups from receiving appropriate care

(28, 29). For our model, this could include Black individuals. In a

sensitivity analysis, we included race and found a similar model

AUC of 0.83.

Our logistic regression model demonstrated robustness in both

an internal bootstrap validation and a separate validation set. A

successful bootstrap validation demonstrates the model can hold up

when it encounters different samples. With predicting a clinically

complex outcome where no current tools or risk models exist, our

model validation demonstrated an improvement over usual care. To

assess alternative approaches, we developed models using XGBoost

and neural networks. XGBoost had a higher apparent AUC

compared to the training set logistic regression model, likely due

to overfitting, but did not hold up in validation. Neural networks

performed similarly to the logistic regression model but with added

complexity that would limit interpretability and deployment in

the EHR.

While we developed, validated, and deployed a robust risk model

to predict risk of systemic autoimmune disease in positive ANA

individuals, our study has limitations. Our model was developed at a

single academic medical center with more complex patients being

evaluated, so may not generalize to other practice settings. Further,

our study population was predominantly White, so it may not

generalize to individuals with different race and ethnicity

backgrounds and in other geographic areas. Our data encompasses

an almost 30-year study period that included changes in ANA titer

reporting. As a result, our primary analysis for the risk model

included dichotomized reporting of the ANA titer to capture

historical data. Sensitivity analyses using a more recent cohort of

positive ANA individuals using both the dichotomized and full

reporting of the ANA titer had similar model AUCs with

overlapping confidence intervals. For future versions of the risk

model, full reporting of the ANA titer can be used. We purposely

defined systemic autoimmune disease based on a rheumatologist’s

diagnosis instead of classification criteria, as classification criteria are

not systematically documented in clinical notes (24). Case definition

by a rheumatologist could contribute to heterogeneity of cases (i.e.

calling an individual with mild SLE and SLE nephritis both SLE).

Interestingly, our model did not perform as well in individuals

with seronegative conditions not typified by autoantibodies, as
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presence of these autoantibodies was the strongest predictor in our

model. This limitation should be considered when interpreting risk

scores. Seronegative conditions encompass overlapping diseases

including plaque psoriasis, psoriatic arthritis, and inflammatory

bowel diseases. These conditions have different HLA-based risk

alleles, disease mechanisms, and disease presentations compared to

seropositive conditions (46). While these seronegative conditions

are not classically associated with a positive ANA, individuals with

these conditions can have higher rates of ANA positivity compared

to the general population (47–49) and often have an ANA test

ordered as part of their clinical evaluation (26). In a sensitivity

analysis, not counting the individuals with seronegative conditions

as cases did not greatly impact the performance of the model.

Our model achieved a robust AUC of 0.83, but it does not

discriminate perfectly between individuals with and without

systemic autoimmune diseases. We found this AUC to be an

improvement over usual care, where no current risk models exist

to help risk stratify positive ANA individuals. The risk model was

not designed to diagnose systemic autoimmune disease but to serve

as a tool to identify positive ANA individuals who are at risk of

developing systemic autoimmune disease within the next 10 years.

The risk model can complement the clinician’s judgment as well as

the patient history and physical exam. The risk model could also

assist the ordering physician in identifying individuals at lower risk

that may not need rheumatology referral. This reassurance may

reduce unnecessary referrals and expenses to the healthcare system.

We purposefully created a continuous risk score, which is more

rigorous than commonly used dichotomous or “cut-off” scores.

Without a “cut-off score,” we cannot currently estimate a positive

predictive value. We are currently conducting a prospective

validation of the risk model in real-time in the EHR to inform

which individuals are low vs. high risk. While we created an

application to demonstrate how the model incorporates variables

and calculates a risk score, this application is not intended to be

used in clinical practice yet or identify individuals as low vs.

high risk.

In summary, we developed, validated, and deployed a risk

model to identify which positive ANA individuals will develop

systemic autoimmune disease. This risk model can be automated

and deployed in real-time with no input needed from a clinician. In

the setting of an international shortage of rheumatologists (14–16),

a risk-stratifying tool for positive ANA individuals is critical. For

future directions, we are assessing our risk model in real-time in the

EHR prospectively and its impact on time to diagnosis and

treatment for autoimmune diseases. Pending prospective

validation, we envision our risk model would predict risk of

autoimmune diseases within 10 years of a positive ANA similar

to the FRAX that predicts 10-year fracture risk (50) or the ASCVD

risk algorithm that predicts 10-year cardiovascular event risk (51).

Risk scores from our model could then directly informmanagement

of individuals with positive ANAs. High-risk individuals could be

seen urgently by rheumatologists to ensure prompt diagnosis and

treatment, and low-risk individuals could be reassured, reducing

unnecessary rheumatology referrals.
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