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Chimeric antigen receptor (CAR) T cell therapy has effectively complemented the

treatment of advanced relapsed and refractory hematological cancers. The

remarkable achievements of CD19- and BCMA-CAR T therapies have raised

high expectations within the fields of hematology and oncology. These

groundbreaking successes are propelling a collective aspiration to extend the

reach of CAR therapies beyond B-lineage malignancies. Advanced CAR

technologies have created a momentum to surmount the limitations of

conventional CAR concepts. Most importantly, innovations that enable

combinatorial targeting to address target antigen heterogeneity, using versatile

adapter CAR concepts in conjunction with recent transformative next-

generation CAR design, offer the promise to overcome both the bottleneck

associated with CAR manufacturing and patient-individualized treatment

regimens. In this comprehensive review, we delineate the fundamental

prerequisites, navigate through pivotal challenges, and elucidate strategic

approaches, all aimed at paving the way for the future establishment of

multitargeted immunotherapies using universal CAR technologies.
KEYWORDS

CAR (chimeric antigen receptor) T-cell therapy, antibody therapies, iPSC (induced
pluripotent stem cell), cancer immune cell therapy, individualized cancer therapy
Introduction

Immune oncology has experienced a major breakthrough with the development of

CAR expressing immune effector cells (1). CAR receptors are synthetic immune receptors

comprised of cell-specific functional protein units strategically assembled to create dimeric

receptors which facilitate a multifaceted response upon engagement of the CAR with its

targeted molecular structure (2). Other than the recognition domain that can be derived

from different species, the functional subunits of a CAR are generally derived from human

proteins. Each module displays unique properties that mediate specifically defined
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functions. The CAR is comprised of an ectodomain, which consists

of an antigen-recognition domain and a spacer, a transmembrane

domain and the intracellular signaling unit that can be composed of

one or multiple signaling domains (3).
CAR design

In most instances, the extracellular signaling domain consists of

a murine antibody-derived single chain variable fragment (scFv) (4)

or a camelid heavy chain variable (VHH) (5) but may also be

derived from fully human VHH (6), scFv or ligand (7) for the

targeting of overexpressed cognate receptors in cancer (APRIL –

BCMA & TACI) (8), other species’ antibody variable chains, or

alternatively, artificial recognition domains, such as D-domains (9).

To reduce the immunogenicity, humanized murine single chain

variable fragment (scFv) (10) or deimmunized camelid VHH may

be used (11).

The spacer is essential in the configuration of the CAR, as its

length determines the binding proximity and prevents steric

hindrances, hence facilitating access to the epitope. The

transmembrane domain anchors and stabilizes the receptor in the

cell membrane as well as connecting the extracellular components

with the intracellular signaling compartment referred to as the

endodomain that contains one or several costimulatory and/or

signaling domains (3). The specific modules of the distinct CAR

define the functional properties of the synthetic immune receptor

(2). These are mainly the response and proliferation kinetics of the

CAR expressing cell that are dependent on the signal transduction

from the extracellular domain to the intracellular signaling domains

(12). Therefore, the deliberate combination of functional protein

units allows for optimized and requirement-adjusted functionality.

The basic understanding and principles of the CAR introduced as a

physicochemical receptor and its measurable effector functions are

illustrated and explained in detailed in Figure 1.
Universal CAR approaches

Universality in CAR T cell therapy can refer to both 1st the

universal applicability of a CAR T cell product with no recipient

restrictions due to T cell receptor/HLA incompatibility (19) and 2nd

the capability of targeting any antigen of interest facilitated by

indirect CAR technologies via adapter molecules (20).

All US-FDA/EMA-approved CAR T products are manufactured

from autologous patients’ T cells and have demonstrated high clinical

efficacy (3). Per definition, autologous CAR T cell products cannot

induce GvHD or is subject to HLA-based immune rejection.

Autologous CD19- and BCMA-targeted CAR T cells robustly engraft

in most patients (21). The CARs’ architecture define their biology,

metabolism and persistence (4, 22, 23), which generally is not subject to

primary immunological CAR rejection, however, the induction of

humoral anti-CAR immunity may limit the engraftment and success

of a second CAR T cell application in due course (24).

To date most CAR T cell therapies are based on autologous

products which implies the donor and recipient to be the same
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individual (23). Posttransplant manufactured autologous CAR T

cell products are considered autologous even if the genetic origin of

the hematopoietic system is donor-derived (25) rather than self-

derived. For example, a CAR T cell product created post-transplant

can come from an HLA-matched donor or even a haploidentical

donor with an HLA mismatch. The cell source can be either the

recipient (patient) or the same donor used for the hematopoietic

allogeneic stem cell transplantation (HSCT) (26). In general, HLA-

matched and haploidentical allogeneic CAR T cells both require to

be administered post transplantation. Otherwise, the CAR T cell

product is rejected by the recipient’s immune system (27).

The major advantage of third-party allogeneic HLA-mismatched

donor-derived immune effector cells, besides manufacturing costs, is

the immediate availability of these products at any point in time (28).

The manufacturing process of autologous CAR T is comprised of

leukapheresis, T-cell isolation and stimulation, gene delivery, ex vivo

expansion, cryopreservation and quality controls (29). The logistics in

the complex multi-step preparation cells is prone to errors. Usually,

time-consuming testing of T cells prior to manufacturing is required.

Further, the therapeutic success of autologous CAR T cells may be

constraint by the quantity and quality of the isolated peripheral blood

cells of the patient (30).

The idea of third-party CAR T cells is driven by the success of

third-party virus-specific T cells (ADV, CMV, EBV) used in the

posttransplant setting to treat viral reactivation, as these allogeneic

cells can transfer transient antiviral immunity to bridge the time

until the patients’ T cells have reconstituted and provide viral

immune protection (31, 32). In patients eligible for CAR T cell

therapy, time is of the essence and one key critical determining

factor of survival (33). Additionally, the risk for manufacturing

failure in CAR T cell therapy varies significantly (>10%) depending

on the pre-treatment history and the primary underlying cancer

(34, 35). Further, the clinical efficiency of a bridging chemotherapy

to enable the patient to reach the CAR T cell treatment a stable

clinical state to receive the CAR T cell product (36). Thus,

manufacturing failure can compromise the patients’ opportunity

for a successful administration of CAR T cells (34, 37). As such,

third-party allogeneic CAR T cell therapy provide a bridge to

transplant for selected patients (38).

Partially HLA-matched third-party virus-specific T cells have

been documented to contribute controlling virus reactivation

posttransplant in immunocompromised patients (39). In order to

guarantee anticancer activity by universal third-party CAR T cells,

patients undergo a preparative regimen including the treatment

with alemtuzumab (IgG1K, t1/2 = 6-21 days) targeted to CD52 which

leads to a profound and enduring depletion of B- and T

lymphocytes, NK cells and monocytes (40). Genetic modifications

via CRISPR/Cas9 offer to disrupt the TRAC locus and CD52 genes,

indicated in Figure 2. These genetic alterations prevent the

immediate rejection of the HLA mismatched effector cells via the

depletion of the recipients’ lymphocytic compartment by

alemtuzumab and the inactivation of the TRAC leads to a

collapse of the TcR preventing the induction of graft versus host

disease (GvHD) by third-party T cells in the immunocompromised

host (21, 46). A CD19-targeted allogeneic product was shown to be

safe and efficacious in heavily pre-treated adult patients with
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relapsed and refractory B-ALL with allogeneic off-the-shelf

UCART19 cells in the clinical trial [CALM] (NCT02746952) (21).

Alternative cell sources for third-party off-the-shelf CAR products

include NK cells isolated from cord blood (47), gd T cells collected

from healthy donors (48), or the leukemic cell line NK-92 (49, 50).

NK cells and gd T cells do not induce GvHD but are subject to

rejection by the recipient’s immune system in the allogeneic setting

and thus can only be used transiently post lymphodepleting

chemotherapy (51).

Another approach that is proving to be viable involves using

induced pluripotent stem cells (iPSCs) as the primary cell source for

the cellular CAR product. iPSC-derived CAR T are at early stage of
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development. The main principles are illustrated and outlined in

Figure 2A. iPSCs are used to create in silico designed, genetically

tailored, highly defined and characterized cellular products according

to unique functional and immunological requirements (52).

Genetic modifications are achieved using various gene

engineering tools tailored for specific applications. The historical

development, feasibility, scalability, advantages, and disadvantages

of these tools are comprehensively discussed by Adli et al. in the

review article “The CRISPR Toolkit for Genome Editing and

Beyond” (53). Today, the key tools include CRISPR/Cas9,

TALENs, ZFNs, homologous recombination, the PiggyBac

transposon system, and the Sleeping Beauty transposon system,
B

CA

FIGURE 1

Physicochemical signal conversion of CAR receptors. CARs are (A) mechanoreceptors that allow for the transmission of physical tension force
to convert into complex chemical signals from the outside of the cell into changing the activation state and downstream functions of the cell
including immediate responses, such as the formation of a cytolytic synapse and migration or intermediate and long-term adaptions by
changes in the gene expression. (B) The mechanical force on CAR expressing effector cells is mediated by the binding interaction of the CAR
recognition domain and the antigen leading to a conformational change of the cytoplasmic signaling domains. These steric adaptions result in
the accessibility of phosphorylation sites and the cognate alignment of signaling proteins that initiate a downstream signaling cascade which is
based on enzymatic phosphorylation steps of subsequent signaling proteins in a defined order (13). Calcium serves as an important second
messenger in the signaling process. Piezo1 calcium channels are opened by tension forces to the cell membrane by active deformation of the
cytoskeleton via actin filaments, allowing calcium influx into the cytoplasm. Especially, during the formation of the cytolytic synapse Piezo1
dependent calcium influx is required (14). Further, cellular calcium metabolism is tightly regulated by the endoplasmic reticulum (ER). The ER
serves as a large calcium storage filled with calcium by the calcium release activated channel (CRAC) (15). Upon calcium release from the ER
and binding thereof to calcineurin, a phosphatase, is activated. Calcineurin serves as a key modulator of the transcription factor “nuclear factor
of activated T cells” (NFAT) and thus serves as a key modulator of T cells in general (16). Dephosphorylation of the nucleus localization signal
allows the translocation of NFAT into the nucleus and induce selective gene expression. Dysfunctional CRAC prevents the development of T
cells and is the cause of the severe combined immunodeficiency (SCID), a life-threatening inborn immune deficiency (17). (C) The efficient
transmission of the physicochemical signal leads to various effector functions in CAR expressing effector cells. In a resting CAR, 1st cell
activation by the CAR receptor is detectable by the expression of activation markers. 2nd Cytolytic activity in high affinity CARs (KD < 1 nM) is
induced at an antigen density of as low as >200 molecules per cell, whereas significant changes to the 3rd gene expression, cytokine and
chemokine secretion require >2,000 molecules per cell (18). Thus, 4th a strong triple signal of i) CAR-mediated antigen recognition (CD3z), ii)

co-stimulation (CD28), and iii) cytokine support (IL2) are required to induce proliferation.
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among others. Delivery systems for these genome editing tools

include electroporation (54, 55), transfection with chemical

compounds (56), AAV-based methods (57), and retroviral/

lentiviral gene delivery (58). We reference primary literature and

review articles that delve into the detailed aspects of these tools,

such as “Genome Editing with CRISPR–Cas Nucleases, Base

Editors, Transposases, and Prime Editors” by Anzalone et al (59).

Theoretically, iPSC-derived cellular products can grow

endlessly and multiply countlessly in numbers, thus providing

enough cells for third-party CAR T products from one single

original donor source with no limits (28). Because the artificial

iPSC-derived CAR T cells are HLA mismatched, they require at the

minimum the same genetic modifications as “conventional” third-

party CAR T cell products to reduce alloreactivity and graft

rejection. However, counter to third-party allogeneic CAR T cells,

there are no constraints in the genetic engineering as iPSC can be

cultured infinitively (60). Of note, even though iPSC-derived cells

can be well-characterized and extensively tested genetically and

functionally, they bear a potential risk for mutations, genetic

disruptions and rearrangements of functional genes (61) which

could lead to secondary hard-to-treat iPSC-CAR-leukemia with

resistance to treatment which has been observed in autologous

CD19CAR T cells with piggyBac transposon-based gene delivery

(62). In addition, decreased amplification and shorter persistence of

iPSC-based CAR products in vivo in preclinical models required
Frontiers in Immunology 04
additional modifications to ensure robust anticancer activity (28).

While iPSC-derived CAR T-cell therapy holds great promise for

personalized cancer treatment, many challenges remain to ensure a

safe and effective clinical translation (63).

The term “Universal CAR T” is also referred to technologies

that enable CAR receptor expressing immune effector cells to

engage with an unlimited variety of different antigens (64). This

can be achieved with adapter CAR T platform technologies

thoroughly discussed by Arndt (65) et al as well as Liu (66) et al.

The basic principle of adapter CAR T cells is illustrated in

Figure 2B. The antigen recognition and CAR signaling is

decoupled and requires the correct assembly of three components

1st the adapter CAR expressing cell with their surface-expressed

CAR receptors, 2nd the adapter molecule and 3rd the target antigen

expressing cell (20). The recognition domain of adapter CARs is

either targeted to a non-human “neo”-epitope (20, 67) non-existent

in the human body or an inaccessible, e.g., intracellular (68)

structure for the CAR recognition domain, but instead is only

found as a targetable moiety on adapter molecules (65). In

consequence, adapter CARs are functionally inert cells that only

engage with target cells via the CAR receptor in the presence of the

corresponding adapter molecule (65). Additionally, redirecting

conventional CARs has also been employed to broaden the

spectrum of targeting (69, 70). The specificity of the adapter

molecule is interchangeable and thus the number of targetable
BA

FIGURE 2

Universal CAR strategies have two meanings. Universal “allogeneic CARs” generated from iPSCs require a series of genetic alterations to enable
their successful and safe clinical use. Current concepts (A) include modifications that reduce the likelihood of allorejection by gene disruption of
ß2-microglobulin to abrogate the expression of HLA class I structures as well as by gene disruption of the class II MHC transactivator (CIITA) to
abrogate HLA II expression (41, 42). To exclude iPSC-derived cells from harm through alemtuzumab, the CAMPATH-1 antigen CD52 is required
to be knocked out as it has been done for third-party allogeneic CAR products (43). Alemtuzumab can then be used in the CAR preparative
regimen and facilitate longer engraftments of the allogeneic cells. However, alemtuzumab induces long-lasting severe cellular and humoral
immune deficiency which attracts serious infectious complications (44). In order to reduce the risk for graft-versus-host disease, the T cell
receptor (TcR) expression has to be disrupted and is usually achieved by the genetic knockout of the constant alpha (TRAC) chain of the TcR.
Since the TcR is the responsible receptor for alloreactivity in GvHD direction, the TcR-KO is the most effective strategy to silence the primary T
cell function (42). Novel strategies to increase the resistance to potential allorejection was introduced by Mo et al in 2021 via an alloimmune
defense receptor (ADR) (45). It’s a ligand based (4-1BBL) signal converting receptor by providing a CD3z signaling if the allogeneic iPSC derived
CAR expressing cell gets in contact with activated immune cells, such as T cells and NK cells that express the co-stimulatory receptor 4-1BB
(CD137). The CD3z signal increases the resistance to allorejection mechanisms induced by T cells and NK cells. (B) The basic principle of adapter
CARs is the indirect targeting of the CAR expressing cells via advanced antibody-dependent cellular cytotoxicity (ADCC). Since the adapter
molecule, e.g., an antibody is interchangeable the specificity of the targeting is theoretically unlimited. The structure of the adapter molecule is
comprised of three domains with distinct functions. The antigen binding domain corresponds to the primary antibody binding capability to a
structure expressed on target cells. The structural domain provides stability to the molecule and supports manufacturability, the connecting
module interacts with the CAR receptor and facilitates the highly specific recognition of the adapter molecule only by the CAR expressing cell
and no other immune cells. The counterpart is the CAR expressing cell and especially the CAR receptor itself comprised of the cognate
connecting module to allow the highly specific recognition and interaction with the adapter molecule (20). Further, the anchoring domain
stabilizes the receptor in the cell membrane and the signaling domain provides the cell with the downstream signaling to ignite cellular functions
according to the design of the receptor.
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antigens can be extended by introducing additional adapter

molecules into the system (20, 71). Analogue to antibody-

dependent cellular cytotoxicity (ADCC) with NK cells (72),

adapter CAR technologies facilitate an artificially potentiated type

of ADCC that allows for the tight regulation of effector functions

(67), transient targeting, combinatorial synchronous multitargeting

and sequential targeting (20).

An overview of adapter CAR systems is provided in Table 1 in

alignment with Figure 2B. Contemporary translational aspects are
Frontiers in Immunology 05
summarized in the section - Clinical experience with adapter

CAR technologies.

In a synergistic approach, iPSC derived third-party adapter

CAR T cells may combine the features of iPSC-derived CAR

immune effector cells (28) with the capabilities of versatile

indirect CAR technologies – as adapter CAR 2.0 (20).
Basic requirements of CAR immune
effector cells

Baseline

Patients who are eligible for CAR T cell therapy, are deadly sick

and have no further treatment options. FDA/EMA-approved

CD19- and BCMA-specific CAR T cell products are mainly last

line therapies, however, ironically provide high complete remission

induction rates and increase overall survival in B-lineage cancers

including multiple myeloma substantially (86). With excellent

response rates in CD19 positive cancers, a relevant proportion of

patients may experience a sustained complete response (which can

be considered a cure from the primary disease) in 40% of B-ALL (4,

87) and DLBCL patients (88, 89), whereas in CLL the sustained

complete response rate is 20% (90).

Despite the great success of CAR T cells, in multiple myeloma,

the cancer cells’ antigen heterogeneity and immunosuppressive

factors in the tumor niche have highlighted future challenges to be

overcome (91). BCMA-specific CAR T cells have demonstrated

significant clinical benefits in multiple myeloma patients that

otherwise have no further treatment available to date (92). Yet,

multiple myeloma is continuously and largely considered incurable

and new treatment strategies are required to improve outcomes (93).

Obviously, potent therapies justify being considered earlier in the

treatment algorithm and with less than 10% of newly diagnosed

multiple myeloma patients to receive CAR T cell therapy (94) because

they die before being eligible according to international guidelines. In

due course adjustments are required to be made carefully based on

clinical outcomes. It is noteworthy that multiple myeloma patients

who received the BCMA CAR T cell product idecabtagene vicleucel

(bb2121) in the clinical trial KarMMa (NCT03361748) showed a

median overall survival of 19.4 months (92) which represents a

significant survival benefit compared to untreated patients, non-

responders and patients with partial response only.

Despite significant responses in patients with various solid

cancers treated with CAR T cells, such as disialoganglioside GD2

in neuroblastoma (95) and H3K27M-mutated diffuse midline

gliomas (96), mesothelin (MSLN) in mesothelioma (97), claudin

18.2 (CLDN18.2) in pancreatic cancer (98), and IL13Ra2 in

combination with EGFR in glioblastoma multiforme (99), CAR-

based therapies for solid cancers face major limitations and

challenges. Although patients may experience objective tumor

regression and even complete remissions, most cancers inevitably

relapse due to target antigen loss or antigen heterogeneity, which

hinders primary complete responses (95, 97). Additionally, reduced

CAR T cell persistence (96), the inability of T cells to infiltrate

tumors, and the inhibition of CAR T-cell function by the
TABLE 1 Adapter CAR systems.

Connecting
module CAR

Connecting
module adapter
molecule

References

Antibody structure

CD16/CD32A Fc domain IgG1 (73)

scFv
(P329G substitution)

Fc domain P329G (74)

Chemical conjugation

scFv (FITC) fluorescein
isothiocyanate (FITC)

(75)

monomeric streptavidin
2 (mSA2)

EZ-link NHS biotin (76)

dimeric avidin EZ-link NHS biotin (77)

scFv (LLE) EZ-link NHS-LC-LC-
biotin (LLE)

(20)

Peptide tag

scFv (La) La/SS-B (68, 78)

scFv (GNC4) GNC4
transcription factor

(67, 79)

d-domain neo-peptide (80)

Protein tag

scFv (CD19) CD19 fusion protein (70)

Dimerizing domains

leucin zipper leucin zipper (81)

Covalent binding

SpyCatcher SpyTag (82)

DNA
methyltransferase
(MGMT)

O6-benzylguanine (BG) (83)

Bispecific antibody

folat receptor
alpha (FRa)

bispecific antibody (FRa
x target antigen)

(84)

EGFRvIII bispecific antibody
(EGFRvIII x
target antigen)

(85)

scFv bispecific antibody (scFv
G4S x target antigen)

(69)
The table summarizes technologies based on the modular CAR concept, where artificial
immune receptors on CAR effector cells are redirected to any target antigen of interest using
connecting molecules.
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immunosuppressive microenvironment (97) are significant barriers

to durable responses. These issues can potentially be addressed by

combinatorial strategies, such as integrating CAR T cells with

immune checkpoint inhibition (100).
CAR kinetics and sensitivity

Without immediate tumor control, patients may suffer from severe

cancer-induced complications or die from cancer progression.

Therefore, an immediate and effective anti-cancer response is

essential for a successful CAR T cell therapy (4, 101). The

containment of cancer growth is facilitated by the cellular

cytotoxicity, the secretion of proinflammatory cytokines and the

exponential proliferation, which are triggered by the antigen-specific

CAR activation with rapid kinetics inducing effector functions in

alignment with T cell receptor mediated immune responses (102).

Especially, the trafficking and proliferation kinetics (103) to outnumber

the cancer cells and the enduring anti-cancer response by the CAR T

cells until the entirety of the cancer is cleared or reduced to a molecular

residual disease are key requirements to prevent cancer recurrence

(104). Additionally, the CAR must have a high sensitivity in terms of

recognizing and eliminating low antigen density expressing tumor cells

to ensure profound cancer control (12). Otherwise, the antigen low

expressing cancer cells may escape the CAR-mediated recognition

whereas the antigen negative cancer cell subsets cannot be recognized

by the CAR T cells and in due course initiate the relapse (91, 105).

Identifying the optimal CAR sensitivity and -kinetics depend on

multiple factors, including the differential antigen expression in

healthy versus cancerous tissue (106), the tumor microenvironment,

the level of inflammation, and the responsiveness of the specific CAR

design (12, 102). The activation state and exhaustion of CAR T cells are

influenced by changing conditions during the anticancer response,

including the cancer burden and the cytokine milieu (107, 108).

Achieving a balance between initial and sustained response, tumor

control, and managing both acute and chronic toxicity is crucial for

effective therapy.
Manifold effector functions

The basic primary effector functions of artificial immune cells

like CAR T, CAR NK, chimeric TcR-like receptor and transgenic

TcR expressing cells, are antigen-specific cellular cytotoxicity,

cytokine production and proliferation (20, 57, 109, 110).

In reality, the immune effector cells are composed of a multitude of

different cell subsets with various effector functions. The main abT cell

subsets are CD4+ T helper cells and CD8+ cytotoxic T cells. Yet, the

various T cell subsets have been subclassified by the T cell receptor

profile, the gene expression signature including decisive transcription

factors, secretion of cytokines and chemokines as well as their cytokine-

and chemokine receptor profiles which determine their responsiveness,

adaptability and their specific functions (111–113).

While chemokine receptors and integrins determine the

homing and preferential residence of T cells in certain tissues
Frontiers in Immunology 06
(114) the multifaceted effector functions including cytotoxicity

and immunomodulation mediated by both CD4+ and CD8+ cells

lead to their subclassification (115).

CD4+ abT cells are classified as Th1, Th2, Tregs, TFH, TH22,

TH17 and TH9. Cytokines range from proinflammatory IFNg and

TNFa released by Th1 cells to counterbalancing immunosuppressive

cytokines IL10 and TGF-ß by Tregs (111). The interplay is important

not only to prevent harm by hyperinflammation (116) but also to

restore functions in order to maintain a potent immune response and

circumvent terminal exhaustion of T cells (117).

CD8+ abT cells are classified as Tc1, Tc2, Tc9, Tc17 and Tc22

and share a similar spectrum of cytokines like CD4+ cells ranging

from proinflammatory to immunosuppressive functions as of IL12

and IL4, respectively (115). In relation to cancer entity the number

and composition of tumor infiltrating lymphocytes (TILs), the

frequency of CD8+ T cells and their subsets vary substantially

(115). The prognostic value of TILs (CD4+ and CD8+) depends

on the cancer type and the pathological TMN staging (118, 119).

Importantly, the maturation state of T cells defines their

proliferative and regenerative capacity and is identified by the

expression of cytokine- and chemokine receptors as well as

activation and exhaustion markers (111).

Culturing conditions, including the cell culture media (e.g.,

glucose level) and supplements such as sera and cytokines (e.g.,

IL2, IL7, IL15, IL21, IL18), as well as cytokine dosing, initiation of T-

cell activation and proliferation, and the duration of expansion,

significantly impact the cellular composition of CAR products.

These factors determine the maturation state and stemness of CAR

effector cells, which in turn affect their proliferative capacity and

clinical performance (120). The duration of CAR T cell expansion is

crucial for supply, cost, and performance. CD19CAR-T

tisagenlecleucel (CTL019), manufactured using the T-ChargeTM

platform, is known as YTB323. This platform reduces

manufacturing time from 9-10 days to less than 2 days. YTB323

has demonstrated that shortened manufacturing time preserves the

stemness of CAR T cells, measured as the frequency of TN and TSCM,

and achieves the same tumor control as tisagenlecleucel at a 25-fold

lower dose (121). Other strategies to induce stemness and enhance

CAR T cell functionality include supplementing the culture media

with inosine which induced profound metabolic reprogramming,

from glycolysis to mitochondrial oxidative metabolism and the

epigenome toward greater stemness. The same effect was induced

by genetically modifying CAR T cells to overexpress adenosine

deaminase (ADA-OE), an enzyme that metabolizes adenosine to

inosine, thereby preventing inhibitory effects through the ATP, ADP,

and AMP CD39/CD73 pathway (122). Additionally, overexpressing

FOXO1, a transcription factor involved in regulating gluconeogenesis

and glycogenolysis mediated by insulin, has been shown to enhance

stemness, metabolic fitness, and CAR T cell performance (123).

Based on their immunomodulatory functions CD4+ and CD8+

cell subsets harmonize the immune response. Severe immediate or

chronic overactivation of T cells can lead to detrimental effects and

death observed in viral infections (124), autoimmunity, serotherapy

during conditioning for allogeneic stem cell transplantation and

CAR T cell therapy (125).
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Low immunogenicity

In all of the US-FDA approved CAR T cell products the

extracellular recognition domain is either based on a murine scFv

or a llama-derived VHH, hence contain non-human sequences,

which may be identified by the immune system as foreign and

induce the generation of CAR-rejecting antibodies (24) or T cell

mediated rejection (126, 127). Both allorejection mechanisms can

lead to the loss of the CAR T cell function or to the complete

elimination of the CAR T cells (126). Since immunogenicity is

impacted by molecular size, sequence dissimilarity and

conformational structure, camelid VHH are in general considered

to be less immunogenic. VHH are superior in chemical and physical

properties including higher solubility, stability, smaller size (15kDa),

they have a higher resemblance in sequence and conformational

structure to human VHH compared to murine scFv (30kDa), and

hence exhibit lower immunogenicity (128). Immunogenicity of non-

human proteins can be reduced by humanization of murine scFvs

and deimmunization of camelid VHH (24, 129). However, CAR T

cells targeted to B-lineage associated antigens, such as CD19, CD20,

CD22 and BCMA protect themselves from rejection as they deplete

or interfere with the immune compartment that is responsible for the

generation of anti-CAR antibodies (129).
Limitations of CAR T

The manufacturing process defines
the product

CAR T cell products are defined by their original cell source

and cell number. Unstimulated peripheral blood leukaphereses

contain a median of 9.8x109 total nucleated cells with 3.8x109 total

CD3+ cells (130). Thus, one of the most compromising aspects of

CAR T cell generation is the misrepresentation of their entire

primary heterogeneity in the whole T cell pool of an estimated

4x1011 number of cells (131), 1st due to the low number of cells

used for manufacturing [1x108] with a median transduction

efficiency of 46% (132) which corresponds to 0.01% (one ten

thousandth) of the T cell pool, and 2nd the collection from only

one body compartment, the peripheral blood (130, 132). The

heterogeneity of T cells in the peripheral blood and tissues are

defined by differential functions dependent on the expression of

certain integrins and chemokine receptors explaining the

migration and residence tendency of the T cells in which they

organize a complex interplay of the immune system (114).

Through the manufacturing process, various factors

significantly impact CAR T characteristics. This process involves

the drastic non-physiological antigen-independent activation of the

T cell receptor complex (CD3) usually via the CD3 epsilon chain,

often in combination with the co-activation of the CD28

costimulatory receptor (20). Additionally, continuous exposure to

high concentrations of interleukin 7 (IL7), a T cell growth factor

and regulator of Th1 and Th2 cytokine production (133) and/or the

Th1-type cytokines, e.g., IL2 (120), IL15 (120, 134), IL21 (120) and/
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or the co-incubation with irradiated feeder cells (135), along with

transgene delivery and the constitutive signaling and potential tonic

signaling of the CAR receptor (136), collectively transform CAR

expressing cells into artificial immune cells distinct from

physiologic T and NK cells. Despite this distinction, CAR T cells

share foundational properties with naturally matured and

regrowing immune cells (137). Consequently, CAR expressing

cells show similar behaviors and effector functions like natural

immune cells but also exert additional functions and lack

characteristics of their natural counterparts and have distinct

metabolic signatures dependent on the CAR architecture (22).

Signaling from T cell receptors and CAR receptors are

fundamentally different even though CAR receptors mimic the

TcR function and recruit the same downstream signaling proteins

and engage with the same signaling pathways (138). Site-specific

integration of CAR receptors into the TRAC locus facilitates the

transgene expression according to the complex gene regulation of

the TcR (57). The physiological CAR transgene expression has been

shown to improve the CAR performance. Novel non-viral knock-in

strategies may lower cost, complexity and time of CAR

manufacturing. The technical challenge was to improve the

delivery of homology-directed repair (HDR) templates of single-

stranded DNA encoding the transgene instead of double-stranded

DNA to reduce the toxicities in the electroporated cells (139).

These revolutionary gene editing tools have inspired the idea of

site-specific integration of a novel immune receptor design

mimicking the TcR. By exchanging the variable alpha and beta

chains of the TcR with the antibody variable chains (VL and VH) of

an antibody, the sensitivity of this advanced artificial immune

receptor (HLA-independent TcR) was substantially increased to

outperform classic CAR receptor design, demonstrated for antigen

low expressing cancer cell line variants (NALM6CD19Low and

MOLM13CD70Low). Yet, the constitutive co-expression of CD80

and 4-1BBL was required to enhance persistence (110).

Interestingly, after three decades of CAR research, the

advancements of synthetic biology and gene engineering have

revived the original idea of Zelig Eshhar’s T-body, the forefather

of the modern scFv-based CAR receptor (140).
Target antigen requirement

The availability and suitability of target antigens are the greatest

challenges in CAR T cell therapy. Due to the high requirements for

target antigens, such as high and stable expression at relevant levels

and preferably overexpression of the targeted antigen on cancerous

cells compared to physiological tissues (141), the selection of

potential target antigens are limited (142). Furthermore, the main

mode of action of CAR T cells is the recognition and signaling of the

CAR receptor upon engagement with the strictly defined epitope on

a target antigen (143). Thus homogenous antigen expression is

important for successful CAR T cell therapy, even though low

frequency of antigen heterogeneity can be addressed by so called

bystander effects whereas heterogenous cancers and antigen loss

require multitargeted CAR approaches (144, 145).
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Bystander effects through the recruitment of immune effector

cells, such as T cells, NK cells and macrophages in the tumor niche

have been shown to significantly contribute to tumor control for

instance in the CD19 CAR T cell trial ZUMA-1 (NCT02348216)

(146) and in preclinical models (147) and shall be exploited using

next generation CAR designs, engineered to inducibly express

cytokines impacting on the cytokine milieu (148). These effects

are relevant but shall not be overinterpreted to enable CAR T cells

to successfully control antigen negative tumor lesions.

In clinical practice there are three main strategies (i-iii) pursued

to balance potency and on-target-off-tumor toxicities in targeted

immunotherapies utilizing antibodies, bispecific T cell engagers

(BiTEs), antibody-drug conjugates (ADCs) and CAR T cells.

All strategies are characterized by the inability to target cancer

specifically and thus require to appreciate the potency limit set by

the on-target-off-tumor toxicities comparable to dose-limiting

toxicities (149) and cumulative dose-limiting toxicities in

conventional chemotherapies (150). Despite the highly antigen-

specific targeting mechanism, antibodies and medicines derived

thereof are targeted to surface expressed structures that are co-

expressed in physiological tissues (107, 151). As a consequence, all

tissues that express the targeted antigen are subject to on-target-off-

tumor toxicities. The impact of this effect is defined by biological

factors on the target expressing cells as well as the CAR expressing

effector cells. On the target cells, these include target antigen

expression level and the primary resistance or general

susceptibility of the target cells to CAR mediated effects for which

a first indication of tumor control with acceptable toxicity was

documented using GD2- (152) and HER2-specific CAR T cells

(153). On the CAR T cell side, the affinity of the recognition domain

and the signaling components both define the potency and the

toxicity mediated on the antigen positive cells (154).

The most successful strategy i) in CAR T cell therapy is to accept

the “complete” eradication of target antigen positive cells

transiently and/or permanently. This has been observed in

patients treated with CD19- and BCMA-targeted CAR T cells (23,

155, 156). Importantly, the level of the depletion of physiological

antigen positive cells is a strong indicator of leukemia control in B-

lineage acute lymphoblastic (107) and chronic lymphocytic

leukemia (157). The function of the B-lineage compartment can

be substituted by immunoglobulin replacement therapy and as such

displays an exception in the human body since severe tissue

damages or depletion of tissues in most organs are not

compatible with life. However, the strategy to eliminate specific

cell subsets in the body permanently is quite unique and is reserved

for CAR T cell immunotherapy in B-lineage dependent oncology (4,

92) and it has been demonstrated to be beneficial in life-threatening

autoimmune diseases, such as refractory systemic lupus

erythematosus (SLE) (158).

The second strategy (ii) is to transiently accept severe toxicities

and then terminate the CAR T cell function after a predefined

period of time. This is especially important in AML because AML-

associated immunotargets are co-expressed on vitally essential

myeloid bone-marrow derived cells and progenitor cells (159).

CAR T cell therapy including conditioning chemotherapy with

fludarabine and cyclophosphamide but especially in AML is
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accompanied with severe myeloid toxicities leading to an

immunocompromised state with an increased risk for life-

threatening infectious complications (160).

The systematic preclinical evaluation of CD33-directed CAR T

cell constructs identified the CD33-targeted lintuzumab-based 2nd

generation CAR construct (LIN-CD28-CD3Z) to be most

efficacious (161) and led to the multicenter CD33-specifc CAR T

cell trial (NCT03971799) for pediatric patients with relapsed and

refractory AML. In this context CAR T cells are used for remission

induction prior to subsequent allogeneic stem cell transplantation.

Using CD33-targeted CAR T cells requires the profound

elimination of the CAR T cell function post treatment via the

conditioning regimen to save patients from experiencing ongoing

myelosuppression, unless patients are in parallel to the CAR T cell

application, transplanted with genetically modified hematopoietic

stem cells with a gene knockout for the CAR-targeted antigen, such

as CD33 (162) or CD45 (163) to exclude the recovering autologous

hematopoietic system from the CAR-targeting mechanism.

In the third strategy (iii) the on-target-off-tumor toxicity is

tolerable and generally not life-threatening. This applies mainly to

overexpressed target antigens like mesothelin (MSLN) (97), CEA

cell adhesion molecule 5 (CEACAM5) (164), HER2 (153), GD2

(152), B7H3 (165), CD70 (166), IL13Ra2 (167) and others in solid

cancers. The listed target antigens are expressed on a variety of

different tissues or are upregulated in immune cells upon activation,

such as CD70 (168, 169) and B7H3 (170). The toxicities experienced

with CAR T cells for solid cancer treatment are generally tolerable at

standard dose levels (152, 164) and even intracranially administered

CAR T cells in brain cancers (glioblastoma multiforme) (167) are

considered a legitimate approach. However, in some instances CAR

T cells in solid cancer patients have been lethal due to on-target-off-

tumor toxicities. In a patient with colorectal cancer, reportedly a

high dose of HER2-specific CAR T cells (1x1010)CAR+ cells)

induced a severe acute respiratory distress syndrome (ARDS) and

subsequent cardiac arrest causing death within days (171).

One approach to overcome or limit CAR mediated on-target-

off-tumor toxicities in physiological non-cancerous tissues is to

reduce the affinity of the recognition domain (scFv, VHH) (172). In

CD19 CAR T cells, the 40x lower recognition domain CAR induced

significantly less toxicities including CRS and ICANS compared to

FMC63-based CAR T cells in childhood BCP-ALL patients while

demonstrating enhanced proliferative capacity and antitumor

activity (108). However, reduced affinity of the recognition

domain and reduced responsiveness based on the CAR

architecture [4-1BB versus CD28 costimulatory domain] increases

the risk for antigen low expressing tumors to evade the targeting

mechanism whereas CAR persistence remains an independent

discriminator of clinical success (4, 12, 108). Sparing toxicities by

reducing the affinity has been demonstrated for ICAM-1 specific

CAR T cells (micromolar affinity) in thyroid cancer (173), as well as

in HER2- and EGFR-specific CAR T cells in various solid cancer

models including ovarian and prostate (174). Genetic alteration of

the CD3z chain signaling to reduce the number of immunoreceptor

tyrosine-based activation motifs (ITAMs) alleviates exhaustion and

can alter the antigen-density threshold of a CAR (175). Logic AND-

gating circumvent on-target-off-tumor toxicity but in consequence
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1383894
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schlegel et al. 10.3389/fimmu.2024.1383894
lead to a sensitivity decrease of the CAR T cells since the CAR

requires two independent signals for efficient CAR activation, e.g.,

the AND-gating of a dual-CAR construct [CEA-CD3z & MSLN-4-

1BB] in which the CEA-CAR provides the CD3z signaling and the

MSLN-CAR provides the 4-1BB costimulatory signaling (176).

Since allorejection limits the efficacy of CAR T cell therapies,

strategies to reduce immunogenicity via de-immunization and

humanization have become an integral part of CAR T design.

Further, reduced immunogenicity is achieved by using fully

human natural ligand- or receptor-based CAR T. By repurposing

high affinity ligand-receptor interactions to target overexpressed

ligands [NKG2DL via NKG2D] (177) and receptors [BCMA &

TACI via APRIL] (8) on cancers have been explored in the

preclinical setting and in clinical trials (178). However, the

clinical success of ligand-based CAR T compared to conventional

scFv-based CAR T design thus far has been disappointing in

multiple myeloma (7).
Early-onset toxicities in CAR T cell therapy

Cytokine release syndrome (CRS), Immune effector cell

associated neurotoxicity syndrome (ICANS) and Macrophage

Activation Syndrome (MAS) are early onset toxicities, which can

have fatal symptoms (179).

The acute CRS is a common systemic inflammatory response to

the excessive secretion of cytokines in the CAR T cell activation and

proliferation, which occurs in 77-93% of leukemia patients treated

with CAR T cells. Upon CAR T cell activation, the increased cytokine

concentrations, particularly of IL6, a pleiotropic and pro-

inflammatory cytokine, co-activate macrophages and monocytes,

which leads to a further secretion of cytokines, and can be

diagnosed from the high levels of granulocyte-macrophage colony-

stimulating factor (GMCSF) in the serum. CRS is symptomized by

fever, rigors, hypoxia, nausea, and heart rhythm disorders, including

tachycardia and arrhythmias. In addition to heart dysfunctions,

multiorgan failure can cause life-threatening medical conditions.

Detections at early stages can allow for specific anti-inflammatory

therapy, for instance, using tocilizumab to block the IL6 receptors,

which can minimize the adverse effects (3, 180).

In the beginning of CRS, the brain is protected from primary

and secondary involvement of CRS by the blood-brain barrier.

Hence, the migration of CAR T cells to the brain is slower compared

to other compartments of the body. However, the secretion of IL1ß

and IL6 triggers von Willebrand factors, a glycoprotein, which

disrupts the highly selective semi permeability of the blood-brain

barrier. This permits cytokines and cells to enter the central nervous

system, which changes the cytokine concentration in the brain. The

elevated cytokine levels in brain tissues have been linked to

neurological complications (181).

20-70% of CAR T cell patients develop neurological symptoms,

including initial manifestations of cognitive impairment, such as

tremor, confusion, lethargy, mild expressive and receptive aphasia,

stupor, apraxia and decreased attention, which can progress into

severe ICANS, symptomized by agitation, status epilepticus, cerebral

oedema and occasionally intracerebral hemorrhage (3, 182, 183).
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In CD19-targeted CAR T cells, the primary on-target-off-tumor

toxicity occurs in the B-lineage tissues due to the expression of CD19,

a BCR co-receptor on B cells. However, due to low expressions of

CD19 in neural cells, on-target-off-tumor toxicities may also occur in

neural tissue in the hyperinflammatory state. Furthermore, there are

associations between the serum elevations of cytokine IL15, IL3 and

GM-CSF and the blood-brain barrier permeability and ICANS

development and severity (181, 184). Nonetheless, the fundamental

principles, responsible for the neural toxicities are not thoroughly

comprehended and other factors are considered to influence the

severity of ICANS symptoms.

Hemophagocytic lymphohistiocytosis (HLH) and macrophage

activation syndrome (MAS) are severe hyperinflammatory

syndromes, associated with the pathological dysregulation of

macrophage proliferation, which are mostly triggered by viral

infections, especially Epstein-Barr virus infection, genetic lymphoid

immune cell disorder, rheumatic autoimmune diseases, for instance

the systemic-onset juvenile idiopathic arthritis, systemic lupus

erythematosus and genetic mutations (3, 185–187). In addition,

HLH and MAS can occur in the context of BiTE and CAR T cell

immunotherapy (185). The excessive release of proinflammatory

cytokines IL1, IL6, IL18 and tumor necrosis factor, triggered by the

uncontrolled activation and proliferation of macrophages, leads to

dysregulated immune activity and induces systemic inflammation

(186). MAS is characterized by hyperinflammatory clinical features,

including persistent fever, cytopenia, coagulopathy, liver

insufficiency, hepatosplenomegaly, lymphadenopathy and multi-

organ failure (3, 186). Laboratory diagnostic characteristics are a

decrease in blood cell count due to hemophagocytosis,

hyperferritinemia, abnormal coagulation profile, elevated

triglycerides and high cytokine levels. The treatment of MAS

usually involves immunosuppressive medications, such as

corticosteroid and immunomodulatory drugs, for instance IL1 and

IL6 signaling inhibitors (179, 181).
Immunosuppressive
tumor microenvironment

A significant constraint in the effectiveness of CAR T therapies,

particularly in treating solid tumors, is the immunosuppressive

nature of the tumor microenvironment (TME) (188). The TME is

composed of different cell types, matrix proteins and secreted

factors (189). Immunosuppressive cell types like myeloid-derived

suppressor cells (MDSCs), tumor-associated macrophages (TAMs),

and regulatory T cells (Tregs) produce anti-inflammatory cytokines,

such as interleukin-10 (IL10), IL4, transforming growth factor-beta

(TGF-b) that inhibit the CAR T function. These cytokines hinder

CAR T function, impede proliferation, induce T-cell exhaustion,

reducing their efficacy against tumor cells by limiting their cytotoxic

and cytokine-producing abilities. Additionally, dense fibrogenic

extracellular matrix, dysregulated tumor vasculature, and the

hypoxic TME, characterized by limited nutrients and oxygen,

restrict CAR T infiltration and function (188).

Efforts to enhance CAR T efficacy involve engineering these

cells to resist the TME-induced exhaustion or express additional
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effector functions to promote persistence and functionality within

the immunosuppressive TME.

One strategy to overcome exhaustion is to target T cell intrinsic

pathways, such as programmed death-1 (PD-1) or TGF-b (190).

Activation of the TGF-b receptor upon binding of TGF-b present in
the TME upregulates CD70 expression and induce T-cell

exhaustion with increased expression of the inhibitory receptors

PD-1 and TIM-3 (191). Sustained PD-1 expression positively

correlates with an exhausted phenotype and dysfunction of the T

cells (192, 193). Pre-clinical data indicates that knocking out of PD-

1 and/or TGF-b receptor II genes in CAR T cells with CRISPR/Cas9

technology improve the CAR T function against tumors expressing

PD-L1 and/or TGF-b release (194, 195). Current clinical trials,

evaluate anti-MUC1 CAR T cells with PD-1 knockout in advanced

esophageal cancer (NCT03706326) and anti-EGFR CAR T cells

with TGFBR2 knockout in EGFR-positive solid tumors

(NCT04976218). Expression of dominant-negative PD-1 or TGF-

b receptors, receptors lacking intracellular domains necessary for

downstream signaling, also show promising improvement of the

CAR T persistence and have been shown to be safe in a phase I

clinical trial (196, 197). Combining CAR T therapy with checkpoint

inhibitors with already approved immunotherapies, such as anti-

PD-L1 or CAR T cells engineered to secrete PD-1 scFv or

nanobodies, promote the anti-tumor activity (97, 198). Other

approaches such as chimeric switch receptor-expressing CAR T

cells like PD-1/CD28 or TGF-b/IL7 also seems to improve the

persistence of CAR T (199, 200).

Another strategy to enhance the anti-cancer functions of CAR T

cells and recruit resident immune cells by modulating the TME is to

use CAR T cells designed to produce pro-inflammatory cytokines

(201). Many different cytokines have been used to potentiate CAR T

cell function, such as interleukin (IL) IL7 (202), IL15 (134), IL21

(203), IL12 (204) and IL18 (86). Anticancer activity is substantially

induced by the highly potent pro-inflammatory cytokine IL12, which

is naturally secreted by monocytic cells, e.g., dendritic cells and

macrophages. IL12 enhances the cytotoxic capacity of both NK

cells and T cells by inducing granzyme B and perforin production

and interferon (IFN)-g secretion (205, 206) and reduce the

immunosuppressive effects of regulatory T cells (207). However,

despite the tempting and promising enhanced anticancer function

of pro-inflammatory cytokine support for CAR T cells and accessory

immune effector cells, severe life-threatening toxicities limit their use

and require the incorporation of advanced safety measures (208). The

use of inducible promoters incorporating responsive elements of

NFAT, AP-1, NFkB, or other transcription factors and their

combinations facilitates activation-related gene expression (209–

211). Alternatively, small molecule-regulated gene expression

systems, such as the tetracycline-dependent Tet-On system, can

improve the control of transgenes, including CAR expression (212)

and cytokine secretion. While gene regulation can be complex and

prone to leakage, site-specific integration of transgenes offers new

opportunities to harness physiological gene regulation mechanisms

(57, 110). This approach can reverse immune functions, such as

integrating activating transgenes (e.g., CAR) into inhibitory loci like

immune checkpoint receptors (213). Functional control of transgenes

at the protein level is more reliable (214).
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Clinical experience with adapter
CAR technologies
Various adapter CAR T cell systems are being evaluated in clinical

trials for their efficacy and safety in treating different types of cancers.

Although these technologies utilize the fundamental principle of

adapter CAR technology, each employs a unique adapter molecule

format with differential size and pharmacokinetic and

pharmacodynamic properties, including scFv (78, 215), monomeric

Fab (79), silenced full-size antibodies (216), and d-domains (80).

Additionally, the adapter molecule dosing can be significantly lower

(10-1,000 times) than traditional antibody dosing used for therapeutic

IgG1 antibodies like rituximab (217) at 375 mg/m2 and cetuximab

(218) at 400 mg/m2 for most technologies, with exemption of the high-

affinity CD16-polymorphism (158V) (73).

In the clinical trial ATTCK-20-03 (NCT03189836), the CD16-

derived antibody-coupled T cell receptor (ACTR707) product was

used in conjunction with rituximab at 375 mg/m² for the treatment of

relapsed or refractory CD20+ B-cell lymphoma. Patients achieved a

complete remission rate of 50% (3/6) with an acceptable toxicity

profile (219). In the follow-up, 56% (14/25) of patients responded,

with 40% (10/25) achieving complete remission. Although the trial

was discontinued due to the adverse event of neutropenia, it serves as

a proof-of-concept for ACTR-based CAR therapy (220).

The peptide-based sCAR system (derived from the yeast GCN4

transcription factor) is currently being evaluated in patients with

relapsed/refractory B-cell Malignancies (NCT04450069). The first-

in-human data involved two patients with follicular lymphoma and

one patient with mantle cell lymphoma, who received 140x106

CAR+ cells in conjunction with 10 μg/kgBW/day SWI019, a CD19-

targeted monomeric Fab fragment used as adapter molecule. Two

patients achieved a complete response according to Lugano criteria.

Acute toxicity, ICANS was successfully managed with

dexamethasone and by reducing the SWI019 dose to 5 μg/kgBW

(79). Another peptide-based adapter CAR system (UniCAR,

derived from the nuclear autoantigen La/SS-B) is being clinically

tested in patients with hematological malignancies (NCT04230265).

The first patients treated with relapsed/refractory AML (rrAML)

received 100 or 250x106 CAR+ cells with 0.5 or 1 mg/day TM123, a

CD123-targeted scFv-based adapter molecule. Complete

hematological remission with incomplete recovery was observed

(215). In a follow-up report, 19 patients showed an overall response

rate (ORR) of 53% (8/15) for rrAML and 75% (3/4) in patients with

AML at minimal residual disease (MRD) level (78). The adapter

CAR technology IBI345, utilizing silenced antibodies carrying the

P329G substitution, is used for the treatment of claudin 18.2

(CLDN18.2) positive tumors, including esophagogastric junction-,

gastric-, and pancreatic cancer (NCT05199519). Patients were

administered 50-250x106 CAR+ cells plus 1 mg/kgBW/day IgG1,

demonstrating limited clinical efficacy (216). Another promising

technology in clinical evaluation is the d-domain-based adapter

CAR system (SparX) for the treatment of multiple myeloma

(NCT04155749) and AML (NCT05457010). The adapter

molecules are d-domain-based and targeted to BCMA in multiple

myeloma and CD123 in AML (80). Regarding increased safety
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compared to conventional CAR technologies, the sCAR and

UniCAR trials have demonstrated clinical proof-of-concept for

reducing toxicity by pausing the administration of adapter

molecules (78, 79, 215).
The CAR configurator

The concept of universal CAR technologies is fascinating and

tempting. Still in the early stages, adapter CAR technologies have

shown first indications of clinical efficacy in humans, reported in

2021 in the clinical trial (NCT04230265) utilizing the UniCAR in

conjunction with a CD123-targeted adapter molecule in relapsed/

refractory AML (215). Furthermore, there are several clinical trials

recruiting patients using an alternative peptide-tag based CAR

system sCAR (switchable CAR) with CD19-targeted adapter

molecules (NCT04450069) as well as a d-domain based BCMA-

targeted trial in multiple myeloma (NCT04155749). As of today, no

clinical outcomes of the sCAR and d-domain CAR trials have been

published. Additionally, third-party CD19-CAR (21) and recently

“first-ever” iPSC-derived CD19-CAR T cells have demonstrated

preliminary clinical anticancer activity (221).

Nonetheless, since multitargeting is widely accepted the key

challenge to address tumor antigen heterogeneity and antigen loss,

adapter CAR technologies hold the promise to overcome this very

limitation of contemporary CAR T design. Even though CD19-

CD22 dual-targeted CAR constructs incorporated into one immune

receptor (144) have not yet clearly proven to significantly increase

long-term survival in patients, the future aspiration is that

multitargeted approaches utilizing dual- or trispecific CAR

products will prevent immune evasion (144, 222). Hence, versatile

multitargeted adapter CAR technologies represent a pivotal stride

towards the future of cancer immunotherapy. These innovative

technologies have the potential to revolutionize treatment

approaches by enabling the customization of patient-specific

regimens, intricately tailored to the distinct antigen immune

profiles of individual patients.

Besides finding the most suitable combination of targetable

antigens, CAR T design will be most efficacious if genetically

adjusted to the immune requirements of the specific tumor and

combined with complementary treatment strategies. The

complementary use of existing medicines can instantly contribute

to improved outcomes. For instance, CAR T cell therapy in

conjunction with immune checkpoint inhibitors, such as

pembrolizumab has demonstrated to reverse CD19-CAR

exhaustion in B-cell lymphoma patients (223) and enhance

anticancer activity in malignant pleural disease using MSLN-

targeted CAR T (97). Further, small molecules (224) and the

application of cytokine or chemokine modulating chemotherapy

(225) can improve the clinical efficacy of CAR T cell therapies.

As indicated in Figure 3 Universal CAR configurator, the

comprehensive tumor profiling will facilitate to identify the best

suitable complimentary therapies and help select the potential

immune targets for a patient-individualized adapter molecule

panel. Most importantly, it will provide the objective which
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additional effector functions may specifically increase the CAR

performance in the corresponding subject.

These additional genetic modifications shall exploit pathways

supportive of anticancer functions, such as cytokine signaling (IL7,

IL12, IL15, IL18, IL21 and others) (86, 200, 204) and activating

co-stimulatory receptor signaling (CD28, OX40 and others) (199)

as well as the homing preference of cells via provision of chemokine

receptors (229). Furthermore, they shall inactivate negative

regulators of CAR T cell function, such as TGFßR signaling and

immune checkpoints to overcome the immunosuppressive tumor

microenvironment (TME) (195, 198, 200, 230). The disruption of

immune homeostasis can lead to life-threatening, uncontrollable

detrimental toxicities. Thus, in conventional CAR design it is more

critical to employ a combination of boosting effector functions that

may cause unmanageable hyperinflammatory complications if the

targeted antigen is broadly expressed in physiological tissues. The

decoupling of antigen recognition and signaling in adapter CAR

technologies alone facilitates to control the unleashed CARs in the

patient (20, 65). In summary, the development of effective CAR

immunotherapies requires decoding the immunological processes

in the tumor and converting them into effective and safe additional

effector functions.

On the adapter molecule side, pharmacokinetic and

pharmacodynamic variables need to be implemented to ensure

high functionality of the adapter CAR system in all body

compartments. Besides the critical antigen density (12), other

factors like antigen shedding (231), antigen turnover and

internalization kinetics (232) require the mindful selection of

adapter molecule formats. They shall reach all various immune

compartments. To overcome the blood-brain-barrier, adapter

molecules either must be applied into the central nervous system

(CNS) which is a viable administration route (233, 234) or be able to

penetrate into the CNS (235). Certainly, they need to reach sufficient

concentrations in the primary tumor niche and in metastases (236).

By nature, adapter CAR T will always have a lower avidity to the

targeted antigen than conventional CARs, illustrated and outlined

in Figure 4. However, multitargeted strategies and performance

tuning can compensate for the reduced initial formation of the

cytolytic synapse and turn the disadvantage into dominance.

Additionally, adapter CAR T cell technologies facilitate a more

physiological CAR recruitment and engagement compared to

conventional CAR design and allow cells to recover from the

massive CAR stimulation according to the administration

regimen of the adapter molecules (237).
Specific limitations and challenges of
iPSC-derived adapter CAR therapy

While there are numerous advantages of iPSC-derived adapter

CAR products, summarized in Table 2, there are limitations and

challenges in the creation of universal (iPSC-derived) adapter CAR

effector cells, referred to as universal CAR 2.0.

A significant current challenge with the use of artificially

engineered third-party effector cells is their notably shorter
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FIGURE 3

Universal CAR configurator. The concept of the Universal CAR Configurator is to design the most effective individual universal CAR for
each specific cancer indication. It can be used with autologous immune effector cells or more advanced with iPSC-derived cell products
to create “Universal CAR 2.0”. (A) The process begins with a comprehensive analysis of the cancer using state-of-the-art diagnostics. This
includes basic microscopy, immunohistochemistry, and the detection of chromosomal aberrations (both structural and numerical) as well
as utilizing fluorescence in situ hybridization (FISH). Additionally, targetable mutations and epigenetic changes are identified. Standard
diagnostics confirm the diagnosis and guide the initial treatment regimen. Advanced diagnostics are employed to identify patients who
could benefit from additional treatment options, either through established therapies or personalized treatments. Established therapies
may involve the use of small molecules to inhibit upregulated signaling pathways such as kinases, mTOR, ABL, c-KIT, and FLT3. Moreover,
patients with DNA instability due to mismatch repair deficiency, such as those with colorectal cancer, can significantly benefit from
immune checkpoint inhibition (226). Further, theranostic approaches with antibody-guided radionuclides, such as Iodine-131 coupled to
antibodies are used therapeutically (227). Whole genome sequencing is used to identify targetable mutations in the tumor with patient-
individual cancer vaccines (228). Functionally tailored CAR-based therapies require a patient-individual two-step immune profiling. In the
first step, the cancer is screened for the expression of relevant genes. Based on the results, in a second step a specific antibody panel is
used for spatial proteomics to elucidate the patient’s tumor microenvironment (TME), exemplified as 1st PDL1 expression, 2nd TGFß
secretion and 3rd CCL19 chemokine release by the tumor. (B) Therefore, the design of the TME-adjusted patient-individual CAR product
requires the incorporation of 1st a PD1-CD28 signal converting receptor, 2nd a dominant negative TGFß receptor and 3rd the introduction
of the chemokine receptor CCR7 to support the enrichment of CAR effector cells in and around the tumor. (C) The genetic payload of the
relevant additional effector functions may be incorporated into the expression cassette and transferred via stable integration of the
transgene using viral, transposon-based or CRISPR-based gene delivery. Additional genetic modifications can be utilized to inactivate
immunosuppressive receptors such as PD-1 or CTLA-4 and others. (D) Spatial proteomics is used for the selection of patient-individual
antibody panels that are specifically formulated for each patient. Combinatorial targeting is the key obstacle of targeted immunotherapies
to overcome the antigen heterogeneity and immune escape evasion mechanisms. (E) Although patients receive individualized therapies,
they built on generic key components - the CAR receptor and the adapter molecules. DX, diagnostics. TX, therapeutics. AM, adapter
molecule. TGFß, TGF beta. IL15R, IL15 receptor. PD1-CD28, signal converting receptor. DN-TGFßR, dominant negative TGF beta receptor.
CCR/CXCR, chemokine receptors. TNFRS, tumor necrosis factor receptor superfamily. CIL7, constitutive IL7 receptor.
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lifespan compared to autologous CAR therapies (238). Despite

sophisticated design efforts, there remains a substantial gap in our

understanding of the potential long-term risks associated with these

therapies. Concerns particularly focus on the possibility of

malignant transformations due to unintended genetic

modifications and contamination with undifferentiated stem cells

(239), as well as autoimmune or hyperinflammatory reactions.

These adverse effects may arise from specific combinations of

genetic alterations that promote inflammatory responses via
Frontiers in Immunology 13
activating receptors and cytokines while simultaneously

deactivating inhibitory receptors, e.g. PD-1, disrupting the

immune system’s natural regulatory balance (240).

The primary challenge of the adapter CAR function is largely

influenced by the biodistribution of adapter molecules and their ability

to penetrate less vascularized and perfused body compartments, such

as the testicles, the central nervous system (CNS), and particularly

fibrotic and encapsulated solid tumors (241). Additionally, the

pharmacokinetics and compatibility of specific adapter molecules can
B

C

D

E

A

FIGURE 4

Key determinants of CAR signaling. (A) The CAR receptor-target antigen interaction in conventional CAR technologies is primarily determined by
the antigen expression. Most target antigens are expressed at lower levels than the CAR receptor on the effector cell population. Thus, in antigen
high expressing target cells, the avidity is higher than in antigen low expressing targets and as the CAR signaling is proportional to the CAR receptor-
target antigen interaction, it is enhanced in antigen high expressing targets. (B) Besides the target antigen density, in adapter CAR technologies the
adapter molecule concentration significantly impacts on the CAR engagement with the target cells. Without any adapter molecule available, there
is no CAR engagement possible. With increasing concentrations, the CAR engagement becomes more efficient and reaches an optimum before
inhibitory effects start to reduce the CAR-target interaction at supra-optimal adapter molecule concentrations. (C) Synchronic multitargeting,
utilizing a combination of adapter molecules at low concentrations, can increase the CAR-target interaction while the blocking effects are reduced.
(D) Key determinants of CAR-target interaction are i) the antigen expression density on the target cells, ii) the CAR receptor expression density on
the CAR+ effector cell population, and the iii) interplay of the avidity and the affinity (KD) of the adapter molecule to the targeted antigen as well as
the CAR recognition domain, e.g., CAR-scFv to the CAR-target moiety on the adapter molecules. (E) At supra-optimal concentrations, competitive
blocking effects reduce the probability of CAR-target interaction and therefore pharmacokinetic as well as pharmacodynamic aspects must be
considered optimizing the adapter molecule dosing.
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complicate the design and outcomes of clinical trials. It is improbable

that a uniform adapter molecule format will be effective across different

types of cancers. Consequently, in clinical trials, the format of the

adapter molecule will dictate the administration route and regimen.

Furthermore, combinatorial targeting will necessitate intricate

protocols and meticulous monitoring during the optimization of

treatment regimens.
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The bottom line for successful
CAR therapy

CAR products are designed to equip immune cells with novel

effector functions and combine these with their natural capacity for

adaptation to everchanging circumstances. These multifaceted

adaptive functions allow the CARs to migrate efficiently to any part

of the body via chemotaxis (242), then to mediate a potent but

considerate immune response that does not lead to detrimental effects

and unrepairable tissue damage (243). The immune response is

complemented by the recruitment of accessory immune cells via

the secretion of proinflammatory and immunosuppressive cytokines,

chemokines as well as the presentation of immunomodulatory

ligands to shape and orchestrate the immune response (244).

During the acute phase of the response the vertical differentiation

and exponential multiplication of the effector cells is imminently

important (4). However, to maintain a strong immune response the

horizontal proliferation (maintenance), differentiation and

maturation of immune cells provide the ability for self-renewal and

long-lived immune memory function (245) which are the

prerequisite for the comprehensive elimination of cancer and

subsequent protection from recurrence (4).

In consequence, the most promising effector cells of the future

are a reflection of the complex natural cellular immunity (246) in

artificially designed effector cells that are equipped with versatile

synthetic receptors (57, 110, 175, 247). Therefore, the appreciation

and incorporation of natural, multilayered immune functions will

lead to the most advanced cellular products equipped with the

versatile biological plasticity, capable of autonomously regulated

adaptability, self-renewal, and the persistence of immune memory

(245). Long-lived immune memory allows resting memory T cells

to awaken and protect humans from harm (virus, bacteria, fungi

and cancer) after re-encounter with invaders even with the latency

of many years and displays one of the most impressive evolutionary

immune functions (114).

All of the named immune functions have only been partially

understood but have guaranteed immune protection and thus

certainly shall be considered in the design of novel cell products.

The practical challenge in creating cellular medicines is to retain

these features while adding beneficial effector functions which is

supported by shorter manufacturing protocols (248).

Presently, the scope for clinical applications is confined to

meticulously defined cellular products prevailing from the legislative

landscape and the regulatory authorities’ inclination towards stringent

product specifications (249). The encounter with cellular therapies has

underscored the intricacies within the immune compartment. Yet, the

remarkable diversity exhibited by T cells stands as a valuable asset in

tackling immunological challenges. This resilience has been notably

exemplified in the realm of CAR T cells, laying the groundwork for

future explorations in the design of next-generation CARs.

In conclusion, universal allogeneic CAR T cell products hold

the promise to overcome the economic hurdles of personalized

cellular medicines with regards to infrastructure, logistics as well as

manufacturing and distribution costs (250). Additionally, they
TABLE 2 Features of universal CAR products.

iPSC-derived
CAR product

Characteristics Consequence

Critical aspects

Manufacturing time off-the-shelf product available at any time

Manufacturing costs off-the-shelf product cost reduction

Manufacturability off-the-shelf product unlimited supply

off-the-shelf product standardized
and consistent

Safety profile thorough
characterization

enhanced safety

Efficacy selection for potency enhanced potency

Customized products designed for
specific purpose

enhanced potency
and safety

Ethical considerations iPSC derived from
adult cells

bypassing ethical
concerns of embryonic
stem cells

Adapter CAR product

Critical aspects Characteristics Consequence

Manufacturing generic CAR cost reduction

generic
adapter molecule

cost reduction

Acute toxicities (CRS,
ICANS, MAS)

switch-on mechanism improved safety profile

On-target-off-
tumor toxicities

switch-on mechanism transient toxicity

sequential targeting distribution of toxicity

treatment in cycles reconstitution of tissues

Antigen loss,
immune evasion

combinatorial
multitargeting

improved performance

Antigen loss,
immune evasion

sequential multitargeting improved performance

Temporally limited
CAR recruitment

treatment in cycles reconstitution of effector
cell function

Customized products designed for
specific purpose

patient-individualized
combinatorial targeting
The table highlights the features of universal CAR 2.0, showcasing its next-generation design
that integrates additional effector functions and enhanced safety measures. It also outlines the
benefits of iPSC-derived CAR products in manufacturing and the advantages of adapter CAR
products, such as improved safety and efficacy through on-switch and combinatorial
targeting. This unified cellular product enables patient-specific therapy tailored to the target
antigen expression profile of each cancer patient. iPSC, induced pluripotent stem cells; CRS,
cytokine release syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome;
MAS, macrophage activation syndrome.
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support to broaden the applicability of CAR T cell therapy in

patients that do not meet the basic CAR manufacturing

requirements, e.g., reduced general condition, low lymphocyte

count, poor immune status or simply lack the time required for

the manufacturing of autologous CAR T cell products before

initiating the treatment (28). Whilst allogeneic universal iPSC-

derived cellular therapies are promising, they reside at a very

early stage of development and are mainly compromised by

allorejection that limits persistence and their overall potency of

the anticancer response (251). In the coming years, preclinical and

clinical research will need to provide more insight into both safety

and efficacy of iPSC-derived CAR products to improve this novel,

potentially cost-effective and life-saving technology (28, 251) that

may become a complementary treatment to “conventional CD19-

and BCMA-specific CAR T cell therapies” in the future (4, 23, 101).

Numerous adapter CAR technologies have been developed with

the aim to introduce a safety on-switch to control early onset

toxicities and on-target-off-tumor toxicities as well as to establish

versatile patient-individualized combinatorial immunotargeting

(20, 65). Incorporating next-generation CAR design (209) may

catapult adapter CAR technologies to outcompete conventional

CAR designs while retaining safety (237). The fusion of these

distinct two universal CAR technologies unites key features of

two concepts that might resolve our current skepticism for

clinical potency and safety as well as the significant costs required

for the development. In summary, groundbreaking advancements

remain pivotal to usher in this new era of two-component universal

CAR cellular therapies, based on bespoke patient-individualized

treatments, derived from readily available off-the-shelf products.
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