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Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel

immunotherapy targeting cancer cells via the generation of chimeric antigen

receptors on NK cells which recognize specific cancer antigens. CAR-NK cell

therapy is gaining attention nowadays owing to the ability of CAR-NK cells to

release potent cytotoxicity against cancer cells without side effects such as

cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease

(GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be

used as “off-the-shelf” therapy. Nonetheless, CAR-NK cell therapy still possesses

several challenges in eliminating cancer cells which reside in hypoxic and

immunosuppressive tumor microenvironment. Therefore, this review is

envisioned to explore the current advancements and limitations of CAR-NK

cell therapy as well as discuss strategies to overcome the challenges faced by

CAR-NK cell therapy. This review also aims to dissect the current status of clinical

trials on CAR-NK cells and future recommendations for improving the

effectiveness and safety of CAR-NK cell therapy.
KEYWORDS

chimeric antigen receptor (CAR), natural killer (NK) cell, advancements, strategies,
challenges, cancer, immunotherapy
1 Introduction

Adoptive cell therapy (ACT) is a promising immunotherapy targeting cancer cells by

transferring specialized or engineered immune cells which are endowed with tumor-killing

ability into a cancer patient (1). Among current ACTs implemented, chimeric antigen

receptor (CAR) therapy becomes increasingly significant as T cells engineered with CAR
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(CAR-T) have shown clinical success in hematological malignancies

in clinical settings owing to their remarkable anticancer abilities.

Nevertheless, CAR-T therapy possesses several limitations such as

tumor antigen loss, on target off tumor side effects, cytokine release

syndrome (CRS) due to overwhelmed cytokines released during

CAR-T cell activation, immune effector cell-associated

neurotoxicity syndrome (ICANS), difficulty in trafficking and

infiltrating into solid tumor cells, and immunosuppressive tumor

microenvironment (2, 3). During CAR-T cell manufacture, large T

cell populations are heavily required, thus surging the cost, and

lengthening the manufacturing process which further burdens

cancer patients, leading to rapid late-stage cancer progression (3,

4). Moreover, graft-versus-host disease (GvHD) is a major concern

when using allogenic CAR-T cell therapy due to the presence of

foreign donor antigens on T cells will stimulate the patient’s

immune system (5).

To resolve these obstacles, current research is moving towards

the production of CAR-NK cells on account of NK cells are innate

immune cells which are human leukocyte antigen (HLA)-

unrestricted and able to kill infected or cancerous cells without

the need of antigen priming (6). Therefore, they are safe to be used

as “off-the-shelf” therapy as no GvHD cases are reported so far

(7).[NO_PRINTED_FORM]. Moreover, CAR-NK cells do not

cause cytokine release syndrome (CRS) and neurotoxicity when

compared to CAR-T cells. Different cytokines are released by CAR-

NK cells to prevent CRS from happening (8). Furthermore, the

specificity of antibody-based CAR ectodomain targeting specific

tumor antigen and shorter lifespan of CAR-NK cells, limit the effect

of on target off tumor toxicity (9).

NK cells in the blood can be categorized into two main

populations based on the expression of cell surface receptors:

CD56bright CD16dim NK cells and CD56dim CD16bright NK cells

(10). Theoretically, CD56bright CD16dim NK cells (5% of total NK

cells) are cytokine-producing cells residing in secondary lymphoid

organs while CD56dim CD16bright NK cells (95% of total NK cells)

are cytotoxic cells circulating in peripheral blood (11). The

activation of NK cells is regulated based on the equilibrium of

ligand stimulations on both activating and inhibitory receptors of

NK cells (12). The activating and inhibitory receptors of NK cells

play a pivotal role in signaling and eliminating infected or

cancer cells.

Naturally, NK cells eliminate cancer cells via various molecular

mechanisms. The downregulation of major histocompatibility

complex (MHC) in cancer cells often leads to the failure of CAR-

T cell therapy. However, the loss of MHC in cancer cells reduces the

inhibitory signal on NK cells. Therefore, NK cells can still be

activated and able to target cancer cells via the missing-self

mechanism despite MHC being shed from cancer cells (13).

Moreover, the aberrant overexpression of ligands on cancer cells

can activate NK cells through an induced-self mechanism when the

overexpressed ligands are bound to the activating receptors of NK

cells, causing the induction of cytolytic activity in cancer cells (13).

Furthermore, NK cells can eradicate cancer cells by recognizing

non-self-antigens presented by the MHC of cancer cells (14). In

addition, NK cells can bind their CD16 (FcgRIIIA) to target cancer

cells which opsonized with IgG through antibody-dependent
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cell-mediated cytotoxicity (ADCC) (15). NK cells can trigger

apoptosis of cancer cells via the Fas/FasL signaling pathway or

TNF-related apoptosis-inducing ligand (TRAIL) pathway (16).

Overall, CAR-NK cells employ these NK cell killing mechanisms,

thus making them more robust and superior compared to CAR-

T cells.

Nonetheless, CAR-NK cell therapy faces several challenges such

as lack of persistence in CAR-NK cells, inhibition of CAR-NK cells

due to inhibitory receptors on NK cells, immunosuppressive tumor

microenvironment, ineffective CAR-NK cell trafficking and

infiltration, and immune escape. In this review, current

advancements and limitations of CAR-NK cell therapy are

explored to improve and leverage their ability to eradicate and kill

cancer cells. Lastly, we conclude this review by discussing strategies

to overcome challenges and future recommendations on CAR-NK

cell therapy.
2 Advancement of CAR-NK
cell therapy

2.1 Optimizing CAR-NK structures

CAR-NK cells have been revolutionized over the years to

explore the optimal CAR structure with enhanced cytotoxicity

and better clinical responses for cancer patients. CAR-NK cells

implement the concept of CAR-T cells, and thus develop into

several generations. The first generation consists of an

ectodomain, single chain fragment variable (scFv) linked with a

transmembrane and CD3 endodomain. Nonetheless, the lack of a

co-stimulating domain in the CAR structure leads to low

proliferation of CAR-NK cells (12). Therefore, the second CAR

generation tackles this problem by putting one co-stimulating

domain such as DNAX activation protein (DAP) 10, DAP12,

2B4, and 4-1BB (CD137) into CAR structure (17). Future

improvement has been done to enhance CAR structure through

the addition of one more co-stimulating domain, thus generating

the third CAR generation (17). To further improve the persistence

and functionality of CAR-NK cells, the fourth generation of CAR is

armored with cytokines such as IL-15 (18).

Optimizing CAR structure requires more novel strategies for

CAR structural modification. Next generation of CAR-NK cells is

the current trend to produce more effective and specific CAR,

hoping to strengthen the tumor recognition ability of CAR-NK

cells. Dual CAR NK cell which generates two independent receptors

provides greater specificity in recognizing cancer cells. Cichocki

et al. generated two independent anti-CD19 CAR and non-

cleavable CD16 receptors on NK cells termed as iDuo NK cells

offered higher specificity against CD19 cancer cells and prevented

immune escape by targeting CD19-negative cancer cells (19).

Cichocki et al. also showed that CD38 knockout CAR-NK cells

which were transduced with dual targeting anti-BCMA CAR and

CD16 possessed enhanced cytotoxicity and prolonged persistence

against multiple myeloma cells (20). Recently, dual CAR-NK cells

comprising anti-BCMA CAR and anti-GPRC5D demonstrated

remarkable results in killing multiple myeloma cancer cells (21).
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To date, FT596, a muti-targeting CAR-NK cell which possesses

anti-CD19 CAR, non-cleavable CD16 receptor, and IL15/IL-15a
was developed to enhance cancer-killing ability and improve the

persistence of CAR-NK cells (22). However, there are still few

studies on synthesizing dual or multi-targeting CAR-NK cells to

target cancer cells currently. Therefore, more preclinical studies

should be done to explore dual or multi-targeting CAR-NK cells in

eradicating solid tumors.

Bispecific CAR-NK cell is another advancement made for

creating better CAR-NK cell immunotherapy. For instance, Kim

et al. showed that bispecific anti-CD19-CD22 CAR-NK cells

possessed anticancer ability to lyse B cell lymphoma effectively

(23). Moreover, the synthetic Notch (synNotch) receptor which

induces transcription factor upon antigen recognition is a

promising approach to fine-tune the specificity of CAR-NK cells.

NK cells transduced with synNotch receptor targeting GPC3

antigen of cancer cells were able to secrete IL-12 into the tumor

microenvironment directly, thus aiding CAR-T cells to infiltrate

into cancer cells (24). Furthermore, another approach is using

inhibitory CAR to enhance CAR-NK cells in recognizing cancer

cells without targeting healthy cells. For instance, a study of

implementing inhibitory CAR on NK cells had successfully

inhibited healthy NK cells which possessed trogocytic antigen

from being killed by CAR-NK cells (25).

In addition, universal CAR shows a promising strategy to

improve CAR-NK cell therapy. Mitwasi et al. developed universal

CAR which could only be activated upon coupling with a specific

target molecule, a-GD2 IgG4 to target GD2-positive cancer cells

(26). Moreover, Kang et al. designed a universal modifiable

cotinine-specific CAR which is bound to a cotinine conjugator to

target multiple cancer antigens (27). Furthermore, the inducible

caspase9 (iCasp9) suicide gene is used in on/off logic-gated CAR to

switch off the killing mechanism of CAR-NK cells when

needed (28).
3 Advancement of CAR-NK
cell production

3.1 Exploring various NK cell sources

There are various sources to collect NK cells for CAR-NK cell

production. One of the methods is from peripheral blood.

Specifically, NK cells can be obtained either from autologous or

allogenic peripheral blood. Nevertheless, the limited amount of

autologous or allogenic NK cells obtained from peripheral blood

not only impedes NK cell expansion, but also possesses heterogenous

issues and is sensitive to freeze-thaw cycles which eventually reduces

the efficiency of transduction (29). Therefore, another approach such

as using NK cell lines is preferred to overcome the disadvantages of

primary NK cells from peripheral blood.

CAR-NK cells can be engineered from cell line such as NK-92

cells due to this cell line possesses high cytotoxicity, short cell

doubling time, lack of inhibitory receptors, and is easier to be

genetically modified compared to other cell lines (30, 31). However,

NK-92 cells possess several disadvantages such as a lack of CD16
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receptors to mediate ADCC, the requirement for IL-2 supply to

proliferate, and the need for irradiation to overcome the risk of

immune rejection (30). Therefore, modifying NK-92 cells is highly

demanded to resolve the limitations.

Up to date, there are a lot of advancements made for NK-92

cells. For instance, NK-92 cells are modified to produce IL-2-

expressing NK cell lines such as NK-92ci and NK-92mi cells (31,

32). To solve the issue of lacking CD16 receptor, high-affinity Fc

receptor expressing NK-92 cells (haNK) are produced by

transducing NK cells with a plasmid carrying high-affinity CD16

and IL-2 (31, 32). Furthermore, haNK cells can also be used to

express CAR, thus generating other new cell lines such as targeted

high-affinity NK-92 cells (t-haNK) and quadrocistronic targeted

high-affinity NK-92 cells (qt-haNK) to broaden the use of NK cell

lines in cancer immunotherapy (31).

Apart from NK cell lines, stem cells are used to derive CAR-NK

cells due to their ability to be used as “off-the-shelf” therapy. NK

cells derived from umbilical cord blood possess higher proliferation

capacity and can be easily obtained or frozen compared to

peripheral blood NK cells (33). Most importantly, cord blood NK

cells have better homing ability and are less immunogenic due to the

higher chemokine receptor expression on cord blood-derived NK

cells and lesser T cells isolated from cord blood (33). Nevertheless,

NK cells from cord blood are immature and express lower

expression of granzyme B and activating receptors such as CD16

and DNAM-1 (34). Furthermore, the higher expression of

inhibitory receptors on cord blood NK cells hinders their

function to kill cancer cells effectively (34).

In another perspective, NK cells derived from induced

pluripotent stem cells (iPSCs) are the current advancement made

for optimizing CAR-NK cell production. Although iPSCs-derived

NK cells possess tumorigenic properties and laborious

transdifferentiating procedures, NK cells from iPSCs are still a

promising source to produce CAR-NK cells as they are

consistently homogenous, highly proliferative, and can be scaled

up to produce an unlimited supply of NK cells (35). Furthermore,

the risk of GvHD is low in iPSCs-derived NK cells (36). Therefore,

NK cells derived from iPSCs can be used as “off-the-shelf” therapy.

Overall, CAR-NK cells can be produced from various sources,

thus highlighting the importance of exploring more strategies to

synthesize even better “off-the-shelf” CAR-NK cell therapy for

cancer patients. Moreover, more studies on exploring other NK

cell sources should be investigated for optimizing and standardizing

CAR-NK cell production.
3.2 Manipulating different CAR gene
delivery methods

To deliver the CAR gene effectively into NK cells, various viral

and non-viral methods have been implemented to produce CAR-

NK cells. In fact, all methods possess pros and cons in delivering

transgene. Therefore, it is hard to standardize the CAR gene

delivery method and manufacture CAR-NK cells based on

universal protocol. The pros and cons of respective gene delivery

methods are tabulated in Table 1.
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NK cells can be transduced by various viral and non-viral

methods. One of the viral methods is using retrovirus. Although

retrovirus is useful by integrating transgene into the host genome

permanently, the risk of eliciting mutagenesis and only being able to

transduce dividing NK cells limits the use of retrovirus in producing

CAR-NK cells (37, 38). Therefore, other viral vectors such as

lentiviral vectors are used to overcome the limitations of

retroviral vectors. Lentivirus is commonly favored in delivering

the CAR gene due to its ability to transduce dividing and non-

dividing cells, permanently integrate transgene into the host

genome, and low immunogenicity compared to other viral

delivery methods (39). However, lentivirus may possess a risk of

insertional mutation (39). Therefore, to ensure the safety of

lentivirus in transgene delivery, second and third-generation

lentiviral vectors are generated and widely used to produce CAR-

NK cells. To date, one study on producing CAR-NK cells using

second and third generations of lentiviral vectors showed no

differences in transduction efficiency for both of them, thus

highlighting both lentiviral vector generations were able to deliver

CAR gene efficiency (42).

Apart from the viral method, recent studies on delivering the

CAR gene via piggyBac transposons have been reported. Wang et al.

used piggyBac transposons encoding NKG2D-DAP10 CAR to

transfect NK cells against CD73-positive lung cancer cells (43).

Wang et al. successfully demonstrated stable and sustained NKG2D

expression in NK cells over the time of the study (43). Similarly,

piggyBac transposon which co-expressed with IL-15 was used to

generate CAR-NK cells targeting the NKG2D ligand of cancer cells

(44). Therefore, these studies provide great insight into using non-

viral piggyBac transposons to deliver the CAR gene which might

offer safer clinical benefits for patients. Furthermore, non-viral

vectors such as sleeping beauty (SB) can be used to transfect NK

cells. Bexte et al. demonstrated that SB able to induce prolonged

durability for CAR expression and robust cytotoxicity against acute

lymphoblastic leukaemia (45). In fact, the use of piggyBac and SB
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transposons possess advantages such as large cargo size for

transgene, low immunogenicity, and cheap manufacturing cost

(40). Nonetheless, random transgene integration of piggyBac and

SB transposons can lead to mutation or damage to the structure of

the gene (41).

A new advancing method to deliver the CAR gene into NK cells

is via clustered regularly interspaced short palindromic repeats and

CRISPR-associated protein 9 (CRISPR-Cas9) technology. Using

this technology, the CAR gene was carried by adeno-associated

virus (AAV) and transfected into primary NK cells. The results

showed that 68% of NK cells were successfully transfected to

become CAR-NK cells (46, 47). CRISPR-Cas9 provides precise

gene editing, but gene delivery efficiency still needs to be

investigated (39).
3.3 Enhancing CAR transduction or
transfection into NK cells

NK cells are resistant to being transduced or transfected (37,

38). Therefore, studies have been performed to increase

transduction or transfection efficiency for NK cells. Enhancing

viral transduction can be achieved by alternating electrical

changes on the NK cell membrane. The use of a polycationic

agent, polybrene showed enhanced NK cell transduction (89.2%)

when compared to other enhancers for transduction such as

vectofusin 1 (70.9%) and retronectin (30.4%) (48). Similarly, Kim

et al. proved polybrene improved NK cell transduction, however,

they also demonstrated that high polybrene concentration and

prolonged duration of polybrene exposed to NK cells could

decrease NK cell viability (49).

Moreover, lentiviral transduction can be improved by

upregulating low-density lipoprotein receptor (LDLR) of NK cells

to bind with the vesicular stomatitis virus (VSV) of lentiviral

particles carrying the CAR gene. Gong et al. demonstrated a
TABLE 1 Comparison between viral and non-viral vectors used for CAR gene delivery.

Aspect
Viral vector Non-viral vector

Retrovirus Lentivirus PiggyBac transposon Sleeping Beauty (SB)

Infection Dividing cells
Dividing and

Non-dividing cells
Dividing cells Dividing cells

Transfer method Transduction Transduction Electroporation Electroporation

Gene Integration Integrating Integrating Integrating Integrating

Delivery efficiency High High Moderate Moderate

Packaging capacity Limited size Limited size Large Large

Expression stability High High High High

Immunogenicity Moderate Moderate Low Low

Safety Risky Risky Risky Risky

Cost High High Low Low

References (37, 38) (39) (40, 41) (40, 41)
Retrovirus and lentivirus are the common viral vectors used to delivery CAR gene effectively into NK cells while piggyBac transposon and sleeping beauty transposon are non-viral vector used for
safer CAR gene delivery.
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statin known as rosuvastatin was able to upregulate LDLR of NK

cells, thus promoting better CAR transduction via the increase of

NK cell binding with VSV of lentiviral particles (50). Furthermore,

Baboon envelope pseudotyped lentiviral vectors (BaEV-LVs)

expressed higher CAR expression on NK cells compared to other

pseudotyped lentiviral vectors, thus enhancing the killing effects of

CAR-NK cells towards NK-resistant blood cancer cells (51). A

similar result was also observed in the study done by Soldierer et al.

They also explored different types of promoters in regulating CAR

gene expression, suggesting that the myeloproliferative sarcoma

virus (MPSV) promoter was better than other promoters used (52).

In addition, NK cell transduction can be enhanced by

incorporating TBK1/IKKϵ inhibitor with VSV-pseudotyped

lentiviral vector. TBK1/IKKϵ inhibitor was used to inhibit toll-like

receptor (TLR) 4 antiviral signaling pathway, thus enhancing the

binding of VSV receptor with NK cells and eventually enhancing

viral transduction (53).

From another perspective, advancement to improve transfection

efficiency for non-viral CAR delivery method is through synthesizing

a novel polymer to deliver the CAR gene. For instance, oligomer such

as cationic charge-altering releasable transporters (CARTs) was

synthesized by Wilk et al. to bind with anti-CD19 mRNA of CAR

before encapsulating this CART-anti-CD19 mRNA in a polyplex to

transfect NK cells (54). The transfection efficiency shown by this

CART-anti-CD19 mRNA was higher than commercial transfection

agents such as lipofectamine, thus providing a new and novel strategy

to increase the transfection efficiency of non-viral methods into

NK cells.

To facilitate CAR gene transfection via non-viral methods,

other strategy such as nanoparticles is used to enhance the

transfection efficiency. Douka et al. showed that lipid

nanoparticles were superior compared to polymeric nanoparticles

and electroporation in delivering messenger RNA (mRNA) carrying

a green fluorescent transgene and ultimately promoting higher

transfection efficiency for NK cells and T cells (55). Recently,

Golubovskaya et al. proved lipid nanoparticles harboring mRNA
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killed cancer cells in vitro and in vivo (56). Therefore, lipid

nanoparticles can be used to improve the transfection efficiency

of CAR-NK cells. Furthermore, magnetic nanoparticles coated with

polymer also showed improved transfection efficiency towards NK

cells (57). However, more studies on lipid or magnetic nanoparticles

in enhancing the transfection efficiency of NK cells should be

performed to produce effective CAR-NK cells from non-viral

methods. The advancements of CAR-NK cell therapy and

production are illustrated in Figure 1.
4 Challenges of CAR-NK cell therapy

Although CAR-NK cell therapy shows promising potent

anticancer results, it also possesses challenges which impair the

efficacy of CAR-NK cells. One of the challenges is the lack of

persistence in CAR-NK cells due to NK cells having shorter

lifespans (3). Therefore, multiple rounds of CAR-NK cell

administration may be required to maintain sufficient CAR-NK

cells which have the potency to kill cancer cells in a patient’s body.

Moreover, NK cells express various inhibitory receptors such as

killer cell immunoglobulin-like receptors (KIRs), NKG2A, PD-1,

TIM-3, and TIGIT (58). Therefore, NK cells are easily inhibited and

deactivated once their inhibitory receptors are bound with

inhibitory ligands that are present in the tumor microenvironment.

Furthermore, CAR-NK cells are suppressed by hypoxic, nutrient-

deficient, and immunosuppressive tumor microenvironment. The

presence of myeloid-derived suppressor cells (MDSCs), cancer-

associated fibroblasts (CAFs), regulatory T cells (Tregs), and

tumor-associated macrophages (TAMs) suppress NK cell function,

thus leading to inactivation of NK cells (59). NK cells are also

suppressed by a nutrient-deficient environment due to a lack of

glucose and amino acid supplies for them to survive (60). In addition,

NK cells are hard to infiltrate into complex tumormicroenvironment,

thus leading to failure of CAR-NK cell therapy.
FIGURE 1

Advancements in CAR-NK cell therapy and production. CAR structure has been optimized to generate different generations of CAR as well as
produce dual CAR-NK cells, bispecific CAR-NK cells, universal CAR-NK cells, and inhibitory CAR-NK cells. Moreover, exploring various new sources
for NK cells such as umbilical cord blood and induced pluripotent stem cells (iPSCs) is also a new advancement made for CAR-NK cell therapy and
production. Other approaches such as enhancing CAR gene delivery methods and improving CAR transduction or transfection efficiency are
performed to improve CAR-NK cell production. Created with BioRender.com.
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In another perspective, the loss of cancer antigens often leads to

immune escape. One of the immune escape mechanisms is

trogocytosis. Trogocytosis is an event involving the transfer of

cancer antigens from cancer cells to NK cells, thus leading to

antigen loss in cancer cells. NK cells which receive cancer

antigens are targeted by CAR-NK cells (61). As a result, fratricide

of NK cells occurs due to the NK cells present trogocytic antigen

mediated by trogocytosis (61).

Additionally, NK cell exhaustion is also a main hurdle in CAR-

NK cell therapy. The exhaustion of NK cells is mainly presented by

several exhaustion phenotypes such as reduction in NK cell

proliferation, activation, and cytotoxicity, downregulation of

cytokines and activating receptors of NK cells, upregulation of

immune checkpoints and inhibitory signals on NK cells, and

dysregulation in NK cell metabolism (62). For instance, the

upregulation of inhibitory receptors such as PD-1, TIGIT, TIM-3

on NK cells and increase in tumor-derived factors including

prostaglandin E2 (PGE2), TGF-b, adenosine, and exosomes can

eventually cause NK cell inhibition and exhaustion (62). Moreover,

nutrient deprivation due to reduction in oxidative phosphorylation

(OXPHOS) and glycolysis on NK cells can lead to NK cell

exhaustion and cytotoxicity inhibition (63, 64). Furthermore, NK

cells are exhausted by the hypoxic tumor microenvironment.

Hypoxia will induce hypoxia-inducible factor 1-alpha (HIF-a)
which can downregulate NK cell activating receptors and

upregulate PD-L1 expression on immunosuppressive MDSCs,

thus leading to NK cell inhibition (65, 66). In addition, lactate

and lipid accumulation in tumor microenvironment as well as the

presence of indoleamine 2,3-dioxygenase (IDO) show inhibition on

NK cell proliferation, cytotoxicity release, and downregulation on

NK cell activating receptors (67–69).
5 Strategies to tackle challenges in
CAR-NK cell therapy

5.1 Improving activation, proliferation, and
persistence of CAR-NK cells

The activation, proliferation, and persistence of CAR-NK cells

are the major barriers to sustaining and stimulating sufficient CAR-

NK cells to target cancer cells in a patient’s body. One of the

strategies is supplying cytokines to stimulate NK cells. Cytokine

such as IL-2 provides robust stimulation on NK cells, but IL-2 also

activates suppressive T regulatory cells (Treg) which in turn

impede NK cells to eliminate cancer cells (70). Therefore,

Bentebibel et al. tackled this problem by using a promising

human recombinant IL-2, namely bempegaldesleukin (NKTR-

214) to boost the activation and expansion of immune cells such

as NK cells and CD8+ T cells with minimal stimulation on Treg

cells during phase I human clinical trial on advanced or metastatic

solid malignancies (71). To enhance anticancer effects, NKTR-214

was synergized with checkpoint inhibitors such as anti-

programmed death protein-1 (PD-1) and anti-cytotoxic T-

lymphocyte associated protein 4 (CTLA-4), resulting in a drastic

reduction of intratumorally Treg cells and an increase in CD8+ T
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cell response without affecting Treg cells in peripheral blood (72).

However, the synergic effects of NKTR-2214 with CAR-NK cell

therapy still require further investigation.

Apart from using IL-2 to boost NK cells, IL15 is another

cytokine that can improve NK cell activation and persistence.

Christodoulou et al. demonstrated that anti-CD123-2B4-CD3

CAR-NK was able to increase NK cell persistence by revealing

high proliferative and activated transcriptomic NK cell signatures

and enhance anti-tumor ability against acute myeloid leukaemia

(AML) in vitro and in vivo when co-expressed with secretory IL-15

(sIL-15) (73). However, this CAR-NK/sIL-15 should be

continuously monitored as it possesses cytokine-related systemic

toxicity (73). Moreover, NK-92 cell lines transduced with anti-

CD19-IL15/IL-15Ra showed robust cytotoxicity against B cell

malignancies in both vitro and vivo and continuously expanded

without IL-2 for 21 days (74). Currently, only five clinical trials

regarding CAR-NK immunotherapy with IL-15 are listed. However,

three clinical trials focusing on cord blood NK cells (NCT06066424,

NCT05922930, NCT05703854) and one clinical trial aiming to

produce CAR-NK-T cell (NCT05487651) are still in recruiting

phase. Nevertheless, one among five clinical trials has been

withdrawn due to unknown reasons (NCT03579927).

In addition, IL-21 also shows promising NK cell activation,

proliferation, and expansion. Initially, the K562-mIL21 feeder layer

is implemented to culture NK cells. However, recent research shows

other feeder layers can be used as they promote better expansion for

NK cells. Preclinical data from Ojo et al. proved that NK cells

cocultured with overexpressing membrane-bound IL-21 feeder

layer established from OCI-AML3 cell lines were able to

proliferate and expand with robust cytotoxicity against sarcoma

and leukaemia in vitro and in vivo (75). IL-21 activates the STAT3/

c-myc pathway in NK cells, thus increasing NK cell proliferation

and metabolism (75). An alternative approach such as using an

irradiated 221-mIL-21 feeder layer also showed superior advantages

over to K562-mIL21 feeder layer owing to their ability to expand

memory-like NK cells with less differentiated phenotypes (76).

Moreover, human peripheral NK cells can be transduced with

CAR-NK-IL21 to promote higher NK cell expansion. He et al.

demonstrated that CAR-NK cells co-expressing IL-21 possessed

higher expansion fold and produced greater cytotoxic IFN-g and

TNF-a release compared to CAR-NK cells with IL-15 co-expression

against CD-19 lymphoma (77). Furthermore, the effort to improve

the K562 feeder layer also provides great insight into enhancing NK

cell expansion. Zhang et al. found that membrane-bound IL-21

transgene expression followed by co-expressing membrane-bound

IL15/IL-15Ra on K562 feeder cells would enhance NK cell yield and

anticancer properties (78). At present, there are no clinical trials on

employing IL-21 in CAR-NK cell therapy.

Adopting IL-18 to stimulate NK cells is another strategy to

increase NK cell persistence. By supplying IL-18 to NK cells, NK

cells increased their proliferation and altered into antigen-

presenting phenotype, thus mediating T cell responses to target

lung cancer cells as shown by Senju et al. (79). Moreover, Gang et al.

recently stimulated NK cells with IL-12, IL-15, and IL-18 to induce

memory-like NK cells before transducing them into CAR-NK cells

(80). Their work showed enhanced persistence and anticancer effect
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against AML which resists NK cell-based therapy (80). Similar

results were also obtained when NK cells treated with the

combination of IL-12, IL-15, and IL-18 were then used for

manufacturing CAR-NK cells against CD19 of B cell cancers (81).

As a result, cancer progression was suppressed along with

prolonged survival of CD19 positive tumor-bearing mouse model

(81). Nevertheless, none of the clinical trials show combinational

therapy of various cytokines to enhance NK cell persistence

for now.
5.2 Targeting NK cell receptors to improve
CAR-NK cell therapy

Activating and inhibitory receptors of NK cells play an

important role in augmenting the role of NK cells in cancer

elimination. Li et al. showed that incorporation of activating

receptors such as natural killer group 2 member D (NKG2D) in

the transmembrane region of CAR structure and 2B4 as a co-

stimulating domain was able to enhance the cytotoxicity of CAR-

NK cells, thus demonstrating the highest efficacy to eradicate cancer

cells compared to other CAR structures which did not use NKG2D

(82). However, 2B4 cannot be used alone and should bind with CD3

for full CAR-NK cell activation (29). Parihar et al. also

demonstrated that CAR-NK cells which incorporated NKG2D in

their CD3 able to target NKG2D ligands on MDSCs without

interfering NKG2D ligands on normal cells (83). Similarly,

enhanced cytotoxicity and reduced cancer cell numbers were

attained by fusing the activating receptor, NKG2D with DAP12

in CAR structure (84).

Furthermore, the CD16 activating receptor is another choice of

interest to boost CAR-NK cell efficacy. Modification on activating

receptors such as CD16 is needed to avoid CD16 from being cleaved

by metalloproteinase, ADAM17 which is released by cancer cells

(29). By implementing CRISPR technology, the ADAM17 gene was

knocked out from CAR-NK cells and the results showed enhanced

cytotoxicity in vitro and in vivo cancer models (85). Similarly, non-

cleavable CD16a-hiPSC-NK cells created by Zhu et al. via mutation

demonstra ted improved surv iva l for mouse-bear ing

lymphoma (86).

Reducing inhibitory signals on NK cells is another approach to

increase the efficiency of CAR-NK cell therapy. A human

immunoglobulin (Ig) G4 monoclonal antibody known as

IPH2101 was implemented clinically to inhibit inhibitory signals

on NK cells by targeting killer cell immunoglobulin-like receptors

(KIRs) such as KIR2DL-1, KIR2DL-2, and KIR2DL-3 on NK cells in

multiple myeloma patients (87). Conversely, IPH2101 shows

unresponsive to NK cell activation due to the loss of KIR2D on

NK cells from the trogocytosis event, thus leading to the

termination of phase II clinical trial (88). Owing to this problem,

a phase I clinical trial using another anti-KIR antibody, so-called

IPH2102 (lirilumab) which is derived from IPH2101 was

implemented to unlock NK cell inhibition without having dose-

limiting toxicity (DLT) (89, 90). In addition, combinational therapy

of IPH2102 with other therapeutic agents has been performed

recently. For instance, IPH2102 was used to inhibit inhibitory
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signaling of NK cells by preventing inhibitory KIRs from binding

to HLA-C of cancer cells, thus activating ADCC mechanisms to kill

the cancer cells that had been marked with cetuximab during head

and neck immunotherapy (91). IPH2102 was also coupled with

other immune checkpoint inhibitors such as nivolumab and

ipilimumab to synergize stronger anticancer effect towards

advanced solid malignancies in a clinical trial (NCT01714739).

Therefore, more studies regarding anti-KIR antibodies coupled

with other therapies such as CAR-NK cells should be performed.

In addition, CD94 or NK group 2 member A receptor

(NKG2A) is important in inhibiting NK cells by binding to its

ligand, HLA-E on cancer cells. Monalizumab is used to target

NKG2A, thus activating NK cells to exhibit cancer-killing ability

(92). Moreover, monalizumab synergized with cetuximab to target

head and neck squamous cell carcinoma, resulting in remarkable

antic-cancer effects with a 31% response rate among patients in

phase II clinical trials (93). Recently, monalizumab coupled with

MEDI5752 which is a bispecific monoclonal antibody targeting

checkpoint inhibitors such as PD-1 and CTLA-4 is a promising

strategy to target highly immunogenic cancers in MONAMI

clinical trial (NCT06152523). Nonetheless, the combination of

monalizumab with trastuzumab did not achieve targeted clinical

responses although the breast cancer respondents were free from

DLT in the MIMOSA trial (NCT04307329), indicating that the low

respondent number and scarcity of tumor infiltrating lymphocytes

may inhibit anti-NKG2A therapy (94). Therefore, CAR-NK cell

therapy coupled with anti-NKG2A antibodies is an urgent topic

that requires further investigation to improve the overall survival of

cancer patients.

NK cell engagers are another promising strategy to improve the

efficacy of CAR-NK cell therapy. There are two types of NK cell

engagers: BiKE (bispecific killer cell engager) and TriKE (trispecific

killer cell engager) which bridge NK cells with cancer cells more

effectively, thus enhancing the efficacy of NK cells to eliminate

cancer cells. Various activating and inhibitory receptors on NK cells

have been targeted by NK cell engagers to improve NK cells in

cancer eradication, including CD16a, CD160, CD96, NKG2A,

NKG2D, NKG2C, Nkp30, Nkp46, Nkp80, KIR2DS/KIR3DS,

KIR2DL/KIR2DS, DNAM-1, 2B4, PD-1, IL-2/IL-15, TIGIT, and

TIM-3 (95). Nonetheless, each receptor possesses pros and cons

when targeted with NK cell engagers. Nikkhoi et al. showed BiKE

targeting CD16 of NK cells and HER2 antigen on cancer cells was

able to generate a high level of ADCC compared to conventional

antibody, trastuzumab (96). Remarkable results of using BiKE are

also shown in hematological malignancies (97). Moreover, TriKE

armoring anti-CD16, anti-CD19, and IL-15 enhanced cancer cell

lysis and cytotoxicity against CD19-positive tumors (98). In

addition, anti-B7H3 CAR T cells synergized anticancer effects

with BiKE which target CD16 of NK cells, thus providing

attractive insight into the use of NK cell engagers with CAR-NK

cell therapy (99). However, there is still lacking preclinical and

clinical data on using NK cell engagers with CAR-NK cells. The idea

of using NK cell engagers to bridge CAR-NK cells with other

therapeutic agents such as antibodies may provide better

cytotoxicity than BiKE or TriKE monotherapy, but this concept

yet to be investigated.
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5.3 Overcoming immunosuppressive
tumor microenvironment

Cancer, especially solid tumors, consists of heterogenous

cell populations including immune cells which are suppressed

and anergic in complex tumor microenvironments. This

immunosuppressive tumor microenvironment is not only hypoxic,

but it also possesses altered metabolism which supports the rapid

proliferation of cancer cells.

To revitalize NK cells from the suppressive tumor

microenvironment, SX-682 which is an inhibitor targeting

chemokine receptor 1/2 (CXCR1/2) showed promising inhibition

towards suppressive myeloid-derived suppressor cells (MDSCs), thus

preventing them from infiltrating into tumor microenvironment of

head and neck cancer and deactivating NK cells (100). However, the

synergic effects of SX-682 with CAR-NK cell therapy should be

further investigated as none of this study has been reported so far.

Furthermore, cancer cells accumulate high levels of adenosine

triphosphate (ATP) which in turn dephosphorylated into

adenosine by CD73 of MDSCs can eventually inhibit NK cells

(101). Chambers et al. transduced NK cells with anti-CD73 single

chain fragment variable (scFv) CAR and successfully eliminated

overexpressed CD73 lung cancer cells under hypoxic condition

(101). Moreover, a drug such as nintedanib reduced IL-6 produced

by cancer-associated fibroblasts (CAFs), thus enhancing the

cytotoxicity of CAR-NK cells against mesothelin-positive cancer by

increasing NK cell activating receptors (102).

In addition, inhibition of monocarboxylate transporter 4

(MCT4) which regulates lactate secretion and exchange led to the

activation of cytotoxic NK cells to kill immunosuppressive breast

cancer cells (103). In addition, high proliferative cancer cells use up

the nutrients in the tumor microenvironment, leaving a nutrient-

deficient hostile environment for immune cells, thus suppressing

immune reactions. Therefore, Nachef et al. suggested engineering

CAR-NK cells with amino acid transporters such as SLC1A5,

SLC3A2, and SLC7A5 to improve amino acid uptake for CAR-

NK cells and prevent them from being suppressed by nutrient-

deficient tumor microenvironment (104). Nonetheless, there are no

studies focusing on using CAR-NK cells directly to target MCT4 of

cancer cells or enhancing CAR-NK cells with amino acids

transporters currently. Furthermore, suppressive immune cells

such as Tregs, tumor-associated macrophages (TAMs) and

MDSCs secrete TGF-b to impede NK cell function. To tackle

immunosuppressive TGF-b in the cancer microenvironment,

Chaudhry et al. demonstrated that CAR-NK targeting B7H3 of

glioblastoma enhanced tumor lysis even with the presence of

immunosuppressive TGF-b when co-expressing this CAR-NK

with TGF-b dominant negative receptor (DNR) (105). However,

the in vivo model was not investigated during this study, thus more

preclinical data are required to support the efficacy of CAR-NK/

TGF-b DNR in targeting immunosuppressive cancers.

In addition, cancers which overexpress immune checkpoints

such as PD-L1 possess poor prognosis and suppressive behavior

towards NK cells in the tumor microenvironment. This could be

targeted by incorporating anti-PD-L1 scFv directly into NK cells.

Liu et al. proved that tumor regression in the humanized
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nasopharyngeal cancer (NPC) mouse model was achieved by

designing CAR NK cells harboring anti-PD-L1 properties and

synergized anticancer effects with a checkpoint inhibitor,

nivolumab (106). Anti-PD-L1 CAR-NK was combined with anti-

PD-1 and IL-15 superagonist, N-803 to boost NK cell ability in

killing carcinoma in vivo while reducing T cell exhaustion and

mediating T cell responses via IFN-g release which is induced by IL-
15 (107). Moreover, the combinatorial therapy of implementing

anti-PD-L1 CAR-NK with anti-PD-1, pembrolizumab and N-803 is

currently recruiting in the clinical trial (NCT04847466) to target

refractory gastric and head and neck malignancies. From another

perspectives, Lu et al. designed a chimeric costimulatory converting

receptor (CCCR) in the structure of CAR to alter negative signals of

PD-1 to activating signals, thus modulating, and hindering

immunosuppressive tumor microenvironment via this novel

CAR-NK cells (108). Furthermore, another immune checkpoint,

B7H3 is a promising candidate to be targeted. Yang et al.

demonstrated that anti-B7H3 CAR-NK cells increased granzyme

and perforin secretion to lyse non-small lung cancer cells (109). In

addition, immune checkpoint, HLA-G of cancer cells can be

targeted by CAR-NK to inhibit immunosuppression. Jan et al.

proved that CAR-NK cells targeting HLA-G were able to induce

cytotoxicity against solid malignancies after pre-treating with

chemotherapy (110). Cancer cells sensitized by chemotherapy

highly expressed their HLA-G, thus promoting better activation

and cancer antigen recognition for CAR-NK cells (110).
5.4 Improving CAR-NK cell trafficking
and infiltration

Proinflammatory cytokine such as IL-8 is produced by cancer cells

during tumor development. Therefore, IL-8 becomes an attractive

candidate to mediate the infiltration of CAR-NK cells into complex

and immunosuppressive tumor microenvironment. By designing CXC

motif chemokine receptor (CXCR) 1 with CAR construct in NK cells,

these CXCR1/CAR-NK cells promoted effective trafficking and

peritoneal infiltration into the ovarian cancer microenvironment

(111). In hematological malignance, mRNA of CXCR4 and anti-B

cell maturation antigen (BCMA) CAR were electroporated in NK cells

to increase homing ability to bone marrow of multiple myeloma

xenograft, thus enhancing cytotoxicity of CAR-NK cells and

remarkably reducing tumor burden (112).

Chemokine receptor (CCR) is significant recruiting NK cells

into the tumor microenvironment. Schomer et al. proved that

CCR7-modified anti-CD19 CAR-NK cells effectively controlled

the growth of CD19-positive lymphoma in mouse models by

enhancing the infiltration of CAR-NK cells towards chemokine

ligands, CCL9 which produced by lymphoma cells (113).

Furthermore, chemokines such as CXCR2 also improved the

trafficking and infiltration of NK cells into the tumor

microenvironment of renal cancer, thus providing great insight

into genetically engineering CXCR2 on CAR-NK cells (114).

Nonetheless, more studies should be conducted to ensure the

induced chemokine will not cause negative effects on cancer

patients or promote tumorigenesis.
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5.5 Overcoming immune escape

Cancer cells which shed their MHC class I chain-related protein

A (MICA) and protein B (MICB) can exhibit immune escape

properties and ultimately promote rapid cancer progression.

Therefore, an antibody targeting MICA a3 was synthesized to

prevent the proteolysis of MICA and MICB from cancer cells,

thus allowing the binding of NK cell activating receptor, NKG2D

with MICA/B to activate cytotoxic NK cells (115). There are also

various approaches to prevent immune escape by improving

antigen recognition by CAR-NK cells. As mentioned, iDuo NK

cells targeting anti-CD19 and CD20 improved NK cell recognition,

thus preventing immune escape (19). Similarly, dual CAR-NK cells

targeting BCMA and GPRC5D also prevented immune escape for

multiple myeloma cells which downregulates BCMA antigen (21).

Moreover, fratricide of NK cells which is induced by

trogocytosis event becomes a major challenge for CAR-NK cell

therapy as it will promote immune escape and eventually lead to

cancer relapse. To resolve this issue, Li et al. developed a dual CARs

system which comprised of a CAR to target cancer antigen and an

inhibitory CAR to send inhibitory signals to inhibit CAR-NK cells

from targeting NK cells which present trogocytic antigen (TROG)

due to trogocytosis event (25). Therefore, fratricide of NK cells can

be prevented by using dual CAR-NK cells and eventually prevent

cancer cells from immune escape. Apart from developing dual

CAR-NK cells, the use of latrunculin A (an actin inhibitor) can

prevent trogocytosis since actin is important for the exchange of

cancer antigens from the cancer cell surface onto NK cells (116).

Moreover, the upregulation of cholesterol 25-hydroxylase (CH25H)

inhibits lipid membranes from fusing. Therefore, it can be targeted

by SUMOylation inhibitors such as TAK981 to prevent trogocytosis

(116). Furthermore, Lu et al. proved that co-expressing CH25H in

CAR structure successfully inhibited trogocytosis and improved the

tumoricidal ability of CAR-T cells (117). Therefore, it will be very

attracting to leverage the combinational effect of armoring CH25H
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in CAR-NK cells to prevent trogocytosis while exploring their

synergic role in cancer elimination. In addition, immune escape

could be reduced when the CD38 gene from NK cells was knocked

out to reduce fratricide before transducing the CD38 knockout NK

cells with anti-CD38 CAR to target CD38 of AML (118). Similarly,

CD38 knockout dual CAR-NK cells targeting BCMA antigen were

able to prevent trogocytosis and maintained high cytotoxicity

against multiple myeloma cells (20). The strategies to overcome

challenges in CAR-NK cell therapy are illustrated in Figure 2.
5.6 Reverting NK Cell Exhaustion

NK cell exhaustion can be reduced by targeting inhibitory

signals induced by KIRs, PD-1, TIGIT, NKG2A, and TIM-3 of

NK cells (62, 119). Moreover, various alkylating agents, proteasome

inhibitors, histone deacetylation inhibitors, hyperploidy-inducing

agents, and glycogen synthetase kinase-3 can be implemented to

upregulate the activating receptor, NKG2D on NK cells (120).

Furthermore, the activation, proliferation, and persistence of NK

cells or CAR-NK cells can be boosted by supplementing various

cytokines such as IL-2, IL-12 and IL-18 as mentioned previously in

the section 5.1 to decrease NK cell exhaustion. However, there are

still lack of studies on NK cell exhaustion on CAR-NK cell therapy.

This may be due to CAR-NK cell therapy is still considered as a new

promising therapy which requires more on-going preclinical and

clinical data to evaluate the effectiveness and persistence of CAR-

NK cells in long term studies.

To date, there are studies on the potential causes and strategies

to overcome CAR-T exhaustion which can serve as an insight for

CAR-NK cell therapy. CAR-T cells experience exhaustion probably

due to the induction tonic signaling which continues stimulating T

cells to respond and activate even without any antigen stimulation

(121). Moreover, the structure of CAR-T influences T cell

exhaustion. As shown by Saren et al, the different amino acid
FIGURE 2

Strategies to overcome challenges in CAR-NK cell therapy. In summary, there are five major strategies which can be implemented to enhance CAR-
NK cell efficacy in recognizing and killing cancer cells precisely. The five strategies include cytokine armoring, NK cell receptor modification,
inhibition of immunosuppressive tumor microenvironment, improvement in CAR NK infiltration and trafficking, and immune escape prevention.
Created with BioRender.com.
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sequences in complementary determining region (CDR) could

result the clustering of CAR structure, thus leading to antigen-

independent tonic signaling in CAR-T cells (122). Conversely, Long

et al. proved that the cause of T cell exhaustion in self-activating

GD2.28z CAR-T cells was due to the clustering of framework region

(FR) instead of CDR regions (123). Therefore, it is still unclear to

conclude the main reason of CAR-T cell exhaustion from

its structure.

CAR-T cell exhaustion is associated with upregulation of

inhibitory signals. Therefore, various strategies targeting immune

checkpoints or inhibitory receptors such as PD-1, CTLA-4, TIM-3,

TIGIT, and LAG-3 of T cells have been extensively studied to

remove T cell exhaustion (124, 125). Moreover, epigenetic

activation of c-Jun axis, knockdown of transcription factors such

as T-bet and Eomes, and downregulation of TOX/NR4A expression

can be used to reduce T cell exhaustion (124). Similarly, cytokines

can be supplied to activate and maintain T cell persistence (121).

Nevertheless, there are less studies on the phenotypes and

exhaustion gene profiles of CAR-NK cells, thus this part remains

unknown and yet to discover.
6 Current status of CAR-NK
cell therapy

To date, there are 49 clinical trials on CAR-NK cell therapy listed

in ClinicalTrials.gov. The details for each clinical trial are tabulated in

Supplementary Table 1. Among the clinical trials listed, 36 clinical

trials focus on CAR-NK cells in treating hematological malignancies

while only 13 CAR-NK clinical trials target solid malignancies.

Therefore, more clinical studies should be conducted on solid

tumors to evaluate the efficacy of CA-NK cells on different solid

malignancies. Moreover, the safety of cancer patients after treating

with CAR-NK cell therapy is the utmost important clinical

assessment which requires prolonged monitoring.

Moreover, most NK cell sources are from allogenic NK cells

although not mentioned in clinical trials. There are other sources of

NK cells used such as NK-92 cell line and its derivatives, umbilical

cord blood, patient peripheral blood, and induced pluripotent stem

cells (iPSCs). Currently, most of the CAR-NK clinical trials are still

recruiting, thus highlighting this CAR-NK cell therapy is a new

promising immunotherapy to target various cancers.
7 Future recommendations on CAR-
NK cell therapy

In future, radiotherapy can combine with CAR-NK cell therapy

to provide effective treatment for cancer patients. He et al. proposed

that using radiotherapy before CAR-NK cell therapy could be a

promising strategy to increase the trafficking, infiltration, and

recognition of NK cells in tumors (126). However, more studies

are required to seek out the optimal dose, duration, and sequence of

combinational therapy, as well as to overcome immunosuppression

mediated by radiotherapy (126). Moreover, chemotherapy can be
Frontiers in Immunology 10
used prior to CAR-NK cell therapy to increase cancer antigens

released from tumor lysis, thus improving antigen recognition and

activation of CAR-NK cells in tumor (127). Chemotherapy can also

enhance CAR-NK cell therapy by killing suppressive immune cells

such as MDSCs and Tregs in the tumor microenvironment (127).

Furthermore, the combination of CAR-NK cell therapy with

oncolytic virus also offers better anticancer results. For instance,

anti-EFGR CAR-NK cells synergized with oncolytic virus

expressing IL-15/IL15Ra sushi domain fusion protein enhanced

the persistence and infiltration of CAR-NK cells and suppressed the

growth of glioblastoma in vitro and in vivo (128).

In another perspective, drug-conjugated nanoparticle shows

remarkable tumoricidal effects towards cancer cells. To explore

the possible anticancer effects of combining drug-conjugated

nanoparticles with cell-based therapy, CAR-NK cells were

conjugated with cross-linked multilamellar liposomal vesicles

(cMLVs) carrying chemotherapy agent, paclitaxel (PTX) to target

cancer cells (129). This combinational therapy showed enhanced

PTX drug delivery to cancer cells via CAR-NK cells as drug carriers

and successfully eradicated cancer cells, thus highlighting the

synergistic effects of nanoparticles with CAR-NK cell therapy (129).

There are also more efforts combine CAR-NK cells with

monoclonal antibodies, especially immune checkpoint inhibitors.

One of the examples is using PD-L1 monoclonal antibody to treat

prostate cancer together with CAR-NK cells targeting prostate-

specific membrane antigen (PSMA) (130). Searching for other

possible combinational therapies is important to strengthen the

efficacy of CAR-NK therapy against cancer cells. An approach of

combining CAR-NK cells targeting epithelial cell adhesion molecule

(EpCAM) with tyrosine inhibitor, regorafenib was able to boost the

efficacy of CAR-NK cells against colorectal cancer (131). Moreover,

romidepsin which inhibits histone deacetylase was synergized with

anti-CD20 CAR-NK cells to inhibit rituximab-resistant Burkitt

lymphoma with enhanced cytotoxicity induced (132).

Interestingly, romidepsin increased the expression of MICA/B on

lymphoma cells to activate CAR-NK cells via NKG2D activating

receptor (132).

To improve the efficacy of CAR-NK cell therapy, the idea of

combining CAR-NK cells with CAR-T cells has been proposed.

This new concept was demonstrated by Li et al. in which CAR-T

cells improved the proliferation of CAR-NK cells while CAR-NK

cells reduced the risk of CRS (133). In combination, both CAR-T

and CAR-NK cells showed inhibition towards cancer progression

and relapse (133). Nonetheless, the side effects of implementing

both CAR-T and CAR-NK therapy are still unknown for clinical

study, thus this combinational therapy is still yet to be

explored more.

CAR-NK cell therapy is considered a new paradigm shift for

cancer immunotherapy. Future efforts on optimizing robust and

tumor-specific CAR structure should be conducted actively to

overcome the challenges of CAR-NK cell therapy. Moreover,

combining CAR-NK cells with other therapeutic agents should be

continuously explored. Currently, studies on vaccines with CAR-T

cells have boosted the efficacy of CAR-T cells in eradicating cancer

cells (134). Therefore, this combination provides a promising

insight to implement this strategy on CAR-NK cells. Moreover,
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more clinical data are required to ensure the safety profile of CAR-

NK cells in cancer patients.
8 Food and drug administration
guidelines on CAR-NK cell products

The safety and quality of CAR-NK cell products require further

monitoring and assessments. Therefore, the FDA has released

guidelines to facilitate the production of CAR products so that

the products will adhere to Good Manufacturing Practices (GMP).

To summarize, the FDA has recommended several guidelines
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regarding general CAR design and development, chemistry,

manufacturing, and control (CMC) of CAR products, as well as

clinical and non-clinical recommendations. All the guidelines are

tabulated in Table 2.
9 Conclusion

In conclusion, CAR-NK cell therapy is a new promising

immunotherapy to target cancer cells due to it possesses robust

cytotoxicity against cancer cells without eliciting side effects such as

GvHD, CRS and neurotoxicity which are present in CAR-T cell
TABLE 2 FDA Guidelines on CAR Products.

Aspects Category Recommendations Reference

General CAR design
and development

CAR construct Design highly specific and safer CAR
construct with minimal risk of on target off
tumour toxicity

(135)

Vector used Use well characterized and safer vector to
avoid insertional mutagenesis

Cellular starting material Use healthy T or NK cells and perform
leukapheresis effectively

Fresh or cryopreserved CAR products Check the shelf life of fresh CAR-T or CAR-
NK cells before infusing
Check the stability, viability, and quality of
cryopreserved CAR-T or CAR-NK cells
during shipping, receipt, storage, and
preparation for infusion

Chemistry, manufacturing,
and control (CMC) of
CAR products

Vector manufacturing and testing Conduct robust manufacturing and testing
procedures
Maintain vector quality and sterility

Cellular starting material Standardize the collection, handling, and
testing protocols for cellular starting material
to minimize contamination

CAR-T/NK cell manufacturing and testing Validate manufacturing process to ensure
consistency and reproducibility
Perform comprehensive analytical testing for
final CAR product

Dealing changes and comparability Develop procedures for managing changes in
manufacturing and testing
Perform comparability studies for major
alterations in manufacturing

Single site or Multisite Perform routine quality control and
consistency checking

Nonclinical
Recommendations

Cellular Component Characterize T cell or NK cell phenotype and
functionality after CAR modification.

In vivo testing Conduct in vivo studies to assess efficacy and
safety of CAR products

CAR modifications Evaluate the safety and efficacy of
CAR modifications

Clinical Recommendations Study population Study tissue-agnostic approaches for broadly
applicable CAR products.
Select target population carefully especially
vulnerable folks and pediatrics

(Continued)
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therapy. Advancements have been made to create better CAR-NK

therapy by either enhancing CAR structure or improving CAR-NK

production. Enhancing CAR structure can be performed by

revolutionizing the generation of CAR and increasing antigen

recognition of CAR structure. While improvements on CAR-NK

production can be done by exploring various NK cell sources,

improving CAR gene delivery system, and enhancing CAR

transduction or transfection into NK cells.

However, CAR-NK cells therapy still possesses some obstacles

such as lack of persistence in NK cells, ineffective CAR-NK cell

therapy, immunosuppressive tumor microenvironment,

ineffective CAR-NK cell trafficking and infiltration, and immune

escape. To resolve these limitations, various strategies are

implemented to target the challenges respectively. Armoring

cytokines to boost NK cell persistence, targeting NK cell

receptors to improve efficacy of CAR-NK cells, engaging CAR-

NK cell with NK cell engagers, targeting immunosuppressive

tumor microenvironment to revitalize CAR-NK cells, supplying

chemokine to improve CAR-NK cell infiltration, and reducing

trogocytosis to prevent immune escape are the strategies

used to overcome challenges of CAR-NK cell therapy.

Furthermore, combinational therapy for CAR-NK cells with

other therapeutic agents is the future direction of adoptive cell-

based immunotherapy. Overall, clinical trials of CAR-NK therapy

are moving towards solid tumor targeting. Thus, more studies

should be performed to generate better and safer CAR-NK cell

therapy. CAR-NK cell therapy can be tailored to become “off-the-

shelf” personalized medicine which can accommodate to treat

different cancers in future. In addition, FDA guidelines on CAR-

NK cells should be implemented to ensure the safety and quality of

CAR-based therapy.
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TABLE 2 Continued

Aspects Category Recommendations Reference

Treatment plan Optimize dose for starting, escalation,
repeating, staggering, and bridging therapy as
well as developing contingency plan for
treatment failure

Pharmacological considerations Assess pharmacokinetics, pharmacodynamics,
immunogenicity, and immune response of
CAR products.

Safety evaluation and monitoring Evaluate toxicity of CAR products and
implement monitoring strategies for
adverse events

Persistence of CAR product and long term follow up Monitor CAR-T/NK cell persistence and
efficacy with long term follow up
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