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Preservation of functionality,
immunophenotype, and
recovery of HIV RNA from
PBMCs cryopreserved for
more than 20 years
Wayne B. Dyer1,2*, Kazuo Suzuki3, Angelique Levert3,
Mitchell Starr3, Andrew R. Lloyd2 and John J. Zaunders3

on behalf of the Immunovirology Research Network (IVRN)
1Strategy & Growth, Australian Red Cross Lifeblood, Sydney, NSW, Australia, 2The Kirby Institute,
University of NSW, Sydney, NSW, Australia, 3NSW State Reference Laboratory for HIV, Centre for
Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
Background: Many research laboratories have long-term repositories of

cryopreserved peripheral blood mononuclear cells (PBMC), which are costly to

maintain but are of uncertain utility for immunological studies after decades in

storage. This study investigated preservation of cell surface phenotypes and in-

vitro functional capacity of PBMC from viraemic HIV+ patients and healthy

seronegative control subjects, after more than 20 years of cryopreservation.

Methods: PBMC were assessed by 18-colour flow cytometry for major

lymphocyte subsets within T, B, NK, and dendritic cells and monocytes.

Markers of T-cell differentiation and activation were compared with original

immunophenotyping performed in 1995/1996 on fresh blood at the time of

collection. Functionality of PBMC was assessed by culture with influenza antigen

or polyclonal T-cell activation, to measure upregulation of activation-induced

CD25 and CD134 (OX40) on CD4 T cells and cytokine production at day 2, and

proliferative CD25+ CD4 blasts at day 7. RNA was extracted from cultures

containing proliferating CD4+ blast cells, and intracellular HIV RNA was

measured using short amplicons for both the Double R and pol region pi code

assays, whereas long 4-kbp amplicons were sequenced.

Results: All major lymphocyte and T-cell subpopulations were conserved after

long-term cryostorage, except for decreased proportions of activated

CD38+HLA-DR+ CD4 and CD8 T cells in PBMC from HIV+ patients.

Otherwise, differences in T-cell subpopulations between recent and long-term

cryopreserved PBMC primarily reflected donor age-associated or HIV infection-

associated effects on phenotypes. Proportions of naïve, memory, and effector

subsets of T cells from thawed PBMC correlated with results from the original

flow cytometric analysis of respective fresh blood samples. Antigen-specific and

polyclonal T-cell responses were readily detected in cryopreserved PBMC from

HIV+ patients and healthy control donors. Intracellular HIV RNA quantitation by

pi code assay correlated with original plasma viral RNA load results. Full-length

intracellular and supernatant-derived amplicons were generated from 5/12
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382711/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382711/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382711/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382711/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1382711/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1382711&domain=pdf&date_stamp=2024-08-16
mailto:wdyer@redcrossblood.org.au
https://doi.org/10.3389/fimmu.2024.1382711
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1382711
https://www.frontiersin.org/journals/immunology


Dyer et al. 10.3389/fimmu.2024.1382711

Frontiers in Immunology
donors , and sequences were ≥80% wi ld-type, cons is tent wi th

replication competence.

Conclusions: This unique study provides strong rationale and validity for using

well-maintained biorepositories to support immunovirological research even

decades after collection.
KEYWORDS

cryopreservation, biobank, viability, immunophenotyping, HIV reactivation, T cell
subsets, memory T cells, T cell function
Introduction

Cryopreservation of clinical peripheral blood specimens

is routine for stem cell transplantation and cellular therapy

programs and frequently required in vaccine and immunotherapy

trials. Short-to-medium-term storage of peripheral blood

mononuclear cells (PBMC) is well established in research

protocols to allow assessment of immunological responses in

centralised laboratories to avoid site and operator-based variation

and to enable simultaneous comparison of longitu1dinally collected

specimens in clinical trials and cohort studies, particularly in

subjects with known outcomes. Long-term biobanking is also

commonly undertaken to support future strategic research. For

instance, in relation to blood-borne virus (BBV) infections, stored

specimens from historical patient cohorts, such as HIV-infected

patients sampled prior to the availability of highly active

antiretroviral treatments (HAART) or patients with acute

hepatitis C sampled prior to the advent of the rapidly curative

direct-acting antiviral treatments, could provide insights into

immunological response patterns relative to current patients.

Similarly, to determine the role of historical protective immunity

against a current disease such as SARS CoV-2, access to PBMC

stored before the major outbreaks and widespread immunisation

programs are required. However, the unknown viability and

functional quality of such historical collections may cast doubt on

the value of these investigations and raise concerns of the financial

burden associated with maintaining these collections.

The useful lifespan of a biorepository and the factors

influencing sample degradation are debated topics. The

functional quality of cryopreserved PBMC samples is influenced

by many confounding variables, including blood sample collection

and shipment conditions (1, 2), timely and proficient processing

of blood samples according to specified methods and reagents (3–

7), and training and support via relevant quality assurance

programs (4, 8). PBMC quality parameters are also influenced

by thawing procedures (9, 10), and cryogenic temperature

excursions during specimen retrieval and handling (5, 11).
02
Regardless of these logistical, processing, and handling variables,

the overall value of a well-curated and stored PBMC repository

depends on the time frame for which ideally cryopreserved and

stored PBMC retain adequate viability, leukocyte subset

representation, and functional capacity, to support research

objectives of end users.

Previous studies have reported well-preserved PBMC function

capacity after long-term cryopreservation, defined as 12 months (7,

12, 13), 7 years (3), and over 10 years (6). By contrast, other studies

have reported a functional decline in cryopreserved cellular therapy

products within 3 years (14), or after only 1 year in a research

collection (15). It remains unclear to what extent these varied

durability outcomes were attributable to limitations in the

logistical, processing, and handling of the samples, as opposed to

slow deterioration in the functional integrity of PBMC stored long

term in liquid or vapour phase nitrogen below the glass transition

point of water (−135°C), which is the point at which virtually all

biological functions stop (16).

A biorepository of PBMC from HIV+ and HCV+ patient

cohorts and healthy control populations was established with

regular sample collection and storage between 1994 and 2005,

when the repository was incorporated into the ongoing

Immunovirology Research Network (IVRN; https://ach4.org.au/

immunovirology-research-network-ivrn/). The IVRN includes an

Australia-wide network of laboratories with skills in separation and

storage of PBMC, a biannual quality assurance program for this

activity, and a centralised biorepository, all underpinning provision

of high-quality PBMC samples to support strategic Australian

immunovirology research in relation to BBV infections. The

IVRN biorepository allowed comparison of viability, subset

representation, and immune function of PBMC cryopreserved for

greater than 20 years compared with the original fresh whole blood

analysis and to samples cryopreserved for less than 1 year. The

findings demonstrate high viability, preserved leukocyte

populations and T-cell subsets, functional capacity, and intact

viral RNA from archived HIV+ patient PBMC, demonstrating the

utility of such samples for current research.
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Methods

Ethical approval

Access to specimens from historical biorepository specimen

collections and contemporary specimen collections was approved

by the UNSW Human Research Ethics Committee (HC200777),

and St Vincent’s Hospital Human Research Ethics Committee

(HREC/13/SVH/145 and HREC/10/SVH/130).
Participants and PBMC specimens

Long-term cryopreserved PBMC fromHIV-positive (n=12) and

healthy uninfected control donors (n=20), originally collected

between 1995 and 1997 (17) were used for this study. These

samples were subjected to whole blood immunophenotyping on

the fresh samples at the time of collection (18). In addition, recently

cryopreserved PBMC (<12 months; n=20) from healthy anonymous

laboratory staff, collected as control samples for the IVRN quality

assurance program, were used. Fresh PBMC were also obtained

from healthy volunteers, as previously described (19, 20).
PBMC fractionation and cryopreservation

Whole blood was centrifuged at 1,000 g for 10 min, plasma was

removed for storage, and then buffy coat cells were removed and

diluted in serum-free RPMI medium, underlaid with Ficoll-Paque

Premium (Sigma-Aldrich, Melbourne, Australia) and then

centrifuged at 700g for 20 min with the brake off. PBMC were

harvested and washed once in RPMI and then once in RPMI with

10% pooled human serum (in-house reagent). After counting,

PBMC were resuspended in chilled cryopreservation medium

made fresh from RPMI with 10% cell culture grade DMSO

(Sigma-Aldrich) and 20% pooled human serum, dispensed into

chilled cryovials, and then immediately processed in a controlled-

rate freezer and transferred into liquid nitrogen.
PBMC thawing and viability assessment

PBMC vials were transferred from vapour-phase nitrogen

storage on dry ice, rapidly thawed in a 37°C water bath only until

a small ice pellet remained, diluted incrementally to 14 ml with

RPMI/10% foetal bovine serum (FBS; CSL, Australia) within 30 s,

and centrifuged at 300g for 8 min. After a second wash in RPMI/

10% FBS, the PBMC were resuspended in 0.5 ml phosphate-

buffered saline (PBS) and treated with DNase 1 Solution (0.1 mg/

ml; STEMCELL Technologies, Vancouver, Canada) for 15 min at

room temperature, according to the manufacturer’s directions, and

then washed in RPMI/10% FBS. The DNase treatment was used to

remove free DNA released from dead cells, which caused loss of

viable cells by adherence to cell clumps during thawing and

washing. Recently cryopreserved PBMC were not treated with

DNase. PBMC (lymphocytes and monocytes) were counted in a
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Coulter ActDiff haematology analyser (Beckman Coulter, Brea,

CA). Viability was assessed by Trypan Blue exclusion counted

manually in a haemocytometer.
PBMC lineage flow panels

One million PBMC were resuspended in 0.5 ml PBS with 1.5 µl

Aqua viability exclusion dye and incubated for 30 min at room

temperature, and then quenched with 1 ml FBS, washed in medium,

resuspended in 100 µl, and divided into two tubes, before adding

antibody master mixes for lineage and T-cell panels (Supplementary

Table 1). After a 15-min incubation, cells were washed with 2 ml PBS

and resuspended in 250 µl of 1% paraformaldehyde in PBS (PFA/

PBS) analysis within 2 h on a five-laser LSRFortessa flow cytometer

(BD Biosciences, Franklin Lakes, NJ). For each set of experiments,

cytometer settings were controlled using Cytometer Setup and

Tracking Beads (BD Biosciences) and a daily compensation matrix

was generated using compensation beads (BD Biosciences) coated

with each antibody, as previously described (19). Freeze–thaw-

degraded PBMC stained with Aqua viability dye were used for

compensation in the Aqua channel.
Antigen-specific CD4 T-cell memory
measured by OX40 activation-induced
marker assay, day 7 proliferation assay, and
cytokine release

To assess CD4 T-cell memory function in historical PBMC

samples, two million PBMC were suspended in 1,200 µl RPMI with

10% pooled human serum (in-house reagent) and divided into six

wells of a 96-well culture plate, and duplicate wells were incubated

at 37°C (i) with no addition (negative control); (ii) supplemented

with 2 µl influenza vaccine (Influvac Tetra, 2018 formulation,

Mylan Health, Sydney, Australia)7; and (iii) supplemented with 2

µl anti-CD3/28/2 (STEMCELL Technologies; positive control),

respectively. After 2 days of incubation, 80 µl medium was

removed from one set of wells for cytokine assay (see below),

cells were resuspended, and 40 µl of the cell suspension was added

to the OX40 assay antibody cocktail containing anti-CD3, -CD4,

-CD25, and -CD134 monoclonal antibodies (Supplementary

Table 1), incubated for 20 min, washed in PBS, and resuspended

in 250 µl PFA/PBS for flow cytometric identification of CD25

+CD134+ antigen-specific CD4 T cells, as previously described

(20, 21). A positive OX40 response was defined as ≥0.2% of CD4 T

cells, as previously described (22).

Supernatants were collected at 48 h from each of the three

separate OX40 activation-induced marker (AIM) cultures set up for

each PBMC sample, as described above. Supernatants were stored at

−30°C and batch tested for each of the following cytokines IL-1b,
TNF-a, IFN-g, IL-17, IL-10, and IL-22, using a multiplex cytometric

bead assay (LEGENDplex, BioLegend, San Diego, CA, USA)

according to the manufacturer’s directions and analysed on a five-

laser Fortessa flow cytometer (BD Biosciences). Concentrations of

cytokines were determined from standard curves using Qognit data
frontiersin.org
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analysis software (BioLegend) according to the manufacturer’s

directions. The limit of detection for each cytokine was ≤1 pg/ml,

and the upper limit of each assay was 10,000 pg/ml (except IFN-g:

18,000 pg/ml; IL-22: 15,000 pg/ml; and IL-17: 12,000 pg/ml).

The remaining wells were cultured for a further 5 days, and

proliferating CD4 T cells at day 7 were identified as CD25high blast

cells (enlarged on Forward Scatter) as previously described (23).
Viral nucleic acid extraction from activated
T cells, and HIV-1 RNA amplification
and detection

After a 7-day activation and proliferation of PBMC cultured

with anti-CD3/28/2 (described above), HIV-1 RNA was extracted

from the cells, using the Maxwell RSC automated extraction

platform, with the Maxwell RSC Simply RNA Tissue kit

(Promega Corporation, Madison, WI, USA) according to the

manufacturer’s recommendations. Also, total nucleic acid (TNA)

was purified from the culture supernatants using the Maxwell RSC

Viral Total Nucleic Acid kit (Promega).

HIV-1 RNA was amplified using primers and probes targeting

the HIV-1 LTR R region, as previously described (24, 25). In

addition, two sets of primers were used for the Pol region, Set-15

forward AAAAGAAAAGGGGGGATTGGG and reverse

TACTGCCCCTTCACCTTTCCA (positions 4785 to 4976, 191

bp), plus Set-17 forward GGGGGTACAGTGCAGG and reverse

TGTATTACYACTGCCCCTTCACCTTT (positions 4804 to 4984,

180 bp), and probe AAAAAAAAAAAAAAATTTGGAA

AGGACCAGC. The PCR was performed using Luna Probe One-

Step RT-qPCR 4X Mix with UDG (New England Biolabs, Ipswich,

MA, USA), and the following cycling conditions: a reverse

transcriptase step at 55°C for 10 min, one denaturation step at

95°C for 2 min, followed by 35 cycles of (95°C for 13 s, 62°C for 40

s). The amplicons were analysed using our previously described

piCode method (Suzuki et al, AIDS 2019). Quantification of HIV-1

copy number was determined with a standard curve generated with

a HIV-1 gBlock gene fragment (Integrated DNA Technology,

Coralville, Iowa, USA): 0.64-2000 HIV-1 copies/µl. The HIV-1

copy number was normalised per one million of WBCs.
Nanopore sequencing

Amplicons from long transcripts of HIV RNA, covering gag-pol

region, were prepared with One-Step RT-PCR followed by nested

PCR using the Superscript IV One-Step RT-PCR System (Thermo

Fisher Scientific, Waltham, MA, USA). RT-PCR was performed

using outer primers, forward TGGGTGCGAGAGCGTC and

reverse TACTGCCCCTTCACCTTTCCA (4185 bp), and the

following conditions: 45°C for 20 min followed by 98°C for 2

min, 50 cycles of (98°C for 10 s, 68°C for 45 s, 72°C for 2 min 15

s), and a final elongation at 72°C for 5 min. The nested PCR was

performed using inner primers, forward GAGATGGGT

GCGAGAGCGTCA and reverse ACTGTAYCCCCCAATCCCCC
Frontiers in Immunology 04
(4,027 bp), and PCR cycling conditions as follows: 98°C for 2 min

followed by 50 cycles of (98°C for 10 s, 62°C for 45 s, 72°C for 2 min

15 s), and a final elongation at 72°C for 5 min.

The amplicons were purified using Agencourt AMPure XP

(Beckman Coulter, Brea, CA, USA), and the concentration was

measured with the Qubit 4 Fluorometer and Qubit 1X dsDNA HS

Assay Kit (Thermo Fisher Scientific). DNA libraries for nanopore

sequencing were prepared using Native Barcoding Kit 96 V14 (SQK-

NBD114.96) following the protocol Ligation sequencing amplicons,

and Native Barcoding Kit 24 V14 (NBA_9168_v114_revH_

15Sep2022) provided by Oxford Nanopore Technology (ONT,

Oxford, UK). The DNA amplicons were end-repaired, barcoded

with unique adapter indexes, and pooled, and long fragment buffer

was used for the final wash. The concentration of the prepared DNA

library was measured with the Qubit before loading into the port of a

R10.4.1 flow cell (ONT). The sequencing run was performed for 1 h,

with fast-base-calling, in a MinION Mk1C device and MinKNOW

software (ONT). The sequences were evaluated by reference to the

Stanford HIV Drug Resistance Database, and mutations were

reported using a Mutation Detection Threshold of 20%.
Statistical analysis

Summary statistics were expressed as mean and SD. Data were

assessed for normality to guide choice of t-test vs. Mann–Whitney,

and ANOVA vs. Kruskal–Wallis tests for comparisons between

groups, ANOVA vs. Friedman tests for paired multiple

comparisons, and Spearman correlations between thawed PBMC

and historical whole blood immunophenotyping data.
Results

Donor groups and PBMC sample details

Donor and sample details for each group, including age at

donation, time in cryostorage, viability, and recovery, are shown

in Table 1. The ages of the healthy control subjects at collection

for their long-term cryopreserved samples were greater than for

the long-term cryopreserved HIV+ patients (p=0.0319). The

donor age for the recently cryopreserved PBMC was estimated

from a subset of known donors in this predominantly anonymous

donor group. All HIV+ patients were infected for >10 years at the

time of sample collection, none had received antiretroviral

treatment, most were asymptomatic and classified as HIV

“slow-progressors” (CD4 T-cell counts (mean ± SD): 609 ±

327), and all were viraemic (plasma viral load: 101,542 ±

250,058 copies/ml). Viability of thawed PBMC decreased

slightly after long-term cryopreservation (p=0.0612); however,

only 5 of the 31 long-term cryopreserved PBMC had viability

below 80%. The recovery of cells after long-term cryopreservation

was higher than the recently cryopreserved PBMC, likely

confounded by potential differences in counting methods used

over time.
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Leukocyte lineages in PBMC are preserved
after long-term cryopreservation

The gating strategy to enumerate major CD45+ subpopulations

from long-term cryopreserved PBMC is shown in Figure 1.

Phenotyping of the major subsets of PBMC, including T cells, B

cells, NK cells, dendritic cells, monocytes, and basophils, confirmed

that these subsets were all present in specimens stored for >20 years

(Figure 2). While significant differences were observed in most

subpopulations, they were most probably attributable to differences

in donor age between groups, in particular reduced pDCs (26) and

CD56++ NK cells (27), or findings typical of untreated HIV-1

infection. Reduced numbers of monocytes, particularly the CD16+

subset, may be due to long-term cryopreservation, because these cells

are reportedly increased in the elderly (28, 29). Nevertheless, all major

populations were represented in the long-term cryopreserved

PBMC samples.
T-cell subsets in PBMC were preserved
after long-term cryopreservation

The gating strategy for CD4+ and CD8+ T-cell subset

phenotyping, shown in Figure 3, was performed on recent and

long-term cryopreserved PBMC, as well as fresh blood samples.

All T-cell subsets were represented in long-term cryopreserved

PBMC (Figure 4). Some differences between long-term and

recently cryopreserved PBMC were again most probably

associated with donor age and/or HIV-1 infection status, not

storage time. These included reduced naïve CD4 and CD8 T cells

and naïve TREGs, increased memory and activated CD4 and CD8

T cells, and increased memory CD4 TREGs and increased CD8

TEMRA cells, all previously reported in older and/or HIV+

subjects (30, 31) (see also Discussion). However, we also

observed that long-term and even recent cryopreservation

appears to decrease CD49d expression, and therefore long-term

stored specimens had the lowest frequencies of gut-homing

phenotype CD4 T cells. Expression of CCR5, the predominant

HIV-1 co-receptor, appeared to be well maintained long-term.

Comparisons between fresh blood and cryopreserved PBMC

suggested that cryopreservation may reduce proportions of

activated MAIT and CXCR5+ subsets of CD4 and CD8 T

cells (Figure 4).
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Correlation between historical whole
blood and thawed PBMC
immunophenotyping data from the same
blood draw

Data were available from immunophenotyping by four-colour

flow cytometry, which was performed on fresh blood taken from

the same blood draws used for PBMC separation in the 1990s (18).

Representative flow plots from this era are shown in Figure 5,

including CD45RA+ and CD45RO+ CD4 T cells, and CD38 and

HLA-DR co-expression in control subjects compared with those

with early untreated HIV-1 infection. Correlations between the

historical results and the results from thawed long-term

cryopreserved PBMC are shown in Figure 6. In HIV+ samples,

we observed strong correlations for naïve and memory subsets in

both CD4 and CD8 T cells. However, there was a clear loss of

activated CD38+ HLA-DR+ subsets of CD4 and CD8 T cells after

cryopreservation for these untreated viraemic HIV+ patients,

although there was still a correlation with the original results.

Similarly, the CD28−/TEMRA phenotype of CD8 T cells appeared

to be retained after cryopreservation in both healthy control and

HIV+ patient PBMC but appeared to be better preserved in

healthy control PBMC.
Antigen-specific T-cell responses after
long-term cryopreservation

Antigen-specific and polyclonal CD4 T-cell responses were

assessed in long-term cryopreserved samples from healthy control

subjects and viraemic HIV+ patients. Gating for day 2 cultured

antigen-specific T cells measured by the OX40 activation-induced

marker (AIM) assay is shown in Figure 7A. Day 7 proliferation of T

cells shown in Figure 7B was defined by a dramatic increase in

CD25+ large blast cell numbers.

The OX40 AIM assay (Figure 8A) confirmed preservation of

antigen-specific metabolic signalling, showing detectable recall

responses to Flu antigen in samples from 12 out of 19 control

subjects and 10 of 12 HIV+ patient samples. All long-term

cryopreserved PBMC retained the ability to respond to the

polyclonal stimulator anti-CD3/CD28/CD2. The proportion of

proliferating blasts in response to influenza antigen was reduced
TABLE 1 Group characteristics of study participants.

Fresh blood
healthy controls

Recent cryo
healthy controls

Long-term cryo
healthy controls

Long-term cryo
viraemic HIV+

‡p-values

Number 16 20 19 12 NA

Donor age 46.3 ± 12.6 *43.4 ± 11.9 59.9 ± 15.8 47.2 ± 10.2 0.0319

Cryo (years) N/A 0.29 ± 0.26 24.0 ± 0.26 26.9 ± 0.4 <0.0001

Viability N/A 94.2 ± 3.5% 90.8 ± 6.7% 87.7 ± 8.8% 0.0612

Recovery N/A 78.9 ± 22.0% 141 ± 34.8% 135 ± 65.7% <0.0001
Data expressed as mean ± SD. NA, not applicable. *Estimate based on a subset of donors (n=6); age data not available from other anonymous donors. ‡Kruskal–Wallis test comparing recent with
long-term cryopreserved PBMC groups.
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in the HIV+ compared with control donors (Figure 8B), whereas a

larger proportion of cells from HIV+ patients were responsive to

polyclonal stimulation measured in day 7 cultures. This

proportional difference in response between HIV+ and control

groups was observed in our original 3H-Thymidine incorporation

assays in the 1990s (32). Furthermore, the OX40 AIM assay results

at day 2 correlated with proliferation results at day 7 for each

sample (r=0.79, p<0.001), as we previously reported for fresh

PBMC (21).
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Strong cytokine responses to antigenic and polyclonal

stimulation were detected in culture supernatants collected on

day 2 from the long-term cryopreserved control donor PBMC

(Figure 9); culture supernatants from HIV+ patient PBMC were

used for live virus isolation and therefore not assessed for cytokines.

Polyclonal stimulation with anti-CD3/CD28/CD2 induced

significant release of all cytokines tested. Influenza antigen

induced a significant TNFa, IFNg, and IL-22 response, whereas

the IL-10 and IL17 response was weak (Figure 9).
FIGURE 1

Representative flowplots showing immunophenotype gating for major subpopulations of PBMC.
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HIV RNA transcripts from proliferating
T cells

PBMC cultures from HIV+ donors, stored for >20 years, were

activated for 7 days with the T cell mitogen, anti-CD3/CD28/

CD2, and intracellular HIV-1 RNA expression is shown in

Figure 10A. HIV-1 transcripts were detected in 11 out of 12

PBMC samples following activation in vitro. For the 11 samples
Frontiers in Immunology 07
that had available plasma viral loads from the original blood

samples, there was a significant correlation between activation-

induced HIV-1 RNA and the original plasma viral load

levels (Figure 10B).

Furthermore, amplicons were generated from long unspliced

transcripts spanning at least 4 kbp, from intracellular HIV RNA

from 5 out of 12 PBMC cultures from HIV+ subjects (Figure 10C).

Nanopore sequencing demonstrated wild-type unspliced HIV-1
FIGURE 2

Major subpopulations of PBMC in recently cryopreserved healthy controls compared with long-term cryopreserved healthy control and viraemic
HIV+ patient PBMC.
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transcripts up to and including pol gene, consistent with replication

competent viral transcripts. Also, sequences of HIV-1 transcripts

recovered from cell-free culture supernatants matched the wild-type

cellular transcripts (Figure 10D).
Discussion

This study is novel in directly comparing T-cell phenotyping

between the original fresh blood data and in PBMC from the same
Frontiers in Immunology 08
samples after decades in cryogenic storage, performed by the same

flow cytometry laboratory. The principal outcomes of this study

were preservation of all major PBMC subpopulations and the

majority of T-cell subsets, and preservation of antigen-specific

and polyclonal T-cell responses in both viraemic HIV+ patients

and control donors, verified by data generated decades ago from

these samples (18, 32). Robust antigen-specific OX40 upregulation

is not only an important indicator of preserved metabolic signalling

but also essential in regulating T-cell clonal expansion and survival,

and effector cell differentiation (33–35). We observed a robust
FIGURE 3

Representative flowplots showing immunophenotype gating for major subsets of CD4+ and CD8+ T cells in thawed PBMC samples.
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cytokine response to antigenic and polyclonal stimulation in long-

term cryopreserved PBMC. The IL-2 response was not assessed;

however, we observed large clumps of T-cell blasts in culture,

confirmed by high proportions of large CD25++ lymphoblasts in

day 7 antigen-specific cultures, which therefore may indicate that

IL-2 release was substantial. These observations provided a

snapshot of proliferating cells, which is different to tracking

proliferation by the CFSE assay. Some of the T-cell subsets were

only recently described (e.g., MAIT cells, and CXCR5+ CD4 and

CD8 T cells); therefore, their representation in long-term

cryopreserved PBMC provided a unique retrospective analysis in

these rare patient cohorts. We also demonstrated the ability to
Frontiers in Immunology 09
recover HIV RNA from cultured PBMC after 27 years of

cryopreservation. Overall, our study provides crucial evidence and

rationale for ongoing maintenance of long-term biorepositories, to

facilitate retrospective cutting-edge immunovirology research

decades after sample collection.

In general, the observed differences in leukocyte populations

and T-cell subsets between recent and long-term cryopreserved

PBMC primarily reflected known effects of age-associated and HIV

infection-associated effects on phenotypes. Our previous studies

included relatively older subjects infected with nef-deleted HIV and

their age-matched uninfected controls (18), whereas the current

study compared PBMC from these older controls versus a separate
FIGURE 4

Major CD4+ and CD8+ T-cell subsets in recently cryopreserved healthy control PBMC, compared with fresh PBMC, long-term cryopreserved
healthy control PBMC, and long-term cryopreserved viraemic HIV+ patient PBMC.
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cohort of highly viraemic HIV+ subjects (17). Our recently

cryopreserved PBMC and fresh PBMC were not age-matched to

these archived PBMC samples. Donor age effects may include

reduced CD4 T cells, increased naïve but reduced memory and

plasma B cells, reduced plasmacytoid dendritic cells (26), and

reduced CD56-bright NK cells (36). Changes in leukocyte

populations in long-term cryopreserved PBMC not reported to be

donor age-associated included increased CD8 T cells, reduced total

NK cells (36), increased myeloid dendritic cells (26), and reduced

CD16+ monocytes (28, 29). For example, non-classical CD16+

monocytes are reported to be increased in the elderly (29);

however, our results suggested that they are susceptible to loss in

long-term cryopreservation.

Well-known phenotypic changes associated with HIV infection,

including increased proportions of CD8 T cells and plasmablasts,

and reduced proportions of basophils, dendritic cells, NK cells,

monocytes, and B cells, particularly the memory B-cell subset, were

observed in the thawed HIV+ PBMC, as expected. HIV-1 infection

characteristically induces T-cell activation markers, particularly

upregulated expression of CD38 and HLA-DR, and loss of CD28

on circulating CD8 T cells (30, 31). We demonstrated correlations

between the proportion of activated CD38+HLA-DR+ T cells and

terminally differentiated CD28-negative CD8 T cells (equivalent to

CD8+ TEMRA) in HIV+ patient PBMC and the corresponding

original flow cytometry results, but absolute numbers of activated T
Frontiers in Immunology 10
cells were significantly reduced in the cryopreserved PBMC. The

proportion of activated cells is related to the degree of viral

replication, which is elevated during early primary infection (37),

decreased as a result of antiretroviral therapy (38–40), and often

normalised in Elite Controllers with undetectable plasma viral loads

(18, 41). The activated cells are poised to undergo spontaneous

apoptosis during short-term culture in vitro, associated with

reduced expression of the IL-7R alpha chain (CD127) and

reduction in Bcl-2 expression (37, 42). Therefore, not

unexpectedly, there was apparent reduced survival of such

activated CD38+HLA-DR+ T cells after very long-term

cryopreservation, when directly compared with their observed

levels at the time of blood collection (18). Importantly, HIV-

specific T cells are included in these activated subsets (37, 43),

such that loss of these cells may affect retrospective studies of HIV-

specific T-cell immunity that rely on cryopreserved specimens.

Similarly, antigen-specific T cells are found in activated T-cell

subsets during acute infection, with pathogenic EBV (44), Ebola

(45), and SARS-CoV-2 (46), and following immunisations with

vaccinia virus and yellow fever inoculations (47, 48).

A recent study of healthy donors demonstrated decreased

recovery of CD38+HLA-DR+ CD4 T cells after only 6 months of

cryopreservation (12). Healthy control subjects in our study had

similar levels of activated CD38+HLA-DR+ T cells in fresh blood

and similar reductions after >20 years. However, we demonstrated
FIGURE 5

Representative flow plots from original four-colour flow cytometry performed on whole blood samples during 1995–1997. (A) Immunophenotype
gating for CD45RA+ and CD45RO+ CD4 T cells. (B) Expansion of highly activated CD38+HLA-DR+ CD8 T cells during early untreated HIV-1
infection compared with an uninfected control.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1382711
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dyer et al. 10.3389/fimmu.2024.1382711
proportionally greater post-thaw reductions in CD38+HLA-DR+

CD4 and CD8 T-cell subsets in viraemic HIV+ patients. If these

same PBMC had been thawed and phenotyped again soon after

cryopreservation, it is likely that a loss of activated CD38+HLA-

DR+ T cells may have also been observed within a short

cryopreservation time (12), thereby confirming the effect of

cryopreservation time vs. the cryopreservation process as the

reason for loss of HIV-activated T cells. We were not able to
Frontiers in Immunology 11
provide a definitive answer to this question as we did not currently

have access to viraemic HIV+ patient blood samples. How these

cells failed to survive, whether the cells were lost during the

freezing or thawing steps or even during cryogenic storage,

remains unclear. Apoptosis of activated T cells from HIV+

PBMC can be ameliorated by treatment with the cytokines IL-2

or IL-15 (42, 49), but whether their addition before

cryopreservation improves phenotypic and functional
FIGURE 6

Correlations between original immunophenotyping performed in 1995–1997 in fresh blood and long-term cryopreserved PBMC separated from the
same blood draw (Pearson correlation). Results for PBMC from HIV-uninfected controls are shown as solid circles, and results for viraemic HIV+
donors are shown as white circles for CD45RO+ and CD45RO negative subsets of CD4+ and CD8+ T cells. Results for CD38+HLA-DR+ activated
CD4+ and CD8+ T cells are shown only for viraemic HIV+ donors. Results for CD28 negative versus terminally differentiated CD8+ T cells are
shown separately for both HIV-uninfected controls and viraemic HIV+ donors.
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preservation requires further study. CD38+HLA-DR+ T cells were

not found outside the standard lymphocyte gate in a region

consistent with lower forward scatter/higher side scatter typical

of dead cells (42), nor were they overrepresented in the non-viable

stained cell gate (not shown). Neither were these activated cells

lost in clumps of dead cells during thawing, because we used

DNase treatment to prevent clumping secondary to DNA release

from dead or damaged cells. We therefore assume that most of the

activated cells from viraemic donors experienced complete

physical deterioration during thawing and processing.

Cryopreserved PBMC from HIV+ donors have been widely used

for enumeration of antigen-specific T cells (50) or measurement of

the proviral reservoir within activated CD4 + T cells (51).We

observed lower response rates to influenza after long-term

cryopreservation, compared with a recent study where we detected

influenza-specific CD4 T-cell responses in fresh blood from five out

of six control donors, and in recently cryopreserved PBMC from 42

out of 45 convalescent COVID-19 patients (20). The influenza strains

used in the 2018 vaccine formulation, which we used here as the

antigen in the OX40 AIM assay and proliferation assay, were not

circulating during the 1990s, although considerable cross-reactivity

with variable and conserved epitopes against 1990s strains may be

expected (52). In the absence of time travel, a definitive comparison
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of immune responses between recent and long-term cryopreserved

PBMC from the same blood collection is not feasible.

Controls for immunovirological studies may require access to

decades-old specimens; for example, immunological investigations of

current COVID immunity compared with pre-SARS-2 and SARS-1

outbreaks requires a 20-year specimen history. Immunovirological

analysis of HIV replication and immunopathogenesis in viraemic

patients not receiving antiretrovirals is virtually impossible today,

requiring access to 30-year archival specimens. A well-maintained

biorepository can facilitate retrospective analyses of newly described

leukocyte subsets. For example, mucosal-associated invariant T

(MAIT) cells, described relatively recently (53), are effector-

memory CD4 and CD8 T cells with pro-inflammatory cytotoxic

phenotypes, exhibit pleiotropic functions, and can represent

surprisingly large proportions of CD8 T cells in some individuals.

Long-term outcomes related to MAIT cells are reliant on

retrospective analysis of older biorepositories. However, our results

suggest that these cells may not be well preserved in all PBMC

samples, as they were particularly reduced in HIV+ donors (54). This

finding may also be an effect of age disparities between the study

populations (55).

This study supports the feasibility of using long-term archived

PBMC to directly compare CD4+ T-cell subset-specific levels of
FIGURE 7

Antigen-specific CD4 T-cell function assays in long-term cryopreserved PBMC. (A) Representative flow plots of mitogen- and antigen-specific
CD4 T cells, gated on day 2 cultured CD3+CD4+ T cells, detected by activation induced marker (AIM) assay (defined as CD25+CD134+ cells).
(B) Representative flow plots of proliferating mitogen- and antigen-specific CD4 T cells, gated on day 7 cultured CD3+CD4+ T cells (defined as
CD25 high Forward Scatter high blast cells).
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inducible HIV RNA production from the PBMC proviral reservoir

before and after many years of treatment. Although we observed

significant losses in activated CD38+HLA-DR+ T-cell subsets after

cryopreservation, the virus recovered from these cells would

primarily represent expansions of the predominant strain at that

time (51). For a complete representation of viral evolutionary history

in an individual patient, long-term resting T-memory subsets would

be preferred, for which we demonstrated high rates of preservation.

Our results demonstrate that virus within infected CD4 T cells

can be reactivated after decades of storage, facilitating detailed

longitudinal studies of HIV DNA reservoirs in infected CD4 T

cells. Highly potent ART was commenced nearly 20 years ago, so

study of pretreatment PBMC would be important to understand the

establishment of the long-term reservoir. The ability to combine

analysis of antigen-specific T cells together with specific subsets, plus

activation of proviral HIV, will allow detailed analysis of HIV

reservoirs before and after antiretroviral therapy. We have

previously described HIV DNA measurements in resting versus
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activated CD4+ T-cell subsets (51, 56) and in antigen-specific CD4

+ T cells (57). However, most of this DNA is defective (58) whereas

analysis of HIV RNA recovery from such subsets, especially from

cryopreserved PBMC, has so far been quite limited (25, 59, 60).

Previous studies using quantitative viral outgrowth assays suggest

that only one in a million CD4 T cells may contain replication

competent proviral HIV-1 DNA, although assays of intact proviral

HIV-1 DNA suggest a 10–100-fold higher rate of replication

competent provirus infection (61). These assays may be hampered

by inefficient reactivation of latently infected cells (61). However, our

current and a previous study (25) both confirm that anti-CD3/anti-

CD28/anti-CD2 is a very effective reagent when combined with the

Double R assay, and therefore viral reactivation studies are still

feasible when only limited quantities of archived PBMC are available.

This study was limited by the unavailability of age-matched

donor specimens. Donors for the long-term cryopreserved control

PBMC (18) were significantly older than the untreated HIV+ patients

(17) and the known donors for the recently cryopreserved PBMCs.
FIGURE 8

Antigen-and mitogen-specific CD4 T-cell function in >20-year cryopreserved PBMC from viraemic HIV+ patients (old HIV) and healthy controls
(old), measured by day 2 AIM assay (A), and day 7 proliferating CD4 T-cell blasts (B).
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Therefore, proportional differences in various leukocyte populations

were not necessarily associated with PBMC storage duration but

confounded by known differences in donor age. Furthermore, current

clinical management of HIV+ patients meant it was impossible to

obtain recently cryopreserved PBMC from viraemic untreated HIV+

patients to compare with long-term cryopreserved samples. To

address these limitations, a major strength of this study was flow

cytometry performed on long-term cryopreserved PBMC in the same

laboratory that performed fresh whole blood flow cytometry in the

1990s, using equivalent gating protocols. However, as discussed

above, an ideal comparison would also have included

immunophenotyping performed on these PBMC soon after

cryopreservation in the 1990s. Apart from activated T-cell subsets

in HIV+ patients, which appear to be lost early in the

cryopreservation process (12), our observed correlations between

the original fresh blood results and from PBMC stored at the same

time from the same blood collection supports claims of comparable

preservation in recently-described T-cell subsets.

When comparing archived PBMC samples with recent and

prospective collections, other limitations and quality variables

deserve careful consideration (62). Differences in blood sample

handling and PBMC cryopreservation techniques between labs and

changes over time may impact sample quality. Our data showed that

differences in counting methods used in the 1990s confounded

comparisons of cell recovery data. However, the higher-than-

expected recovery combined with high viability indicates that quality

of these archived PBMC was also high. Ideally, archived samples

should be sourced from institutions with quality management systems
Frontiers in Immunology 14
to ensure appropriate staff training and adherence to optimal

procedures, along with appropriate record keeping of protocol

deviations. Delayed blood sample processing and poor separation

techniques can result in a high level of granulocyte contamination in

PBMC, which can result in gross cell clumping and loss of viable

lymphocytes upon thawing. Use of DNase in our study enabled all

thawed cells to remain in suspension for an accurate assessment of

viability. Therefore, thawing protocols for archived PBMC should

include DNase treatment. Finally, the probability that some cellular

or DNA/RNA degradation will occur over time, despite careful storage

practices, requires periodical assessment to determine if an archived

specimen collection is fit for purpose. Our study confirms the

importance and feasibility of reconciling these quality issues.
Conclusion

This study uniquely demonstrated that diverse leukocyte

populations and T-cell subsets of interest to immunovirological

research can be preserved after decades of cryogenic storage.

Antigen-specific responses remained detectable after decades in

cryopreservation, but at reduced levels. The findings confirm that

application of novel immunovirology research on stored PBMC is

possible and can be conducted with confidence on long-term

biorepositories of PBMC collected from various patient groups,

including HIV+ donors, subject to confirmation of quality

parameters including viability and subset representation, as

described here.
FIGURE 9

Cytokine response to antigenic and polyclonal stimulation, measured in 48-h culture supernatants from long-term cryopreserved control donor
PBMC (Friedman Test p values).
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FIGURE 10

Recovery of HIV RNA after >20-year storage: activated HIV+ donor PBMC stimulated with anti-CD3/CD28/CD2. (A) HIV RNA transcripts in the R and
pol regions. (B) Correlation between levels of HIV RNA “Double R” transcripts from activated PBMC and original plasma viral loads from 1995 to
1996. (C) Amplification of long HIV transcripts. (D) Presence of sequence mutations in amplicons from long HIV transcripts.
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