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Osteoarthritis (OA) is a common joint disorder characterized by the degeneration

of cartilage and inflammation, affecting millions worldwide. The disease’s

complex pathogenesis involves various cell types, such as chondrocytes,

synovial cells, osteoblasts, and immune cells, contributing to the intricate

interplay of factors leading to tissue degradation and pain. RNA interference

(RNAi) therapy, particularly through the use of small interfering RNA (siRNA),

emerges as a promising avenue for OA treatment due to its capacity for specific

gene silencing. siRNA molecules can modulate post-transcriptional gene

expression, targeting key pathways involved in cellular proliferation, apoptosis,

senescence, autophagy, biomolecule secretion, inflammation, and bone

remodeling. This review delves into the mechanisms by which siRNA targets

various cell populations within the OA milieu, offering a comprehensive overview

of the potential therapeutic benefits and challenges in clinical application. By

summarizing the current advancements in siRNA delivery systems and

therapeutic targets, we provide a solid theoretical foundation for the future

development of novel siRNA-based strategies for OA diagnosis and treatment,

paving the way for innovative and more effective approaches to managing this

debilitating disease.
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1 Introduction

Osteoarthritis (OA) is a prevalent chronic joint disease characterized by the degeneration of

cartilage and inflammation (1). The risk factors for OA encompass obesity, injury, genetic

predisposition, among others. It is noteworthy that the incidence is higher among females

compared to males, and age stands as the foremost risk factor (2, 3). The pathogenesis of

osteoarthritis primarily involves the articular cartilage, subchondral bone, and synovium, yet its

specific mechanisms remain not fully elucidated (4). Therapeutic interventions for OA mainly
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include non-pharmacologic management, pharmacologic

management, and surgical interventions. Recommended non-

pharmacological approaches include education, self-management,

exercise, and weight loss (5). Nonsteroidal anti-inflammatory drugs

(NSAIDs) and acetaminophen are frontline pharmaceuticals in the

treatment of OA, recommended for use in clinical guidelines. However,

the cautious administration of NSAIDs is imperative to avert potential

adverse effects. While acetaminophen’s efficacy falls short of that of

NSAIDs, its safety profile renders it suitable for patients

contraindicated for NSAIDs (6). Surgical interventions exhibit

notable efficacy in long-term improvement of patients’ physiological

function and alleviation of pain; nevertheless, they are not exempt from

potential side effects (7). Moreover, an increasing body of evidence

suggests a correlation between psychological factors and the onset of

OA pain. Utilizing psychological approaches, such as coping skills

training (CST) and emotional disclosure, has proven effective in

alleviating OA pain (8). As the pathogenic mechanisms of OA are

continually elucidated, an increasing number of pharmaceuticals

targeting the pathophysiological mechanisms of the disease are under

development to replace the current predominantly palliative

treatments, such as chondroitin sulfate and hyaluronan, collectively

known as disease-modifying osteoarthritis drugs (DMOADs). These

drugs, targeting cartilage, inflammatory pathways, and subchondral

bone, hold promising prospects (9).

RNA interference (RNAi) denotes the duplex RNA’s inhibitory

effect on genes, constituting a natural mechanism within organisms

to silence genes (10). Small interfering RNA (siRNA) represents a

category of double-stranded RNA molecules, spanning 21–23

nucleotides, formed through enzymatic cleavage of double-

stranded RNA (11). siRNA associates with various proteins to

form the RNA-induced silencing complex (RISC). Subsequently,

it pairs with target mRNA, cleaving the mRNA and ultimately

impeding the transcriptional process (12). Given its selective ability

to silence almost any gene, siRNA therapy holds promise as a

clinical approach for targeting specific genes in the treatment of OA.

The first siRNA therapy was approved in 2018, utilized for the

treatment of transthyretin-mediated amyloidosis. Since then,

siRNA-based therapies for various diseases have entered clinical

trials, indicating the broad prospects of siRNA in treating diseases

(13). Furthermore, diverse delivery systems based on siRNA have

been developed to enhance the efficiency of siRNA reaching its

target, encompassing polymers, lipids, antibodies, nanocarriers, and

peptide segments (14). This review comprehensively summarizes

the progress in utilizing siRNA for the treatment of OA from a

cellular perspective, including targeting chondrocytes, fibroblast-

like synoviocytes, and osteoblasts, offering a novel outlook on the

application of siRNA in OA therapy.
2 Targeting chondrocytes

The pathological manifestations of OA are diverse, with the

degeneration of articular cartilage being a primary characteristic.

Articular cartilage primarily comprises water and organic

extracellular components. Chondrocytes represent the exclusive
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cell type within the cartilage matrix, responsible for maintaining

the synthesis and degradation equilibrium of the extracellular

matrix (ECM) (15). Upon exposure to mechanical, inflammatory,

and metabolic factors, anomalies arise in the function of

chondrocytes. This results in a reduction in the generation of

ECM molecules and an augmentation in the production

of proteinases. The disruption of ECM homeostasis is thus

initiated, consequently promoting the degeneration of articular

cartilage (16).
2.1 Targeting the apoptosis
of chondrocytes

The proliferation and apoptosis of chondrocytes undergo

alterations in OA. Research indicates a diminished proliferation

and an increased apoptosis of chondrocytes in OA, which is

associated with the progression of OA (17–19). Targeting the

proliferation and apoptosis of chondrocytes holds the potential to

alleviate the progression of OA.

Downregulating the expression of DNA methyltransferase 3 alpha

(DNMT3A) using siRNA can reduce apoptosis and induce

proliferation of chondrocytes in knee OA rats (20). 15-Lipoxygenase-

1 (15-LOX-1), a lipid metabolism enzyme, can facilitate apoptosis of

chondrocytes induced by sodium nitroprusside (SNP) and inhibit

chondrocyte proliferation. Inhibiting arachidonate 15-lipoxygenase

(ALOX15) expression using siRNA significantly mitigates the

destruction of articular surface and bone, as well as the formation of

osteophytes, thereby considerably alleviating destabilization of the

medial meniscus (DMM) induced OA in rats (21). The expression of

KH RNA binding domain containing, signal transduction associated 1

(KHDRBS1) increases in chondrocytes of OAmodel rats stimulated by

tumor necrosis factor a (TNF-a). KHDRBS1 siRNA inhibits the

activation of the nuclear factor kappa B (NF-kB) signaling pathway

and significantly reduces chondrocyte apoptosis by reducing caspase-3

expression (22). Secreted phosphoprotein 1 (SPP1) is an extracellular

matrix molecule that induces apoptosis of OA chondrocytes by

activating the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/

protein kinase B (AKT) pathway and inhibits proliferation. Knocking

down SPP1 using siRNA promotes chondrocyte proliferation and

inhibits chondrocyte apoptosis through the reduction of caspase-3

and caspase-9 expression (23). Phosphatase and tensin homologue

(PTEN) is a crucial tumor suppressor gene, and its expression is

significantly upregulated in OA chondrocytes. PTEN affects cell

proliferation by inhibiting the PI3K/AKT pathway. PTEN siRNA

significantly inhibits apoptosis and promotes proliferation of OA

chondrocytes (24). Downregulating ribosomal protein L38 (RPL38)

using siRNA, leading to the upregulation of suppressor of cytokine

signaling 2 (SOCS2) expression and activation of the janus kinase

(JAK)/signal transducer and activator of transcription 3 (STAT3)

pathway, resulted in a reduction of chondrocyte apoptosis induced

by interleukin 1b (IL-1b). This process also alleviated histological

phenomena such as reduction of articular chondrocytes, cartilage

degradation and erosion in OA mice, thereby delaying the

progression of OA (25).
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2.2 Targeting chondrocyte senescence

In OA, chondrocyte senescence increases, and it can propagate to

adjacent healthy chondrocytes through cell communication, inducing

senescence (26). The aggregation of senescent chondrocytes promotes

the progression of OA by disrupting the ECM homeostasis (27). The

senescence-associated secretory phenotype (SASP) expressed by

senescent chondrocytes is one of the key contributors to ECM

impairment, causing an imbalance between ECM synthesis and

degradation through the secretion of various cytokines and proteases

such as interleukin 6 (IL-6), matrix metalloproteinases 13 (MMP13),

and a disintegrin and metalloprotease with thrombospondin motifs 5

(ADAMTS5) (28). Research targeting cellular senescence provides

insights for siRNA therapy.

Senescent cells reduce apoptosis by producing apoptosis

inhibitor proteins (IAPs). Knocking down genes encoding anti-

apoptotic proteins baculoviral IAP repeat containing 2 (BIRC2),

baculoviral IAP repeat containing 3 (BIRC3), and X-linked inhibitor

of apoptosis (XIAP) induces the clearance of senescent cells.

Furthermore, the IAP inhibitor (AT-406) further alleviated

cartilage degeneration and tibial subchondral bone reconstruction

in rats with post-traumatic osteoarthritis (PTOA), thereby

decelerating the progression of OA (29). Asporin is an

extracellular matrix protein that induces chondrocyte senescence

by targeting transforming growth factor b1 (TGF-b1)–Smad family

member 2 (SMAD2) pathway. Knocking down asporin using

siRNA inhibits senescence in chondrocytes and alleviates cartilage

destruction in DMM-induced OA mice through TGF-b1 pathway

(30). Inhibiting excitatory amino acid transporter protein 1

(EAAT1) enhances the response of senescent chondrocytes to

ferroptosis, inducing cell death, with no significant impact on

normal cells. Moreover, the EAAT1 inhibitor (UCPH-101)

induced the clearance of senescent chondrocytes and mitigated

cartilage degeneration (31). Mitofusin 2 (MFN2) regulates

mitochondrial fusion, which plays a role in cell metabolism and

aging, while dysregulation of MFN2 can lead to cartilage

destruction. The expression of MFN2 is elevated during OA and

aging, while knocking down MFN2 using siRNA can reverse age-

related metabolic changes in rat chondrocytes (32). Additionally,

tribbles homolog 3 (TRB3) siRNA reduces senescence in OA

chondrocytes by reducing p16 and p21 levels, presenting another

target for addressing chondrocyte senescence (33).
2.3 Targeting chondrocyte autophagy

The relationship between chondrocyte autophagy and apoptosis

is intricate. Chondrocyte autophagy eliminates aged organelles and

proteins, thereby maintaining internal homeostasis and protecting

cells from apoptosis. Under the influence of external pathological

factors, cellular autophagy is impaired, leading to the progression of

OA (34). Hence, utilizing siRNA to restore chondrocyte autophagic

function might be a means to treat OA.

The mechanistic target of rapamycin (mTOR) pathway is a

crucial cellular autophagy inhibition pathway, regulated by PI3K/

AKT and AMP-activated protein kinase (AMPK) (35). MicroRNA
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7 (miR-7) siRNA inhibits the phosphorylation of the PI3K/AKT/

mTOR pathway by reducing interleukin 17A (IL-17A) expression,

and promotes the conversion of microtubule associated protein

light chain 3 (LC3) from LC3-I to LC3-II, enhances beclin 1

(BECN1) expression, and suppresses sequestosome 1 (SQSTM1)

expression, thereby restoring autophagic dysfunction in IL-1b
induced chondrocytes. This significantly reduces cartilage

destruction and the progression of OA in model rats (36). The

upregulation of MFN2 in OA model mice, through activating the

NF-kB and p38 mitogen-activated protein kinase (MAPK)

pathways and inhibiting the PI3K/AKT/mTOR pathway,

promotes inflammation and leads to excessive autophagy in

chondrocytes. Knocking down MFN2 can suppress inflammation

and cartilage degeneration in OA rat chondrocytes, thereby slowing

down the progression of OA (37). The upregulation of transient

receptor potential cation channel subfamily V member 5 (TRPV5)

expression in OA is mitigated by TRPV5 siRNA, which reduces

intracellular Ca2+ influx and enhances autophagy in MIA-induced

OA rat chondrocytes. Furthermore, ruthenium red (a TRPV5

inhibitor) delays OA progression by reducing cartilage

destruction (38). TRB3 inhibits autophagy by suppressing the

autophagic receptor p62 and is upregulated in TNF-a-induced
OA chondrocytes. Knocking down TRB3 using siRNA promotes

autophagy in chondrocytes, making it a potential target for

targeting chondrocyte autophagic function (33).
2.4 Targeting chondrocyte secretion

In OA, the aberrant function of chondrocytes leads to the

release of degradative enzymes, such as matrix metalloproteinases

(MMPs) and a dis integrin and metal loprotease with

thrombospondin motifs (ADAMTSs) (4). These enzymes further

contribute to cartilage degradation. The degradation products of

cartilage can serve as damage-associated molecular patterns

(DAMPs), entering the synovium and inducing the production of

inflammatory factors. This, in turn, further stimulates chondrocytes

to produce degradative enzymes, forming a vicious cycle (39).

MMP13 is upregulated in PTOA and contributes to cartilage

destruction by degrading type II collagen. Using a nano-platform to

deliver MMP13 siRNA reduces cartilage degradation, synovial

hyperplasia and osteophyte growth in PTOA mice model, slowing

down the progression of PTOA with favorable long-term

therapeutic effects (40). Intra-articular injection of MMP13 siRNA

and/or ADAMTS5 siRNA inhibited cartilage degradation in early-

stage OA mice model (41). The use of nanoparticle delivery for

lysine demethylase 6B (KDM6B) siRNA lowered the expression of

MMP13 in mice model, and significantly alleviated the progression

of OA by reducing cartilage degradation (42). The level of b-catenin
is increased in chondrocytes of OA mice. Catenin beta 1 (CTNNB1)

encodes b-catenin, and knocking down CTNNB1 reduces the

expression of matrix metalloproteinases 3 (MMP3), MMP13, and

a disintegrin and metalloprotease with thrombospondin motifs 4

(ADAMTS4). This suggests that CTNNB1 siRNA may inhibit

cartilage degradation (43). Jian Zhang et al. discovered a drug

that co-delivers curcumin and endothelial PAS domain protein 1
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(EPAS1) siRNA, which alleviates mice cartilage degradation and

slows down the progression of OA by reducing the expression of

MMP3, MMP13, ADAMTS5 in OA chondrocytes (44). The

activation of the interleukin 1 (IL-1) signaling pathway can lead

to the progression of OA. Matrix metalloproteinases 9 (MMP9)

siRNA reduces the shedding of syndecan-4 (SDC4), thereby

lowering the sensitivity of chondrocytes to the IL-1 signaling

pathway (45). Furthermore, miR-7 siRNA inhibits the expression

ofMMP3,MMP13, and ADAMTS5 in IL-1b-induced chondrocytes,
thereby promoting ECM homeostasis and delaying OA

progression (36).
3 Targeting fibroblast-
like synoviocytes

Synovial inflammation is another characteristic feature of OA. The

aberrant function of chondrocytes leads to the secretion of proteolytic

enzymes, causing the production of inflammatory and metabolic

products that affect the adjacent synovium. The progression of

synovial inflammation can further exacerbate cartilage damage (46).

The production of pro-inflammatory cytokines such as IL-1b,
TNF-a, IL-6, can exacerbate cartilage degradation and is associated

with hyperalgia in OA (47, 48). Silencing NLR family pyrin domain

containing 1 (NLRP1) reduces the production of IL-1b induced by

P2X4 purinoceptor (P2X4) in OA fibroblast-like synoviocytes (49).

RELA proto-oncogene, NF-kB subunit (RELA) siRNA significantly

inhibits the induction of IL-1b and TNF-a in the synovial fluid,

thereby alleviating synovial inflammation and cartilage degradation

in early-stage OA rats through inhibition of the NF-kB pathway

(50). Utilizing nanoparticles to deliver cyclin dependent kinase

inhibitor 2A (CDKN2A) siRNA results in a reduction of IL-1b,
IL-6, and TNF-a expression in fibroblast-like synoviocytes of model

rats, and reduces cartilage destruction and pain (51). Hyaluronan

contributes to the composition of synovial fluid for joint

lubrication. In OA, hyaluronan degradation occurs, promoting

inflammation. The expression of cell migration inducing

hyaluronidase 1 (CEMIP) increases in OA fibroblast-like

synoviocytes, and knocking down CEMIP reduces the degradation

of hyaluronan in OA fibroblast-like synoviocytes (52). Glutaminase

(GLS) siRNA inhibits glutamine–glutamate metabolism, reducing

the IL-6 inflammatory response in OA fibroblast-l ike

synoviocytes (53).

Proliferation of fibroblast-like synoviocytes is one of the

characteristics of synovial inflammation and can lead to hyperplasia of

the synovial lining (54). Knocking down latent transforming growth

factor beta binding protein 1 (LTBP-1) using siRNA reduces fibroblast-

like synoviocytes proliferation by downregulating the transforming

growth factor b (TGF-b) signaling pathway (55).
Methyltransferase like 3 (METTL3) mediated m6A

modification inhibits autophagy in OA fibroblast-l ike

synoviocytes by regulating autophagy related 7 (ATG7) RNA and

promotes cell senescence. METTL3 siRNA is able to inhibit

expression of SASP-related genes and alleviate senescence in

fibroblast-like synoviocytes. Furthermore, intra-articular injection

of METTL3 siRNA delayed the progression of DMM-induced OA
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in mice (56). Fibroblast-like synoviocytes are considered the

primary cells involved in synovial fibrosis in OA, and chronic

joint pain is closely associated with synovial fibrosis (57).

Inhibiting the upregulated expression of hypoxia inducible factor

1 subunit alpha (HIF-1A) in knee OA model rats reduces pyroptosis

in fibroblast-like synoviocytes and significantly decreases the

expression of synovial fibrogenic markers (58).
4 Targeting osteoblasts

In OA, subchondral bone undergoes remodeling due to

excessive loading and changes in mechanical environment (59).

The abnormal remodeling of subchondral bone can further

exacerbate cartilage degradation (60). Osteoblasts regulate bone

formation, remodeling and mineralization (61). Osteoblasts

undergo changes in phenotype in OA, such as elevated alkaline

phosphatase activity and increased secretion of osteocalcin.

Additionally, alterations in signaling pathways like wingless-type

MMTV integration site family (WNT) and TGF-b contribute to the

abnormal remodeling of subchondral bone (62, 63). Hence,

targeting osteoblasts with siRNA represents a potential

therapeutic approach.

In OA, there is an increased production of endogenous

hepatocyte growth factor (HGF), which, by stimulating the

production of TGF-b1, inhibits osteoblast responsiveness to bone

morphogenetic protein 2 (BMP-2), leading to abnormal

mineralization. HGF siRNA restores osteoblast responsiveness to

BMP-2 and upregulates the WNT signaling pathway to nearly

normal levels (64). Leptin expression is significantly increased in

OA osteoblasts and can lead to elevated levels of alkaline

phosphatase and osteocalcin, as well as increased osteoblast

proliferation. Partially reducing the alkaline phosphatase activity

and osteocalcin release is possible by inhibiting leptin or its receptor

using siRNA, indicating the potential to inhibit bone remodeling

(65). Silencing ALOX15 promotes AMPK phosphorylation, inhibits

mechanistic target of rapamycin complex 1 (mTORC1)

phosphorylation, thereby suppressing expression levels of TGF-

b1. This, in turn, enhances osteoblast autophagy and ultimately

alleviates the progression of OA (66). Activation of Toll-like

receptor 4 (TLR4) and innate immune activation can exacerbate

cartilage degradation in OA. The antidepressant amitriptyline can

bind to TLR4, inhibiting TLR4, IL-1 receptor, and NLR family pyrin

domain containing 3 (NLRP3) dependent innate immune responses

in OA chondrocytes, synoviocytes, and osteoblasts. Similarly,

silencing NLRP3 using siRNA has a comparable effect (67).
5 Targeting other cells

The pathological changes in OA involve the entire joint, and

current research predominantly focuses on the abnormalities in

cartilage. Research on other cells to treat OA is limited, such as

macrophages or mesenchymal stem cells (68). Nevertheless, siRNA

targeting these cells has shown promising prospects.
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Xu Chen et al. engineered nanoparticles capable of releasing

nitric oxide and notch receptor 1 (NOTCH1) siRNA. By inhibiting

macrophage inflammatory responses, these nanoparticles reduced

OA cartilage damage without significant side effects (69).

Mesenchymal stem cells derived from bone marrow are ideal for

tissue repair due to their differentiation potential. Inhibiting

BLACAT1 overlapping LEMD1 locus (BLACAT1) promotes the

proliferation and osteogenic differentiation of bone marrow

mesenchymal stem cells under inflammatory conditions,

demonstrating potential for treating OA (70).
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6 Discussion

OA is a chronic degenerative joint disease that, as it progresses,

often leads to disability and pain, significantly impacting the quality

of life (71). Currently, the treatment approach for OA primarily

focuses on mitigating disease symptoms and arresting its progression.

In recent years, with an increasingly profound understanding of OA,

it is recognized as a comprehensive, multifactorial joint disorder,

intimately connected to the interactions among articular cartilage,

synovium, subchondral bone, and their constituent cells. Due to its
TABLE 1 Gene targets, cell activity and pathways table.

Cell Cell Activity Gene Pathway Reference

Chondrocytes Proliferation DNMT3A,ALOX15,KHDRBS1,
SPP1,PTEN,RPL38

NF-kB PI3K/AKT/mTOR
JAK/STAT3
TGF-b1–SMAD2
p38 MAPK
IL-1

(20–25, 29, 30) (31–33, 36–
38, 40–45)

Senescence BIRC2,BIRC3,XIAP,asporin,EAAT1,
MFN2,TRB3

Autophagy miR-7,MFN2,TRPV5,TRB3

Secretion MMP13,ADAMTS5,KDM6B,
CTNNB1,EPAS1,MMP9,miR-7

Fibroblast-
like synoviocytes

Inflammation NLRP1,RELA,CDKN2A,CEMIP,GLS,
LTBP-1

NF-kB
TGF-b

(49, 50–55, 56, 58)

Senescence and pyroptosis METTL3,HIF-1A

Osteoblasts Bone remodeling HGF,leptin,ALOX15,NLRP3 WNT
AMPK

(64–67)
FIGURE 1

The application of siRNA therapy in OA involves targeting genes and signaling pathways in various cell types within OA, including chondrocytes,
synovial fibroblasts, osteoblasts, macrophages, and mesenchymal stem cells. Through the correction of cellular activities such as proliferation,
apoptosis, senescence, autophagy, and inflammation, siRNA exhibits the potential to alleviate the progression of OA (Created with BioRender.com).
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inherent property of selectively silencing genes, siRNA stands as a

potential candidate among DMOADs. Recent investigations have

disclosed that employing siRNA to target chondrocytes, fibroblast-

like synoviocytes, osteoblasts, osteoblasts, and other cells and

molecules involved in the development of OA can effectively

decelerate the progression of the ailment. Additionally, a

substantial volume of research centered around siRNA delivery

systems has enhanced the precision and duration of siRNA delivery

to target tissues. While there is currently no siRNA therapy

specifically targeting osteoarthritis (according to clinicaltrials.gov),

an increasing number of siRNA therapies targeting various diseases

are entering clinical trials or gaining approval. These include cancer,

hypertension, hypercholesterolemia, as well as some rare genetic

disorders such as hemophilia and primary hyperoxaluria (72).

These studies collectively highlight the broad potential of

employing siRNA in the treatment of OA.

However, the constraints of current siRNA therapies cannot be

disregarded. The primary method of siRNA therapy involves

intravenous administration using nano-carriers, including lipid

carriers, polymer carriers, and inorganic carriers (12). Lipid

carriers, due to their positively charged nature, may undergo

aggregation with serum proteins (73). On the other hand,

negatively charged siRNA can distribute through the bloodstream

to the reticuloendothelial system (RES) and are more readily

phagocytosed, compared to neutral or positively charged

counterparts (11). Furthermore, siRNA permits a degree of

mismatch with the target mRNA, resulting in the silencing of

non-target genes, known as off-target effects (74). Competition

with the endogenous RNAi pathway and off-target effects can lead

to hepatotoxicity (75). Cationic lipids and polymers, among other

delivery methods involving internalization, can also induce immune

responses by activating Toll-like receptor 7 (TLR7) and Toll-like

receptor 8 (TLR8) (76). To address these issues, numerous

improvement strategies have been applied to optimize siRNA

delivery, including chemical modifications, siRNA-ligand

conjugation, siRNA-polymer conjugation, and others (77).

Beyond the inherent limitations of siRNA therapy, the selection of

target genes represents one of the challenges in utilizing siRNA therapy

for OA treatment. Given that OA is a disease affecting the entire joint,

silencing target genes for OAmay also potentially diminish therapeutic

efficacy through the impact on physiological activities of other tissues,

or even inadvertently accelerate disease progression. The activation of

the PI3K/AKT/mTOR pathway can enhance skeletal muscle protein

synthesis, whereas inhibition of the PI3K/AKT/mTOR pathway can

increase protein breakdown, marking a signature of muscle atrophy.

Moreover, muscular weakness constitutes a risk factor in the

development of OA (78, 79). IL-6 is released during and after

exercise to enhance muscle energy supply and plays a crucial role in

the repair of acute muscle injuries by activating satellite cells (80, 81).

Inhibiting IL-6 could have repercussions on muscle function,

potentially exacerbating the progression of OA.
Frontiers in Immunology 06
In this review, we summarized the advancements in utilizing

siRNA to target various cells for the treatment of OA, including

chondrocytes, fibroblast-like synoviocytes, osteoblasts, and others

(Table 1 and Figure 1). These studies, encompassing both in vitro

experiments and in vivo trials, consistently demonstrate the

potential of siRNA therapy. However, siRNA therapy still

confronts numerous challenges, such as the selection of

therapeutic targets, more efficient carriers for siRNA delivery, and

addressing the immunogenicity of siRNA. Hence, the therapeutic

potential of siRNA remains vast, with significant room for

further advancement.
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DNMT3A DNA methyltransferase 3 alpha

ALOX15 Arachidonate 15-lipoxygenase

KHDRBS1 KH RNA binding domain containing, signal transduction
associated 1

TNF-a Tumor necrosis factor a

NF-kB Nuclear factor kappa B

SPP1 Secreted phosphoprotein 1

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase

AKT Protein kinase B

PTEN Phosphatase and tensin homologue

RPL38 Ribosomal protein L38

SOCS2 Suppressor of cytokine signaling 2

JAK Janus kinase

STAT3 Signal transducer and activator of transcription 3

IL-1b Interleukin 1b

IL-6 Interleukin 6

MMP13 Matrix metalloproteinases 13

ADAMTS5 A disintegrin and metalloprotease with thrombospondin motifs 5

BIRC2 Baculoviral IAP repeat containing 2

BIRC3 Baculoviral IAP repeat containing 3

XIAP X-linked inhibitor of apoptosis

TGF-b1 Transforming growth factor b1

Smad2 Smad family member 2

EAAT1 Excitatory amino acid transporter protein 1

MFN2 Mitofusin 2

TRB3 Tribbles homolog 3

mTOR Mechanistic target of rapamycin

AMPK AMP-activated protein kinase

miR-7 MicroRNA 7

IL-17A Interleukin 17A

BECN1 Beclin 1

SQSTM1 Sequestosome 1

p38
MAPK

p38 mitogen-activated protein kinase

TRPV5 Transient receptor potential cation channel subfamily V
member 5

KDM6B Lysine demethylase 6B

CTNNB1 Catenin beta 1

MMP3 Matrix metalloproteinases 3

ADAMTS4 A disintegrin and metalloprotease with thrombospondin motifs 4
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EPAS1 endothelial PAS domain protein 1

IL-1 Interleukin 1

MMP9 Matrix metalloproteinases 9

NLRP1 NLR family pyrin domain containing 1

RELA RELA proto-oncogene, NF-kB subunit

CDKN2A Cyclin dependent kinase inhibitor 2A

CEMIP Cell migration inducing hyaluronidase 1

GLS Glutaminase

LTBP-1 Latent transforming growth factor beta binding protein 1

TGF-b Transforming growth factor b

METTL3 Methyltransferase like 3

ATG7 Autophagy related 7

HIF-1A Hypoxia inducible factor 1 subunit alpha

WNT Wingless-type MMTV integration site family

HGF Hepatocyte growth factor

BMP-2 Bone morphogenetic protein 2

mTORC1 Mechanistic target of rapamycin complex 1

TLR4 Toll-like receptor 4

NLRP3 NLR family pyrin domain containing 3

NOTCH1 Notch receptor 1

BLACAT1 BLACAT1 overlapping LEMD1 locus
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