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In the quest to address the critical shortage of donor organs for transplantation,

xenotransplantation stands out as a promising solution, offering amore abundant

supply of donor organs. Yet, its widespread clinical adoption remains hindered by

significant challenges, chief among them being immunological rejection. Central

to this issue is the role of the complement system, an essential component of

innate immunity that frequently triggers acute and chronic rejection through

hyperacute immune responses. Such responses can rapidly lead to transplant

embolism, compromising the function of the transplanted organ and ultimately

causing graft fai lure. This review delves into three key areas of

xenotransplantation research. It begins by examining the mechanisms through

which xenotransplantation activates both the classical and alternative

complement pathways. It then assesses the current landscape of

xenotransplantation from donor pigs, with a particular emphasis on the

innovative strides made in genetically engineering pigs to evade complement

system activation. These modifications are critical in mitigating the discordance

between pig endogenous retroviruses and human immune molecules.

Additionally, the review discusses pharmacological interventions designed to

support transplantation. By exploring the intricate relationship between the

complement system and xenotransplantation, this retrospective analysis not

only underscores the scientific and clinical importance of this field but also

sheds light on the potential pathways to overcoming one of the major barriers to

the success of xenografts. As such, the insights offered here hold significant

promise for advancing xenotransplantation from a research concept to a viable

clinical reality.
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1 Introduction

As of 2019, China’s organ donor registration boasted close to

1.7 million volunteers, a testament to its advancements in the field

of organ transplantation. In that same year, China ranked as the

world’s second-largest provider of allogeneic transplants,

showcasing over 10,000 kidney and 5,000 liver transplants at the

4th China-International Organ Donation Conference (1). A

significant policy shift in 2015 marked the transition to voluntary

organ donations from Chinese citizens as the exclusive legal source

for transplants (2), which, despite its ethical merits, has led to an

even greater deficit in available human organs for transplantation

and hindered research due to the scarcity.

This backdrop has propelled xenotransplantation to the

forefront as a promising solution to this shortage. Research in

this domain has progressively moved toward identifying specific

donor species, with primates being an initial choice due to their

genetic closeness to humans. However, the use of baboon organs

has consistently resulted in patient fatalities (3), steering the

scientific focus toward pigs as suitable organ donors. Pigs, with

their comparable organ size to humans and favorable breeding

traits, are currently the focal point of xenotransplantation research

(4–6). The journey of xenotransplantation, illustrated in Figure 1, is

now directed toward the development of transgenic pigs, which are

being heralded as the next step in transplantation science.

The hyperacute rejection of transplants, primarily driven by the

complement system, has been a longstanding challenge. This

system’s activation leads to the production of active compounds

like C3a and C3b (7), which catalyze immune inflammation and

graft endothelial thromboembolism. The discovery of a-Gal on
graft surfaces as a trigger for complement activation has steered the

development of a-Gal knockout (a-GalKO) pigs. Chinese research
teams, such as the one led by Pandengke, have been at the helm of

creating and refining a-Gal and b-Gal knockout pigs for several
Frontiers in Immunology 02
generations. A milestone was achieved in June 2020 with the

cloning of a pig possessing triple knockouts, a significant leap

made possible by gene editing technologies targeting the

B4GalNT2 and CMAH genes (8).

The crux of this article revolves around the utilization of gene

editing to modify pig donors, aiming to mitigate the issue of

complement activation-induced hyperacute rejection post-

xenotransplantation. We discuss dual approaches to this end: the

genetic elimination of the a-Gal epitope from xenograft

endothelium and the introduction of human complement

regulatory proteins (hCRPs) into grafts via transgenesis.

Additionally, we explore the pharmaceutical avenues developed to

inhibit the complement system, a critical strategy to counter

rejection in xenotransplantation.
2 Xenograft activates the
complement system

Xenograft transplantation challenges the human immune

system, particularly through the activation of the complement

system, a sophisticated network of over 50 proteins crucial for the

immune response (9). It can be activated via three primary

pathways: the classical pathway (CL), the alternative pathway

(AP), and the lectin pathway (MBL) (10), all leading to the

potential destruction of the xenograft.

The classical pathway is initiated by the C1 complex binding to

antigen-antibody complexes, leading to the activation of C4 and C2,

and subsequently, the formation of C3 convertase (11). This

enzyme is pivotal in cleaving C3 into C3a and C3b, with C3b

joining with C4b2a to form C5 convertase, advancing the

complement cascade (12). In contrast, the alternative pathway,

triggered by substances like natural polysaccharides, relies on the

spontaneous hydrolysis of C3 and the formation of a fluid-phase C3
FIGURE 1

Milestones in the history of xenotransplantation. This timeline graphically represents the pivotal moments and groundbreaking achievements in the
field of xenotransplantation from the early 20th century to modern day.
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convertase, leading to a modest production of C3b that enhances

phagocytosis and anaphylatoxin production (13, 14). The lectin

pathway starts with MBL binding to microorganism surface

carbohydrates, recruiting MASP-1 and MASP-2 to form C3

convertase, mirroring the classical pathway’s initial steps (15, 16).

Xenotransplantation, especially from pig donors to primate

recipients, introduces immunological hurdles due to the rapid

complement-mediated response that often leads to hyperacute

rejection (HAR), characterized by graft embolism and failure (7,

17). The presence of natural antibodies in the recipient binding to

pig endothelial cell surface glycoproteins, such as a-galactosidase
(a-Gal) and N-acetylneuraminic acid hydroxylase (Neu5Gc

protein), activates the complement system, leading to clotting,

vascular embolism, and graft failure (18, 19). Studies have shown

that pig hearts transplanted into baboons are susceptible to this

rapid rejection, with serum analysis revealing IgM-a-Gal antibodies
bound to a-Gal, triggering the complement activation pathways

(18, 19).

However, genetic engineering offers promising strategies to

circumvent HAR by modifying donor pigs to reduce the human

complement system’s activation effects on graft survival. Knocking

out genes encoding heterologous endothelial antigens and creating

transgenic pigs expressing hCRPs are at the forefront of these

strategies (20). In vitro studies using pancreatic islets from a-
GalKO pigs showed reduced antibody deposition and lower levels

of complement activation, suggesting a diminished role of the lectin

pathway in xenograft rejection (18, 19).

Further research into the immunological interactions between

pig tissues and primate hosts has revealed that even in the absence

of preformed natural antibodies, HAR can occur, potentially

through the alternative complement pathway (21, 22). This

indicates a complex interplay between the classical and alternative

pathways in graft rejection, where the alternative pathway may

exacerbate C3a deposition within grafts, amplifying inflammatory

and immune responses (23).

Complement proteins C3a and C5a, along with the membrane

attack complex formed via the classical and alternative pathways,
Frontiers in Immunology 03
play critical roles in xenograft tissue lysis. These proteins not only

mediate inflammation but also activate coagulation cascades,

contributing to the risk of thromboembolism in xenografts (24).

Studies have shown that inflammation induced by complement

activation can significantly reduce the expression of porcine

thrombomodulin, an anti-inflammatory molecule, on vascular

endothelial cells, highlighting the interconnectedness of

inflammation and thrombosis in xenotransplantation (25).

Addressing the challenge of HAR in xenotransplantation

requires innovative approaches to prevent complement activation.

Genetic modifications in pig donors, such as eliminating a-Gal
epitopes and introducing hCRPs, represent vital steps toward

improving graft survival and reducing complement-mediated

rejection risks. These strategies not only aim to mitigate the

immediate immunological challenges but also open new avenues

for long-term success in xenotransplantation, potentially

transforming it into a viable solution for organ shortages (20).
3 Genetic modifications in pigs

Pigs are optimal donors for xenotransplantation due to their

genetic, physiological, and anatomical similarities to humans,

alongside their capability for breeding in controlled environments

(26, 27). Despite these advantages, the genetic differences between

pigs and humans can lead to immunological discordance and

potential organ rejection. Advancements in genetic engineering

and somatic cell nuclear transfer have facilitated modifications to

the pig genome to reduce organ immunogenicity, aiming to prevent

the human immune system from rejecting pig organ transplants

(27, 28) (Figure 2). This progress is pivotal in addressing immune

rejections, with research exploring the growth of human organs

within pigs through chimeric methods, although sti l l

predominantly in rodent models.

The risk of viral infection, particularly from porcine

endogenous retroviruses (PERVs), represents a significant

challenge in xenotransplantation (29). Strategies to mitigate this
FIGURE 2

Process of creating gene-edited pig donors for xenotransplantation. This flowchart illustrates the stages of developing gene-edited pigs for organ
donation to human recipients.
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risk include breeding pigs in specific-pathogen-free (SPF)

environments and selecting pigs free from PERV-C to reduce the

risk of PERV-A/C-mediated transmission to humans (30).

Although endogenous retroviruses remain inactive within their

host species, causing no apparent disease, they could potentially

become active and infectious upon transmission to a recipient (27,

31, 32). Immune molecular incompatibility poses another obstacle,

with the immune system targeting foreign grafts, notably triggered

by pre-existing natural xenoantibodies recognizing Gal epitopes

(33–35). Genetically engineered pigs lacking alpha-1,3-Gal epitopes

represent a crucial step toward overcoming HAR and other forms of

immune rejection (27, 28).

Non-specific immune reactions, such as the instant blood-

mediated inflammatory reaction (IBMIR), significantly challenge

xenogeneic islet transplantation, leading to substantial graft loss

(36). Addressing these reactions involves genetic modifications of

donor animals, anticoagulation therapies, and the use of anti-

inflammatory treatments to preserve graft integrity and prevent

adaptive immune activation (37).
4 Genetic modification of pigs
for xenotransplantation

The development of genetically engineered pigs marks a

significant leap forward in addressing the challenges of

xenotransplantation from pigs to primates. Through cutting-edge

genome editing techniques, scientists have been able to introduce

precise modifications into the pig genome to mitigate xenograft

rejection and diminish the risk of interspecies infection (28).

Among the most promising modifications are the disruption of

the a-Gal and the incorporation of hCRPs, which have shown

considerable promise in preclinical studies involving pig-to-non-

human primate transplants.

Recent breakthroughs in gene editing, powered by artificial

nuclease technologies, have significantly expanded the possibilities

for generating gene-edited pigs. These technologies, including zinc

finger nuclease (ZFN) (38), transcription activator-like effector

nuclease (TALEN) (39), and the CRISPR/Cas system (40–43),

have enabled not only simple gene knockouts and knock-ins but

also complex multi-gene editing, precision point mutations, and

conditional gene modifications. These advancements allow for gene

editing at various developmental stages of pigs, offering new

avenues for creating donor pigs with optimized genetic traits

for xenotransplantation.

The hCRPs play a crucial role in maintaining the delicate

balance between complement activation and inhibition. Proteins

such as decay-accelerating factor (hDAF), membrane cofactor

protein (hMCP), and reactive membrane cleavage inhibitor

(hCD59) prevent unregulated complement activity, which could

otherwise lead to continuous production of complement

components and exacerbate endothelial damage in xenografts

(44). The expression of these hCRPs in donor pigs can

significantly reduce the risk of hyperacute rejection by limiting

the formation of the membrane attack complex (MAC) and

mitigating complement-mediated damage.
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The application of DAF (CD55), a membrane component found

on various human cells, has been explored for its potential to protect

grafts from early rejection phases (45, 46). DAF can disrupt C3

convertases on the cell surface, effectively downregulating

complement activation. Studies have demonstrated that expressing

hDAF in pig islets and other tissues can enhance protection

against human complement-mediated lysis and extend graft

survival (47, 48). Similarly, the expression of human h-transferase,

an inhibitor of the alternative complement pathway, has been

shown to provide significant protection for xenografts against

human complement attack, as evidenced by experiments with

transgenic pig livers transplanted into baboons (49, 50). These

genetic modifications underscore the potential of genetically

engineered pigs to overcome some of the most significant barriers

to successful xenotransplantation.

Membrane cofactor protein (MCP, CD46) plays a crucial role in

preventing the amplification loop of C3b deposition mediated by

alternative convertase. In an innovative approach, researchers

employed a-GalKO pigs that were genetically modified to express

human CD46 across all tissues, including the heart, exhibiting

elevated levels of human CD46 expression. This genetic

modification not only prevented B cell infiltration but also

significantly reduced T cell activity in the peripheral blood of

transplants, indicating an effective suppression of the T cell-

mediated response to xenoantigens (51).

Human CD59 serves as a protective mechanism against

autologous cell damage by the human complement system,

specifically by inhibiting the formation of the membrane attack

complex (MAC) during the final stage of complement activation (7,

52). Utilizing embryonic germ (EG) cells, which unlike somatic cells

can proliferate indefinitely while remaining undifferentiated, Hosup

Shim (53) developed a method to create transgenic pigs capable of

expressing human CD59. These EG cells, derived from primordial

germ cells (PGC) (54), were genetically modified with a 456 bp

fragment of the hCD59 gene, encompassing the entire coding

region, obtained from human fibroblast genes (55). Post-

transfection into porcine EG cells (56), these modified cells

exhibited significantly higher mitochondrial activity when

exposed to human serum containing complement, compared to

non-transgenic controls, demonstrating enhanced survival under

HAR conditions.

The development of multi-transgenic pigs offers a promising

strategy to mitigate xenograft damage more effectively. For instance,

pig cells expressing human CD59 have shown increased resistance

to lysis by human macrophages (57). Furthermore, the expression

of a1,2-fucosyltransferase (H-transferase, HT), alongside the

knockout of the a1,3-galactosyltransferase (GT) gene, presents a

viable alternative strategy. Combining gene edits to express both

hCD59 and human HT, or to achieve a-GalKO, enhances the

protective effects against human serum, thereby improving cell and

organ survival post-transplantation (58). Transgenic pigs

expressing human CD55, CD59, and H-Transferase have shown

significant reduction in complement-mediated graft destruction

(50), although these modifications alone could not completely

prevent humoral rejection, characterized by antibody deposition

and thrombotic microangiopathy. This suggests that while
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significant strides have been made, further research is necessary to

minimize rejection mechanisms in xenotransplantation (28).
5 Complement system target drugs
for transplantation therapy

The complement system plays a crucial role in innate immunity

and immune regulation, protecting against infections and

participating in various physiological and pathological processes

(59). Despite its protective functions, dysregulated complement

activation can contribute to detrimental effects, including

inflammation and tissue damage. A deeper understanding of the

complement system’s components and mechanisms has spurred the

development of therapeutic drugs aimed at modulating

complement activity. These drugs target various complement

pathways, offering potential treatments for infectious,

inflammatory, traumatic, cancerous, autoimmune, or age-related

conditions, as well as preventing transplant rejection (60).

Eculizumab, the first drug targeting the complement system,

has revolutionized the treatment landscape for diseases like

paroxysmal nocturnal hemoglobinuria (PNH), significantly

improving patient outcomes (59, 61). In the context of organ

transplantation, the complement system is implicated in several

complications, including ischemia-reperfusion injury and antibody-

mediated rejection. Therapeutics such as C1-1NH (Cinryze,

Berinert, Ruconest, Cetor) and Soliris are making their way into

clinical practice, showing promise but with varying efficacy levels

(62). Future research is needed to identify the most effective

complement inhibitors and devise optimal treatment strategies.

The development programs for inhibitors targeting over a dozen

distinct complement pathways are summarized, with some already

undergoing clinical trials in both healthy volunteers and patients

(62–64). This broad spectrum of complement-targeted therapies

underscores the system’s significance across a range of medical

conditions and its potential as a therapeutic target in transplant

medicine, where controlling complement activation could mitigate

transplant rejection and improve graft survival.
6 Conclusions and perspective

The critical shortage of human organs for transplantation is a

global challenge, and xenotransplantation has emerged as a

promising approach to address this dilemma. Genetically

engineered pigs are at the forefront of donor options in

xenotransplantation, offering a viable solution to the organ

shortage crisis. Advances in gene editing technologies, such as

CRISPR/Cas9, TALEN, and somatic cell nuclear transfer (SCNT),

have significantly propelled xenotransplantation research forward,

enabling precise genetic modifications in pig donors.

The complement system plays a dual role in xenotransplantation:

it is a key player in the immune response against porcine endothelial
Frontiers in Immunology 05
cells following the binding of anti-porcine antibodies and

contributes to ischemia-reperfusion injury (IRI). Additionally, its

involvement in coagulation, inflammation, and the adaptive

immune response adds layers of complexity to its function in

xenograft rejection. Despite these immunobiological challenges, the

advent of genetically modified pigs, alongside an expanding array of

immunosuppressants and anti-inflammatory medications, is

progressively overcoming the hurdles faced by xenotransplantation.

Current genetic engineering efforts targeting complement

regulatory mechanisms have effectively mitigated concerns

related to complement activation. However, there remains a

potential necessity for anti-complement and anti-inflammatory

interventions, especially in acute settings, to ensure the long-term

success and acceptance of xenotransplantation as a feasible solution

to the organ shortage crisis.
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