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Abatacept increases T cell
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who carry HLA risk alleles
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Exhausted CD8 T cells (TEX) are associated with worse outcome in cancer yet

better outcome in autoimmunity. Building on our past findings of increased

TIGIT+KLRG1+ TEX with teplizumab therapy in type 1 diabetes (T1D), in the

absence of treatment we found that the frequency of TIGIT+KLRG1+ TEX is

stable within an individual but differs across individuals in both T1D and healthy

control (HC) cohorts. This TIGIT+KLRG1+ CD8 TEX population shares an

exhaustion-associated EOMES gene signature in HC, T1D, rheumatoid arthritis

(RA), and cancer subjects, expresses multiple inhibitory receptors, and is

hyporesponsive in vitro, together suggesting co-expression of TIGIT and

KLRG1 may broadly define human peripheral exhausted cells. In HC and RA

subjects, lower levels of EOMES transcriptional modules and frequency of

TIGIT+KLRG1+ TEX were associated with RA HLA risk alleles (DR0401, 0404,

0405, 0408, 1001) even when considering disease status and cytomegalovirus

(CMV) seropositivity. Moreover, the frequency of TIGIT+KLRG1+ TEX was

significantly increased in RA HLA risk but not non-risk subjects treated with

abatacept (CTLA4Ig). The DR4 association and selective modulation with

abatacept suggests that therapeutic modulation of TEX may be more effective

in DR4 subjects and TEX may be indirectly influenced by cellular interactions that

are blocked by abatacept.
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Introduction

Chronic antigen exposure leads to the progressive

differentiation of exhausted CD8 T cells (TEX) that are

functionally, transcriptionally, and epigenetically distinct from

effector CD8 T cells (1). TEX progressively lose inflammatory

cytokine production from precursor and early TEX states to

terminal states. This loss of pro-inflammatory function is

mediated, in part, by constitutive expression of multiple

inhibitory receptors (e.g., PD-1, TIGIT, TIM3). In cancer and

chronic viral settings, where lytic properties of CD8 T cells are

required to clear the tumor or virus, an increase in TEX abundance

that are terminally dysfunctional is associated with worse outcome

(2). Likewise, a greater abundance of TEX in cancer is associated

with worse outcome and progression can be reversed by

therapeutically depleting terminal TEX or reinvigorating early TEX

with checkpoint inhibitors (3–5).

Although autoimmunity may involve chronic antigen exposure

like cancer and chronic viral infections, less is known about TEX in

the context of autoimmune disease (6, 7). As opposed to reduced

TEX being beneficial in cancer, reduced TEX has been associated with

disease progression and increased severity in some autoimmune

diseases including systemic lupus erythematosus (SLE),

antineutrophil cytoplasmic antibody-associated vasculitis, and

type 1 diabetes (T1D) (8–11). Conversely, elevated TEX has been

associated with better response to therapy in individuals with

autoimmune disease; Specifically, elevated TEX following

treatment of T1D was associated with better response to two T

cell targeted therapies, teplizumab (anti-CD3) (12, 13) and alefacept

(LFA3Ig) (14). TEX levels do not differ at baseline, but the TEX that

expand following therapy in T1D co-express inhibitory receptors

including TIGIT, PD-1, and KLRG1, and share an EOMES gene

signature that overlaps with exhaustion and differs from senescence

(14), suggesting an exhausted-like phenotype (12, 13). Despite these

findings, it remains to be determined whether TEX are qualitatively

similar across diseases and which factors may contribute to

variation in TEX levels across subjects. This lack of clarity is due,

in part, to variability in the measures used to define TEX across

studies and disease specific variability in co-factors that contribute

to TEX.

In this current study, we address these gaps in knowledge by

leveraging existing cross-sectional and longitudinal cohorts as well

as existing datasets from recent clinical trials. Comparison across

cohorts was facilitated by defining a broad and common human

peripheral blood TEX population that co-expresses the inhibitory

receptors TIGIT and KLRG1 and is associated with an EOMES

transcriptional signature. Looking across studies, we determined

that the frequency of TIGIT+KLRG1+ TEX is influenced by a genetic

component. Specifically, reduced TEX frequencies are associated

with the human leukocyte antigen (HLA) class II alleles

DRB1*0401, 0404, 0405, 0408, and 1001 associated with risk of

RA in both healthy individuals and individuals with RA. Moreover,

this relationship was also evident in the setting of clinical trials

where TIGIT+KLRG1+ TEX selectively increased in individuals

carrying RA HLA risk alleles but not in carriers of non-risk

alleles after treatment with abatacept (CTLA4Ig). Together these
Frontiers in Immunology 02
data suggest that HLA or linked genes contribute to the level of TEX

in a manner that is modulated by abatacept.
Methods

Ethics statement

All subjects in the longitudinal healthy control cohort and the

whole blood RNA-seq cohort gave written informed consent in

accordance with the Declaration of Helsinki, the IRB-approved

protocols at the Benaroya Research Institute at Virginia Mason

(IRB07109), and the VA Puget Sound Health Care System

(MIRB#00755). The clinical trial cohorts were approved by

independent IRBs at each participating clinical site, as described

in the original clinical trial reports (15–17). Participants in each of

these trials also provided informed consent prior to participation.
Study design

The phenotype, frequency, function, and modulation

of TEX were assessed using complementary assays and cohorts

(Supplementary Figure 1, Table 1). Cross-sectional samples were

used from T1D, RA, and renal cancer carcinoma (RCC) patients

with age- and sex-matched health controls (HC). Longitudinal

samples were analyzed from HC subjects and published clinical

trials (15, 17, 18). Whole blood transcriptional analyses were

performed from tempus tube collections. For all cellular analyses,

peripheral blood mononuclear cells (PBMCs) were isolated from

whole blood and cryopreserved until used. Additional

transcriptional analyses were performed on sorted populations

from PBMCs. When assessing the influence of age on TEX in HCs,

male and female subjects were selected for even representation

across all ages. All assays were run and analyzed in a blinded

manner, and staining batches included an internal control.
Cohort descriptions

Table 1 lists cohorts used in this study, including demographics,

percentage of RA HLA risk carriers and percentage of

cytomegalovirus (CMV)-seropositive subjects. The longitudinal

T1D cohort in Figure 1A consisted of 66 subjects with recent

onset T1D who were placebo arms of Immune Tolerance

Network and TrialNet trials (19–22). The longitudinal HC cohort

in Figure 1B consisted of 99 HC subjects with no personal or family

history of autoimmune disease who were recruited through the

Sound Life Project led by the Benaroya Research Institute (BRI) in

partnership with the Allen Institute for Immunology. The cross-

sectional HC, T1D, and RCC cohorts in Figure 2 were from the BRI

Registry and Repository; the HC had no personal history or first-

degree relatives with autoimmune disease. The cross-sectional HC

cohort in Figure 3F consisted of 30 individuals who had no personal

history or first-degree relatives with autoimmune disease who were

recruited through the BRI Registry and Repository. The whole
frontiersin.org
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blood RNA-seq cohort in Figure 4A is a cross-sectional cohort

consisting of 97 seropositive RA subjects and 114 HC subjects

matched for age, sex, and race. The RA subjects carried a diagnosis

of RA based on the 2010 American College of Rheumatology

criteria, were positive for ACPA and were recruited from the

Virginia Mason Medical Center and the VA Puget Sound Health

Care System. HC subjects had no first-degree relatives with

autoimmune disease and were recruited through the BRI Registry

and Repository. The clinical trial cohort in Figure 5A was from the

teplizumab (anti-CD3) trial in individuals at risk for T1D

conducted by the Type 1 Diabetes TrialNet (15) and consisted of

32 subjects. The clinical trial cohort in Figures 5B, C was from the

Early AMPLE trial (16) and consisted of 29 individuals with new

onset RA.
Transcriptional analyses of CD8
cell subsets

PBMCs from subjects with T1D, RA, RCC and age/gender-

matched HC were stimulated with antibodies against CD3 (1 µg/ml

plate-bound, UCHT1) and CD28 (2 µg/ml plate-bound, CD28.2)

for 16 hours with and sorted for memory (CD45RO+) CD8 T cells

that either co-expressed KLRG1 and TIGIT or lacked both markers

as a comparison population using the cell sorting panel

(Supplementary Table 1). Sytox Green (1:1000, Invitrogen) was

added to samples prior to acquisition to differentiate dead cells. For

comparisons across cells of differing antigen specificities, cells from

HC were enriched for CD8 T cells following the 16-hour

stimulation protocol, then stained with Class I pentamer to

identify CMV, Epstein-Bar Virus (EBV), and Flu antigens

(Supplementary Table 1) as described below.

The indicated populations were sorted directly into SMARTer

v3 or SMARTseq v4 lysis reagents (Clontech). Cells were lysed and

cDNA was synthesized. After amplification, sequencing libraries

were prepared using the Nextera XT DNA Library Preparation Kit

(Illumina) according to C1 protocols (Fluidigm). Barcoded libraries

were pooled and quantified using a Qubit® Fluorometer (Life

Technologies). Single-read sequencing of the pooled libraries was

carried out on a HiSeq2500 sequencer (Illumina) for 74 cycles, using

TruSeq v3 or v4, and SBS kits (Illumina). Target read depths were

~5-10 million raw reads per sample.
Characterization of T cell activation/
exhaustion by flow cytometry

Supplementary Table 1 lists antibodies used for each flow

cytometry panel, including target, fluorophore, clone, and

manufacturer. For assessment of cytokines, cells were treated with

anti-CD3 (1 µg/ml plate-bound, OKT3) and anti-CD28 (2 µg/ml

plate-bound, CD28.2) for 24 hours or Phorbol-Myristate-Acetate

(PMA, Sigma) and Ionomycin (I, Sigma) for 6 hours and Brefeldin

A (BioLegend) and Monensin (BioLegend) were each added at 1X

for the last 4 hours. Dead cells were detected (Zombie NIR Kit,
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BioLegend), surface markers were added in brilliant stain buffer

(BD Biosciences) for 20 minutes at RT and intracellular markers

were detected (30 minutes RT) following permeabilization (FoxP3/

Transcription factor staining buffer set, eBioscience, 30 minutes at

4°C). For assessment of antigen-specific phenotype, cells were

enriched for CD8 T cells using negative selection (CD8+ T cell

isolation Kit, Miltenyi) and incubated with dasatinib (50 nM, 250

µl/2 million cells, LC Laboratories) for 8-10 minutes at 37°C prior to

staining with 25 µL solution containing 1.5 µL of commercially

obtained Class I pentamer (ProImmune) for 15 minutes at 37°C,

followed by surface marker detection in the T1D antigen-specific

panel (Supplementary Figure 2).
Frontiers in Immunology 04
Cell tracking assay

PBMCs were labeled (Cell Trace Violet, Invitrogen), stained

with surface markers of the cell sorting panel (Supplementary

Table 1, Supplementary Figure 3) and Sytox Green to differentiate

dead cells (1:1000, Invitrogen). PBMCs were sorted using a BD Aria

II until 3-5 × 103 CD8 T cells were obtained per condition which co-

expressed KLRG1 and TIGIT or lacked both markers. Sorted cells

were mixed back into whole PBMCs from the same subject and

stimulated with anti-CD3 (1 µg/ml plate-bound, UCHT1). Percent

divided were assessed in labeled cells using FlowJo proliferation

modeling. Labeled cells were also assessed for changes in KLRG1
A

B

FIGURE 1

TIGIT+KLRG1+ CD8 T cells are a stable cell type that varies across individuals. TIGIT+KLRG1+ CD8 T cells were measured by flow cytometry in
longitudinal samples from (A) Individuals with type 1 diabetes (T1D; n = 66) and (B) healthy control subjects (HC; n = 99). T1D samples were
collected at 6-month intervals over 2 years. HC samples were collected over a median of 8.7 months (inter-quartile range 7.2 to 14.2). Multiple
samples (data points) isolated from individual subjects, each shown on a line, are graphed for both cohorts. Individuals are ordered by mean %
TIGIT+KRLG1+ and annotated for CMV seropositivity by color. ICC, Intraclass correlation coefficient.
A B C

FIGURE 2

Across disease settings, co-expression of TIGIT and KLRG1 marks memory CD8 T cells with an EOMES-associated transcriptional signature. (A) Bulk
RNA-seq data from sorted TIGIT+KLRG1+ and TIGIT-KLRG1- CD8 memory (not CD45RA+CCR7+ naïve) T cells isolated from healthy control subjects
(HC) (n = 4) following 16-hour anti-CD3/CD28 stimulation. Selected markers of cell cycle, inhibitory receptor and transcription factor expression are
annotated. (B) Comparison of sorted TIGIT+KLRG1+ and TIGIT-KLRG1- memory CD8+ T cells across multiple disease settings: age- and gender-
matched HC; type 1 diabetes (T1D); renal cell carcinoma (RCC); cytomegalovirus infection (CMV-pentamer positive cells); and influenza infection
(FLU-pentamer positive cells). (C) Correlation of EOMES protein expression and TIGIT+KLRG1+ in memory (not CD45RA+CCR7+ naïve) CD8 T cells
in HC (n = 29), Spearman test with 95% confidence interval (dotted lines). Gating for sorts and analyses are shown in Supplementary Figure 2
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A

B

D

E F

C

FIGURE 3

TIGIT+KLRG1+ memory CD8 T cells are dysfunctional in healthy control subjects and increased in terminal cell subsets and chronic viral reactive
cells. (A) Proliferation following 3-day anti-CD3/CD28 stimulation of TIGIT+KLRG1+ (T+K+) memory cells relative to total memory CD8+ T cells from
healthy control (HC) subjects (n = 12). Proliferation of memory CD45RO+ cells was measured by percentage of divided cells using a flow cytometry
dye dilution assay. (B) Pro-inflammatory cytokine production (TNF-a and IFN-g) following 24-hour anti-CD3/CD28 stimulation by gated T+K+

memory cells relative to total memory CD8+ T cells in HC subjects (n = 56). Cytokine production was measured by intracellular cytokine staining. (C)
Effector cell surface marker expression (CD226 and CD127) and (D) Inhibitory receptor expression in the absence of T cell activation in gated T+K+

cells relative to total memory CD8+ T cells from HC subjects (n = 28). Wilcoxon matched-pairs signed-rank test was used in all comparisons. (E)
Distribution of TIGIT+KLRG1+ cells within naïve (CD45RO-CCR7+), central memory (CM: CD45RO+CCR7+), effector memory (EM: CD45RO+CCR7-)
and RA+ effector memory (EMRA: CD45RO-CCR7-). One representative HC sample shown from C. (F) TIGIT+KLRG1+ distribution in a subset of HLA-
A2 subjects stained with Flu-, CMV- and EBV-specific Class I Pentamer (Pmr). Kruskal-Wallis test with Dunn’s correction for multiple tests. Gating for
memory TIGIT+KLRG1+ is shown in Supplementary Figure 2, gating for activating and inhibitory markers is shown in Supplementary Figure 4.
**=0.05, ***=0.005, ****=0.0005 p-values.
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and TIGIT expression following stimulation (% Stable = purity of

labeled population following stimulation/purity of labeled

population at baseline × 100).

Whole blood RNA-sequencing

RNA isolation, RNA-seq, and pipeline analyses including

differential expression (Limma-Voom) and protein-protein

networks were performed as described previously (23).

Single nucleotide polymorphisms
association analysis

Whole blood libraries from the 211 HC and RA subjects in

Figure 4A were TMM normalized and batch corrected for age,
Frontiers in Immunology 06
percent lymphocytes and percent duplication, a quality metric

associated with PC1. SNPs were generated with an Affymetrix

Axiom PMRA chip and single nucleotide polymorphisms (SNPs)

on chromosome six (containing the HLA region) were selected for

study. SNPs exhibiting little variance or frequent missing genotypes

were removed from the analysis. The most significant DRB1*04

associated SNP (rs72492350) and an unassociated SNP

(Chr6:32183175) were used as phenotypes in separate GSEA

analyses (24) with 100-gene modules (25).
Statistical analyses

A linear mixed-effects model with a random effect for subject

was used to calculate intraclass correlation coefficient (ICC), which
A

B

FIGURE 4

The frequency of TIGIT+KLRG1+ TEX is influenced by RA HLA risk alleles. (A) Whole blood RNA-seq data of age- and sex-matched HC (n = 114) and
RA (n = 97) subjects were parsed by RA-associated HLA risk genotype (DRB1*0401, 0404, 0405, 0408, 1001). Dark blue, EOMES module; light blue,
EOMES module overlap; gray, no overlap with EOMES module. (B) Frequency of TIGIT+KLRG1+ memory CD8 T cells in age- and sex-matched HC
and RA subjects (n = 10/cohort) selected for top or bottom tercile EOMES signature: Left, HC versus RA; Right, Risk RA HLA versus non-risk RA HLA.
Mann-Whitney test. Gating shown in Supplementary Figure 2.
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quantifies the proportion of biomarker variation that is within and

between subjects. Age and CMV seropositivity were added as

covariates to investigate their association with biomarker

frequency. Summary statistics include mean, range, median, and

inter-quartile range; 95% confidence intervals are reported where

appropriate. Spearman’s correlation coefficients were used for

associations, Kolmogorov-Smirnov tests were used for cumulative

distribution comparisons, Wilcoxon matched-pairs signed-rank

tests were used for paired comparisons, and Mann-Whitney test

was used for unpaired comparisons while a Kruskal-Wallis test with

Dunn’s correction for multiple tests was used for multiple unpaired

comparisons. All P values < 0.05 were considered significant.
Results

The frequency of TIGIT+KLRG1+ TEX varies
more across than within subjects

We previously reported that co-expression of TIGIT and

KLRG1 marked CD8+ T cells that had phenotypic and functional
Frontiers in Immunology 07
features of exhaustion, including an EOMES signature, and that

these cells expanded following teplizumab (anti-CD3) therapy in

individuals with T1D (12, 13). To address variation of

TIGIT+KLRG1+ CD8 T cells in the absence of therapy, we first

investigated the stability of these cells in vivo in a T1D cohort

(Table 1, Supplementary Figure 1) measuring the proportion of

TIGIT+KLRG1+ CD8+ T cells at multiple time points over two years

(Figure 1A). We found that the frequency of TIGIT+KLRG1+ CD8

T cells varied little within T1D subjects over two years (mean

within-subject range 8.2% [95% CI: 6.9-9.5]) but varied greatly

between T1D subjects with a mean frequency range of 2.9% to

50.6%. To confirm that this stability is not unique to T1D, we

measured the proportion of TIGIT+KLRG1+ CD8+ T cells at

multiple time points over two years in a HC cohort (Table 1,

Figure 1B). We found that the frequency of TIGIT+KLRG1+ CD8 T

cells also varied little within HC over time (mean within-subject

range 6.5% [95% CI: 5.6-7.4]) while the mean frequency ranged

from 4.2 to 59.8%. Lack of variation within subjects is supported by

high intraclass correlation coefficient (ICC) values (83.7% and

92.0%, respectively), a measure comparing variability within

versus across subjects.
A

B C

FIGURE 5

TIGIT+KLRG1+TEX are selectively increased with abatacept therapy in RA subjects carrying RA HLA risk alleles. (A) Frequency of TIGIT+KLRG1+ TEX in
memory CD8+ T cell compartment in individuals at risk for T1D treated with teplizumab (anti-CD3) stratified by DR4 risk and DR4 non-risk. (B)
Frequency of TIGIT+KLRG1+ TEX in memory CD8+ T cell compartment in individuals with new onset rheumatoid arthritis (RA) treated with abatacept
(CTLA4-Ig) stratified by risk RA HLA and non-risk RA HLA. (C) Frequency of TIGIT+KLRG1+ TEX in memory CD8+ T cell compartment in individuals
with new onset RA adalimumab (anti-TNF) stratified by risk RA HLA and non-risk RA HLA. In B and C, risk RA HLA carried either DRB1*0401, 0404,
0405, 0408, or 1001 and non-risk RA HLA did not. In all three trials, age and CMV status (where available) did not differ between HLA groups.
Wilcoxon matched-pairs signed-rank test was used for each risk group in all studies. Gating shown in Supplementary Figure 2.
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A known contributor to increased T cell exhaustion in an

individual is age and chronic viral infection (1). In both the HC

and T1D cohorts (Figure 1), increasing years of age (effect of 0.32

[95% CI: 0.20, 0.45], P = <0.0001) and CMV seropositivity (effect of

3.67 [95% CI: 2.06, 5.28], P = <0.0001) were significantly associated

with TIGIT+KLRG1+ CD8 T cell frequency in a linear mixed-effects

model. However, disease status did not have a significant effect (P =

0.65, fixed effect test) and variance contributed by age and CMV

status were significant but not robust (age effect, 0.32, CMV effect,

3.67) suggesting that other factors also contribute to

TIIGT+KLRG1+ variation across subjects.

We also investigated the stability of TIGIT+KLRG1+ TEX in

vitro using an in vitro assay system designed to track the frequency

of TIGIT+KLRG1+ TEX cells that maintain co-expression of TIGIT

and KLRG1 upon activation. Specifically, memory TIGIT+KLRG1+

cells were sorted and labelled with a cell trace dye to identify them as

TIGIT+KLRG1+ prior to activation. Sorted cells were then mixed

with autologous PBMCs before activation with anti-CD3/anti-

CD28 antibodies (Supplementary Figure 3A). Labelled cells were

monitored over time for maintenance of TIGIT and KLRG1

expression. Measuring maintenance of this phenotype, we found

that TIGIT+KLRG1+ CD8 T cells were stable for 8 days following

anti-CD3/CD28 activation (Supplementary Figure 3B).
TIGIT and KLRG1 co-expression marks
EOMES+CD8+ TEX across human diseases

We previously reported that co-expression of TIGIT and

KLRG1 marked CD8+ T cells that had phenotypic and functional

features of exhaustion, including an EOMES signature, and that

these cells expanded following teplizumab (anti-CD3) therapy in

individuals with T1D (12–14). To expand the functional

characterization of TIGIT+KLRG1+ CD8 T cells in the absence of

therapy, we compared the transcriptome of TIGIT+KLRG1+

memory CD8+ T cells and TIGIT-KLRG1- memory CD8+ T cells

from HC. Similar to our previous finding in the setting of T1D and

immunotherapy (12), TIGIT+KLRG1+ memory CD8+ T cells had

increased expression of T cell exhaustion markers including the

transcription factor TOX and inhibitory receptors (i.e., LAG-3,

CD160, CD244), and reduced expression of cell cycle genes

(Figure 2A, Supplementary Table 2). To determine whether

TIGIT+KLRG1+ memory CD8+ T cells are similar across disease

settings, we compared EOMES module expression in sorted

TIGIT+KLRG1+ memory CD8+ T cells and TIGIT-KLRG1-

memory CD8+ T cells from HC, individuals with T1D, and

individuals with RCC; RCC was included because cancer is a

setting where exhaustion is expected (1). We also included

TIGIT+KLRG1+ CD8+ T memory cells sorted from both acute

(influenza (FLU) and chronic (CMV) viral-specific T cells identified

using pentamer staining (Supplementary Figure 2). Across all

disease settings tested, TIGIT+KLRG1+ memory CD8+ T cells

differed from memory CD8+ T cells lacking TIGIT and KLRG1

expression (K-S test, P = 9.8e-10) (Figure B).

We assessed similarity of the TIGIT+KLRG1+ EOMES signature

with other published signatures of TEX identified across disease
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asking whether other published signatures can discriminate

TIGIT+KLRG1+ cells from TIGIT-KLRG1- cells. Published TEX

signatures included four murine TEX subsets (3), common human

cancer TEX signatures (26) and the exhaustion-associated EOMES

module that we previously identified in T1D subjects treated with

teplizumab (anti-CD3) (12). Given that TIGIT and KLRG1 co-

expression were identified in peripheral blood of T1D subjects, the

T1D EOMES signature (12) best discriminated transcriptional

profiles of TIGIT+KLRG1+ and TIGIT-KLRG1- populations (K-S

test, P = 9.8e-10). Terminal TEX signatures from the mouse and

cancer data sets were also more similar to TIGIT+KLRG1+ cells (K-

S test, P = 4.3e-03 and P = 9e-06, respectively). Moreover, we

confirmed that EOMES protein expression correlates with co-

expression of TIGIT and KLRG1 on memory CD8 T cells from

HC using flow cytometry (Spearman test: r = 0.7015) (Figure 2C).

Together, these data suggest that the TIGIT+KLRG1+ CD8+ T cell

population is primarily composed of TEX and is present in the

peripheral blood in healthy individuals, individuals with

autoimmune disease, and cancer.
TIGIT+KLRG1+ memory CD8 T cells exhibit
reduced effector function

To demonstrate that TIGIT+KLRG1+ memory CD8+ T cells are

functionally exhausted and display reduced proliferation and

cytokine production, we compared HC TIGIT+KLRG1+ memory

CD8+ T cells to the total memory CD8+ T cell population which

includes all memory CD8+ T cell subsets (Supplementary Figure 4).

Compared to total memory CD8, TIGIT+KLRG1+ memory CD8+ T

cells divided fewer times (Figure 3A) and produced lower levels of

TNF-a and IFN-g upon T cell receptor stimulation (Figure 3B).

This reduced effector function corresponded with phenotypic

features of exhausted cells. Markers of effector function (CD127,

CD226) were reduced, while inhibitory markers (PD-1, CD160,

EOMES) were increased (Figures 3C, D). Thus, co-expression of

TIGIT and KLRG1 on memory CD8+ T cells marks phenotypically

and functionally exhausted TIGIT+KLRG1+ CD8+ T cells with

reduced effector functions. For simplicity, henceforth, we refer to

this population as TIGIT+KLRG1+ TEX.

To confirm that TIGIT+KLRG1+ TEX are increased in settings

previously reported to display increased CD8 T cell exhaustion, we

parsed TIGIT+KLRG1+ TEX by progressive differentiation states

and acute or chronic viral specificity. TIGIT+KLRG1+ cells were

present in all subsets of CD8+ T cells with the majority being

memory cells (Figure 3E, Supplementary Figure 2). Within

TIGIT+KLRG1+ CD8 T cells, effector memory were the most

abundant (61%) with central memory (13%) and CD45RA+

effector memory (18%) being next abundant in the same dataset

analyzed in Figure 3E. Consistent with an increase of T cell

exhaustion in chronic as compared to acute viral infections (1),

we found increased frequencies of TIGIT+KLRG1+ TEX in CMV-

and EBV-specific T cells identified by pentamer reagents as

compared to influenza-specific T cells (Figure 3F). Thus,

TIGIT+KLRG1+ TEX can be identified across lineages, but are
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found primarily in effector cells and settings previously associated

with increased TEX (1).
The frequency of TIGIT+KLRG1+ TEX is
influenced by RA HLA risk alleles

Due to the TIGIT+KLRG1+ TEX stability within and high

variation across subjects, we were able to leverage cross-sectional

datasets to explore autoimmune-related factors that influence the

frequency of TIGIT+KLRG1+ TEX. We examined whole blood RNA

sequencing (RNA-seq) data from a large cohort of age- and sex-

matched HC and RA subjects (Table 1). While we found

transcriptional differences between HC and RA, we also observed

enrichment in the expression of genes that comprise the EOMES

signature previously associated with CD8 T cell exhaustion (12)

(Figure 2) when stratifying the combined cohorts by RA HLA

autoimmune risk alleles (Figure 4A). Specifically, we focused on the

HLA DRB1*04 alleles (*0401, 0404, 0405 and 0408) and the closely

related DRB1*1001 genes most strongly associated with RA (odds

ratios > 4.2) (27), and refer to carriers of these alleles as risk RA

HLA and non-carriers as non-risk RA HLA. The HLA distribution

for the risk RA HLA subjects is shown in Supplementary Table 3.

Further investigation showed that the enrichment of EOMES

modules in the non-risk RA HLA cohort was not due to CMV

posit ivi ty s ince CMV-posit ive subjects were actual ly

underrepresented (46%) in the non-risk RA HLA cohort as

compared to the risk RA HLA cohort (52%). Likewise, the

EOMES signature does not appear to be secondary to disease as

similar enrichment in the non-risk RA HLA cohort was observed

when HC were analyzed separately (Supplementary Table 4). Last,

complementary SNP association analyses within the HLA-DRB1

locus confirmed decreased RNA-seq EOMES module association

with risk RA HLA alleles (Supplementary Figure 5). Together, these

findings support the association of an EOMES signature with the

lack of RA HLA risk.

To determine whether the composition of the EOMES

signatures in carriers of risk and non-risk RA HLA differ, we

compared EOMES module expression in TIGIT+KLRG1+

memory CD8+ T cells isolated from HC carriers of risk and non-

risk RA HLA. As in Figure 2B, we found the TIGIT+KLRG1+ cells

isolated from both risk and non-risk RA HLA subjects were more

similar to each other than their TIGIT-KLRG1- counterparts

(Supplementary Figure 6A). Risk and non-risk RA HLA

TIGIT+KLRG1+ memory CD8 T cells also shared interconnected

genes common with genes identified in TIGIT+KLRG1+ TEX as

visualized in a protein-protein interaction network and were

functionally similar (Supplementary Figure 6B).

Given the consistency of increased EOMES signature across

disease settings and the correlation with TIGIT+KLRG1+ protein

expression (Figure 2), we predicted that the increased EOMES

signature in non-risk RA HLA subjects would also be reflected at

the protein level. For this experiment, we measured the frequency of

EOMES-associated TIGIT+KLRG1+ TEX in CMV-negative age- and

sex-matched HC and RA subjects selected for high versus low
Frontiers in Immunology
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EOMES signature, defined by upper and lower terciles (Table 1).

We did not observe differences in the frequency of EOMES-

associated TIGIT+KLRG1+ TEX between HC and RA subjects; nor

were TIGIT+KLRG1+ TEX functionally different (Supplementary

Figure 7) as assessed by similarly low IFNg production. However,

there was a significant increase in TIGIT+KLRG1+ TEX abundance

in the non-risk RA HLA subjects as compared with risk RA HLA

subjects (Figure B). Thus, these data suggest the autoimmune-

associated RA HLA genotype or linked genes contributes to

variation in the frequency of TIGIT+KLRG1+ TEX in a cohort of

HC and RA subjects.
TIGIT+KLRG1+ TEX are increased selectively
in RA HLA risk subjects treated with
abatacept (CTLA4Ig)

DR4 is a common risk allele between RA and T1D (28) and is

associated with better outcome in a clinical trial of teplizumab (anti-

CD3) therapy in individuals at risk for T1D (15). Given the association

of TEX with better response to therapy in autoimmune disease (12, 13,

15), we explored the relationship between TIGIT+KLRG1+ TEX

frequency and HLA risk alleles in the setting of immune

interventions leveraging recent clinical trials. We first asked whether

TIGIT+KLRG1+ TEX are selectively modulated in DR4 T1D subjects,

examining the teplizumab (anti-CD3) trial in individuals at risk for

T1D since DR4 was previously identified as a weak correlate of

response (15). We found a significant increase in TIGIT+KLRG1+

TEX among DR4 risk subjects (P = 0.0033), but not DR4 non-risk

subjects (P = 0.2650) (Figure 5A). Note, CMV seropositivity andmean

age did not differ between DR4 risk and non-risk subjects. Thus, we

link the previous DR4 association with response to a selective increase

in TIGIT+KLRG1+ TEX in DR4 subjects.

We analyzed CyTOF data from the Early AMPLE trial

(ClinicalTrials.gov: NCT02557100), a randomized, head-to-head,

single-blind study comparing abatacept (CTLA4Ig) and

adalimumab (anti-TNF) in new-onset RA (16). The results from

this trial in biologic naïve patients demonstrated a superior

response in the abatacept arm that was more pronounced in

subjects who carried the shared epitope alleles (HLA DR1, DR4,

DR10) (16). Here, we examined TIGIT+KLRG1+ TEX in the

abatacept-treated group based on risk and non-risk RA HLA as

defined in Figure 4. We did not find an increase in TIGIT+KLRG1+

TEX with treatment across all subjects but there was notable

heterogeneity. When stratifying by RA HLA risk, we observed a

significant increase in the frequency of TIGIT+KLRG1+ TEX in risk

RA HLA subjects (P = 0.0043), but not non-risk RA HLA subjects

(P = 0.1250) following treatment with abatacept (Figure 5B). In

contrast, there was no change in the frequency of TIGIT+KLRG1+

TEX in RA HLA risk subjects after adalimumab treatment in either

risk or non-risk RA HLA subjects (Figure 5C). Mean age of RA

HLA risk groups did not differ in either study. Collectively, these

findings suggest that TIGIT+KLRG1+ TEX frequency depends, in

part , on HLA risk alleles and may be modulated by

some immunotherapies.
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Discussion

TEX are clearly associated with worse outcome in chronic viral

infection and cancer (1), yet the opposing association of reduced

TEX with autoimmunity is more nuanced. For example, reduced TEX

have been associated with disease progression or severity (8, 10, 11)

but not disease onset; in T1D, the frequency of TEX does not

discriminate HC from T1D, only rate of disease progression (10).

Here, we associate reduced TEX with RA HLA risk alleles in both

HC and RA subjects, linking TEX to predisposition to

autoimmunity. In addition, co-stimulation blockade selectively

increased TEX in risk RA HLA subjects, suggesting this risk

phenotype may be modulated with therapy. These findings may

help determine who may respond best to TEX augmenting therapies.

Reduced TEX in HC and RA subjects carrying RA HLA risk

alleles was enabled by identification of markers (TIGIT and

KLRG1), which together broadly defined dysfunctional CD8 T

cells across disease cohorts. The foundation of this observation

lies in the EOMES transcriptional signature that we first defined and

associated with TIGIT+ KLRG1+ CD8 T cells in T1D responders to

teplizumab (anti-CD3) therapy (12) and here extended to HC,

cancer, and chronic viral infection. EOMES has long been

associated with TEX when expressed at high levels in combination

with other TEX-associated genes (29, 30) and is a common feature of

multiple TEX signatures (31–35), in which high levels of nuclear

EOMES drives PD-1 expression (36), a common inhibitory receptor

of TEX. Moreover, one of the co-expressed genes within the

TIGIT+KLRG1+ EOMES signature is TOX which is a

transcription factor known to promote TEX differentiation,

phenotype, and persistence (37, 38). Thus, TIGIT and KLRG1

surface co-expression broadly define TEX. However, it should be

noted that this population broadly defines TEX with different

degrees of exhaustion suggesting that some subsets of

TIGIT+KRLG1+ cells may be more exhausted than others (e.g.

early and late memory) and is limited to application in humans

since KLRG1 expression dynamics and association with TEX differ

in mice (39, 40).

The RA HLA risk association with lower TIGIT+KLRG1+ TEX is

unique in two ways. First, to our knowledge, this is the first linkage

of an autoimmune-associated risk allele and TEX. HLA associations

in RA have suggested involvement of antibody and CD4 T cell

responses to date, not CD8 T cells (41). Although EOMES (42) and

CD8 T cell differentiation states (43) have been linked to

autoimmune-associated SNPs, association with RA HLA alleles

has not previously been described. We suggest that the robust RA

HLA association with TEX that we identified was due to our

experimental design, which used a broad definition of TEX (as

opposed to TEX subsets), built from the observation that age and

CMV seropositivity are not the only factors that contribute to

increased TIGIT+KLRG1+ TEX, as well as the risk and non-risk RA

HLA groups being matched for disease co-factors including age and

stage of disease. Second, reduced TEX are associated with a risk

allele, not disease progression. This suggests that reduced TEX in

risk RA HLA subjects may play a role in autoimmune susceptibility

as well as contributing to faster progression and increased severity

(7, 9, 10). Thus, while antigen is a main driver of exhaustion,
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age, a lack of environmental exposures (e.g., CMV seropositivity),

and RA HLA risk alleles.

We identified a CD8 T cell subset that is associated with a Class

II HLA allele. This is unusual since HLA Class II associations

directly implicate a role for antigen-presenting cells and CD4 T cell

help. For example, autoimmune-associated HLA alleles in RA and

T1D are associated with the presence of specific autoantibodies

(44). However, indirect linkage of T cell help and potential CD8

responses is not unprecedented; reduced autoantibody responses to

specific islet antigens in T1D have been associated with the Class I

HLA*24 allele (45). Our findings from therapeutic intervention also

support an indirect influence of HLA on TEX frequency. The fact

that TEX also increase in some non-risk RA HLA subjects, suggests

that abatacept is not a driver of TEX, but instead, it influences factors

that may promote expansion of TEX. Abatacept is known to block

APC-CD4 T cell interactions resulting in reduced CD4 helper cells

across multiple autoimmune diseases (46–51). Also, teplizumab

(anti-CD3) therapy can result in T cell receptor activation without

co-stimulation, which may limit CD4 T cell help. It has been shown

that reduced T cell help can augment TEX in other contexts (8, 52,

53). Further studies are needed to dissect the potential role of CD4 T

cell help on TEX in risk RA HLA subjects.

The HLA locus is complex and co-factors differ across diseases,

leaving some questions. Unlike in HC and RA, reduced

TIGIT+KLRG1+ TEX were not associated with T1D HLA DR4

risk alleles at baseline in individuals with T1D. T1D shares some

HLA risk alleles with RA including DRB1*0401, 0404, and 0405 but

is uniquely associated with DRB1*0402 with an odds ratio higher

than 8 (44). In addition, while the RA HLA-TEX association is

recapitulated in baseline samples from abatacept- (CTLA4Ig)

treated RA subjects, it was not in the adalimumab (anti-TNF) RA

treatment cohort; although, this may be due to higher baseline TEX

proportions; TEX were significantly higher (P = 0.0036) at baseline

in adalimumab- as compared to abatacept-treated RA subjects.

Together these data suggest that the TIGIT+KLRG1+ TEX

association with HLA is not absolute and T1D-specific disease-

related co-factors (e.g., age, stage of disease) may contribute to the

lack of an RA HLA-TEX association that is found in HC and RA.

Alternatively, TEX may be associated with an HLA linked gene that

is less prevalent in T1D. These results justify a focused and larger

follow-up study powered to address individual HLAs.

There are several limitations to this study. By focusing on a

broad definition of TEX, we were not able determine associations

with early, partial, or late TEX, however, based on the variability in

the degree of reduced function, the TIGIT+KLRG1+ TEX population

is likely heterogeneous. We lack validation of the selective

augmentation of TEX in abatacept-treated RA subjects and do not

have access to samples to ask about the transient or persistent

nature of these increases. Identifying clinical correlates of immune

response in the Early AMPLE trial (18) was challenging since the

majority of subjects responded to abatacept. Thus, our studies do

not support or discount the possibility that increasing TEX with

therapy improves outcome (decreases disease activity, ACPA or

rheumatoid factor levels) in RA as has been shown in T1D with

teplizumab (anti-CD3) therapy (12, 13). Moreover, the impact of
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abatacept may be subtle, as an EOMES signature of response was

not found in individuals with T1D treated with abatacept; although,

this could also be due to the timing of sampling (54). Nonetheless,

some studies do suggest that modulating TEX may influence RA

disease outcome; immune checkpoint blockade reduces TEX and

can result in onset of RA (55, 56) and a reduction of CD28- T cells

(that may include TEX) has been associated with clinical response to

abatacept (20).

In summary, we demonstrate that increased autoimmune

genetic risk is associated with lower levels of hypofunctional

TIGIT+KLRG1+ TEX. TIGIT+KLRG1+ TEX in RA HLA risk

subjects can be selectively augmented by treatment with abatacept

(CTLA4Ig) in RA and by teplizumab (anti-CD3) in T1D. More

broadly, these studies demonstrate that variability in TEX

frequencies is not only associated with disease severity or

progression, but also disease risk, and lower levels of TEX may be

used as a selection criterion for treatments that augment TEX.
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