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The respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory

tract infections associated with numerous hospitalizations. Recently,

intramuscular (i.m.) vaccines against RSV have been approved for elderly and

pregnant women. Noninvasive mucosal vaccination, e.g., by inhalation, offers an

alternative against respiratory pathogens like RSV. Effective mucosal vaccines

induce local immune responses, potentially resulting in the efficient and fast

elimination of respiratory viruses after natural infection. To investigate this

immune response to an RSV challenge, low-energy electron inactivated RSV

(LEEI-RSV) was formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV)

or 1,2-dioleoyl-3-trimethylammonium-propane and 1,2-dioleoyl-sn-glycero-

3-phosphoethanolamine (DD-LEEI-RSV) for vaccination of mice intranasally. As

controls, LEEI-RSV and formalin-inactivated-RSV (FI-RSV) were used via i.m.

vaccination. The RSV-specific immunogenicity of the different vaccines and their

protective efficacy were analyzed. RSV-specific IgA antibodies and a statistically

significant reduction in viral load upon challenge were detected in mucosal DD-

LEEI-RSV-vaccinated animals. Alhydrogel-adjuvanted LEEI-RSV i.m. showed a

Th2-bias with enhanced IgE, eosinophils, and lung histopathology comparable to

FI-RSV. These effects were absent when applying the mucosal vaccines

highlighting the potential of DD-LEEI-RSV as an RSV vaccine candidate and the

improved performance of this mucosal vaccine candidate.
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GRAPHICAL ABSTRACT
1 Introduction

A major threat for children and elderly are infections with the

human respiratory syncytial virus (RSV), leading to numerous

hospitalizations and deaths (1–4). RSV is highly infectious and

seasonal and leads to upper and lower respiratory tract infections

(URTI and LRTI, respectively), whereby in 2019 approximately 33

million LRTI and 101,400 deaths in children under 6 years were

RSV-associated (1, 2). Just recently, two vaccines against RSV for

adults that are based on recombinant RSV-F protein and given

intramuscularly were approved by the FDA (5, 6).

RSV is a respiratory virus infecting the airway mucosa, and

therefore an immune response directly at the site of infection may

be beneficial (7, 8). The mucosal immune response includes

antibodies of the IgA subtype as well as tissue resident immune

cells that directly attack pathogens (7, 8). When using systemic

vaccination, such as intramuscular (i.m.) injection, usually only

weak mucosa-specific responses are induced (7). Mucosal

immunizations have been reported to induce both strong mucosal

and systemic immune responses (8–10). The mucosal application

routes—e.g., nasal, oral, or vaginal—may not only lead to more

efficient and suitable protection but also enhance vaccination

acceptance in the population, as they are atraumatic (7, 11). For

the development of a mucosal vaccine, it should be considered that

the mucosa presents a barrier to prevent the intrusion of pathogens

(7). Therefore, high antigen doses, mucosa-specific formulation—to

enable immune recognition, or repeated applications are necessary

to prevent vaccine interception by the mucosa (7, 11). Replication

competent systems, such as live attenuated vaccines (LAAVs) or

viral vectors, have shown striking protective immune responses

after mucosal application (8, 9, 12–15). However, despite their

promising protective effects, they hold substantial risks such as
02
reversion to a virulent pathogen, reactogenicity, or vector immunity

(16–18). These biological risks could be circumvented with the use

of an inactivated, non-replicating vaccine.

We have previously shown that a low-energy electrone irradiation

(LEEI) RSV (LEEI-RSV) in a suitable formulation induced protective

immune responses against RSV after mucosal application (19).

Packaging with a phosphatidylcholine (PC) formulation of LEEI-

RSV was crucial for protective efficacy, reducing the viral load in the

lung of challenged mice by 170-fold (19). LEEI was used as a non-toxic

and non-probe-harming inactivation method with improved safety

compared to chemical inactivation or other radiation methods. It has

been used successfully for the generation of several viral, bacterial, and

parasitic vaccine candidates (19–25).

In this study, we tested different formulations and analyzed the

immune response by detecting secreted cytokines and immune cell

compositions in the bronchoalveolar lavage (BAL) of mucosally

vaccinated mice after RSV challenge and compared it with mice

vaccinated i.m. with formalin-inactivated (FI-) RSV or LEEI-RSV.

Here we found an expected Th2 bias in the Alhydrogel-adjuvanted

i.m. groups, but IgA induction solely after mucosal vaccination.

These results will lead to a better understanding of the mechanism

of immune responses triggered by mucosal vaccination, especially

with respect to IgA antibody induction, blood and BAL cell

composition, and cytokine secretion.
2 Materials and methods

2.1 Cell culture and virus production

Type 2 human epithelial cells (HEp-2; ATCC, USA) were used

for RSV-A production and assays and Vero E6 cells (ATCC) for
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RSV-B production. The cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) with GlutaMAX (Thermo

Fisher Scientific, Germany), containing 10% heat-inactivated fetal

calf serum and antibiotics (100 IU/mL penicillin and 100 µg/mL

streptomycin; Thermo Fisher Scientific) at 37°C with 5% CO2.

RSV laboratory strain A-long (VR-26™) or strain B (VR-

1400™) was obtained from ATCC. M. Peeples and P. Collins

(NIH, USA) kindly provided the recombinant RSV-A expressing

GFP (rgRSV). Virus propagation and titer determination were

performed as described (12, 26, 27).
2.2 Virus inactivation

The RSV-A samples were irradiated in a research LEEI

prototype (21) in a module based on a microfluidic system as

previously described (25). In short, RSV [in PBS with 12% (w/v)

trehalose] was filled into a disposable syringe which was inserted

into the system and connected to a microfluidic chip (MFC) made

of titan with eight parallel channels (180 µm in depth) milled into it.

The MFC was sealed with a 25-µm titan foil welded onto it. For

inactivation, LEEI with 300 keV and either 1 mA or 1.25 mA was

applied at a transportation velocity of 40 mm/s and cooled to ~10°C

during the process. The irradiated sample was collected in a new

syringe. The controls underwent the same process without LEEI.

For chemical inactivation, the virus was prepared in a way

comparable to “Lot#100” (28). In short, the same purified RSV

stock as used for LEEI-inactivation was diluted in DMEM and

incubated with 0.025% (v/v) formaldehyde (Thermo Fisher

Scientific) for 96 h at 37°C and with 5% CO2. The virus was

pelleted by ultracentrifugation (50,000 × g, 1 h, 4°C) in a

SureSpin 630 swing-out rotor (Thermo Fisher Scientific). After

resuspension in MEM (Thermo Fisher Scientific), the virus was

precipitated with 4 mg/mL Alhdydrogel (InvivoGen, USA) for

30 min, followed with centrifugation at 1,000 × g for 30 min. The

FI-RSV was resuspended in MEM and stored at -80°C.

Inactivation of all material was confirmed as described (20, 21).

For better comparison, a single RSV batch was used for all LEEI-

RSV-immunized groups in the animal experiment.
2.3 RSV surface antigen conservation
after inactivation

To examine the conservation of RSV antigenicity, dot blot

analysis and enzyme-linked immunosorbent assays (ELISAs) were

performed. ELISAs were performed as described with the same

antibodies as dot blots (19–21). For dot blot, 2 µL of each

inactivated RSV sample, with respective untreated controls, were

put on a nitrocellulose membrane (GE Healthcare Life Sciences,

Germany). The membranes were blocked with 5% (w/v) skimmed

milk powder (Carl Roth, Germany) in PBS-T (PBS with 0.05%

Tween 20) (Bio&Sell, Germany; Carl Roth) for 1 h and incubated

with a monoclonal antibody (mAb) recognizing RSV-F [18F12,

1:400 (26)], a mAb recognizing the prefusion form of RSV-F (RSV-
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preF) (D25, 1:1,000; Cambridge Biologics, USA), or a mAb

recognizing RSV-G (8C5, 1:500; Invitrogen, USA) in 2% (w/v)

skimmed milk in PBS-T at 4°C overnight. After washing three times

with PBS-T, the membranes were incubated with the respective

secondary antibody: for 18F12 and 8C5, the peroxidase

AffiniPure™ sheep anti-mouse IgG (H+L)-horseradish peroxidase

(HRP) antibody (Dianova, Germany) diluted 1:500, and for D25,

the goat anti-human IgG HRP-conjugated 1:20,000 (Dianova) for

1 h. The membranes were washed, developed with enhanced

chemiluminescent substrate (Pierce, USA), and imaged on a

CELVIN® chemiluminescent imager (Biostep, Germany).
2.4 Liposome production and
virus packaging

Phosphatidylcholine (PC, LIPOID GmbH, Germany) liposome

formulations were prepared as previously described (19). LEEI-RSV

was mixed in a ratio of 1:5 (PC : LEEI-RSV) with the liposome

formulation and vortexed for 15 s. This material was kept at 4°C.

Cationic liposomes were prepared as described with some

modifications (29, 30). In a small round-bottom flask, equal

amounts of DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)

and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; both

lipids from Avanti Polar Lipids via Sigma-Aldrich, Germany) (DD)

were mixed in chloroform and dried in a rotary evaporator followed

by 1 h at high vacuum to yield a homogenous lipid film. The film was

hydrated in sterile HEPES buffer (20 mM HEPES–NaOH, pH 7.4)

and vortexed for 15–20 min. The mixture was extruded 10 times

using a mini extruder (Avanti Polar Lipids) equipped with a 100-nm

membrane. A rather high total lipid concentration of 14 mg/mL was

chosen [29] to prevent strong virus dilution during formulation. The

liposomes were analyzed by dynamic light scattering (DLS) using

Zetasizer (Malvern, Germany) and Prometheus Panta (Nanotemper,

Germany). DD liposomes have mean particle sizes (dh) of 96 and 85

nm, depending on the DLS device, with a polydispersity index below

0.2, proving good mono-dispersity (Supplementary Figure S1). The

extrusion step yielded small, homogenous, and unilamellar liposomes

ensuring reproduceable formulation. LEEI-RSV and liposomes were

mixed directly before usage in a 1:5 ratio (DD : LEEI-RSV) and

incubated for 1.5 h on ice, inverting it from time to time.
2.5 Human precision-cut lung slices

The use of lung tissue was approved by the Ethics Committee of

the Hannover Medical School (MHH, Hannover, Germany) and

was in compliance with “The Code of Ethics of the World Medical

Association” (renewed on 2015/04/22, number 2701-2015). All

patients gave written informed consent for the use of their lung

tissue for research. Human precision-cut lung slices (PCLS) were

prepared as described previously (31). PCLS containing airways

were treated with different concentrations of DD-LEEI-RSV and

cultured in DMEM/F12 with penicillin and streptomycin (10,000

U/mL, Gibco) at 37°C with 5% CO2 for up to 72 h.
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Tissue viability was assessed using the lactate dehydrogenase

(LDH)-based Cytotoxicity Detection Kit (Roche, Switzerland) and

the metabolic activity-based Cell Proliferation Reagent WST-1

(Roche). Adverse immunomodulatory effects were assessed by IL-

6 and TNF-a in the supernatants by using ELISA (RnD, DuoSet,

USA). All kits and reagents were applied at the manufacturer’s

recommendations.
2.6 Immunization of mice and humoral
immune response

Female BALB/c mice (Charles River Laboratories, Germany)

were maintained under a specific pathogen-free environment in

isolated ventilated cages. The animal experiments were carried out

according to EU Directive 2010/63/EU and approved by local

authorities. Groups of six mice, 8 weeks of age, were vaccinated as

shown in Figure 1. Homologous i.m. vaccination with Alhdydrogel-

adjuvanted LEEI-RSV (LEEI-RSV i.m.) or FI-RSV (FI-RSV i.m.) was

done by injecting 50 µL in each hind leg under isoflurane anesthesia

(total volume per vaccination: 100 µL). The LEEI-RSV i.m. was a

control for protection, and the FI-RSV i.m. was a control for adverse

effects. Intranasal (i.n.) homologous vaccines were applied with PC-

formulated LEEI-RSV (PC-LEEI-RSV), DD-formulated LEEI-RSV

(DD-LEEI-RSV), or the vehicle [PBS with 12% (w/v) trehalose] in a

volume of 50 µL under light isoflurane anesthesia. For all vaccines,

the RSV titer was ~108 FFU/mL. Blood for the serum samples was

collected 1 week before and 3 weeks after i.m. prime and i.m. boost

vaccination for antibody analysis.

Serum RSV-neutralizing antibody titers were determined as

described (19).

The analysis of RSV-A-binding antibodies was modified based

on our previously published protocol (19). Serum dilution was

1:1,000 for IgG and 1:250 for IgA. For IgA detection, the goat anti-

mouse IgA cross-adsorbed HRP secondary antibody (Invitrogen)

was used in a 1:300 dilution. To analyze RSV-B-binding antibodies,

the same procedure was used with 105 FFU RSV-B/well coated.
Frontiers in Immunology 04
2.7 RSV challenge and sample preparation

The mice were challenged 4 weeks after i.m. and 2 weeks after

last i.n. boost-immunization, respectively, with 106 FFU RSV-A-

long at 50 µL per animal under light anesthesia (Figure 1). At 5 days

after infection, the mice were bled and euthanized, and the lungs

were flushed with PBS to access the BAL, whereby at the first lung

inflation the left lobes were separated for histological analysis.

Pulmonary histopathology was performed as described (20) and

evaluated in a blinded manner by the external veterinarian

pathologist Prof. Dr. Robert Klopfleisch (Free University, Berlin,

Germany). The BALs were centrifuged for 5 min at 500 × g and 4°C,

separating the BAL cells from the BAL fluid (BALF) (27). The BAL

cells were used for flow cytometric analysis and the BALF for

cytokine and antibody analysis. Binding antibodies were analyzed as

described in Section 2.6 with a 1:100 BALF dilution. The right lung

lobes were used for the analysis of RSV copies via RT-qPCR as

described (19, 27).
2.8 Flow cytometry

The BAL cells were stained with the antibody mix (Table 1) in

FACS buffer (PBS, 0.5% BSA, 2 mM EDTA) for 10 min at 4°C,

washed with 2 mL FACS buffer, and centrifuged at 500 × g for 5 min

at 4°C. The blood samples were diluted 1:2 with PBS and incubated

with the antibody mix (Table 1). After 10 min of incubation at 4°C,

1 mL of 1× BD FACS™ Lysing Solution (BD Biosciences, USA) was

added and incubated for 10 min at room temperature in the dark for

erythrocyte lysis. Then, 2 mL PBS was added and centrifuged at 350

× g for 5 min; washing was repeated with 3.5 mL PBS twice. The

washed BAL and blood cell pellets were resuspended in an

appropriate volume of FACS buffer and measured on BD™

Canto II with the DIVA software (BD Biosciences). Analysis was

performed with the FlowJo™ Software (BD Biosciences). The

gating strategy for blood cells is presented in Supplementary

Figure S2 and for BAL cells in Supplementary Figure S3.
FIGURE 1

Scheme of the vaccination schedule and infection with RSV. BALB/c mice were vaccinated using homologous vaccine regiments. For the formulated
LEEI-RSV vaccine with different liposomes for the formulated LEEI-RSV vaccines with different liposomes the application route was intranasal (i.n.), as
well as for the vehicle group which recieved PBS with 12% trehalose. As presented, the intranasal application was performed four times in total, i.e.,
every 2 weeks. For comparison, the vaccinees received LEEI-RSV (LEEI-RSV i.m.) or formalin-inactivated RSV (FI-RSV i.m.) two times intramuscularly
(i.m.) in a 4-week interval, both with the Alhydrogel adjuvant. Blood samples were collected for immunogenicity analysis at the indicated timepoints.
At 8 weeks after the first vaccination, the animals were challenged with 106 FFU (focus-forming units) RSV and scored for 5 days to test the
protective efficacy. At 5 days after challenge, the mice were euthanized and final blood samples were taken; bronchoalveolar lavage (BAL) was
performed as well, whereby the left lung lobes was separated after inflation for histological analysis. The remaining lung tissue was homogenized for
further analysis.
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The cytokine levels in the BALF of infected mice were

determined using BD™ CBA Enhanced Sensitivity Flex Sets

according to the manufacturer’s instructions and analyzed with

the corresponding BDTM software. The BALF was diluted 1:3 in

assay diluent.
2.9 Statistical analysis

Statistical analysis was performed using GraphPad Prism

Version 6.07. The tests used and significance values are indicated

in the figure legends and tables.
3 Results

3.1 Improved surface conservation of LEEI-
RSV compared to FI-RSV

To generate high-titer vaccine preparations, RSV was

inactivated by LEEI using a MFC, which enables the processing of

small batches requiring less virus material (25). After infections on

HEp2 cells, the material treated with 1.25 mA and showed no CPE
Frontiers in Immunology 05
in three passages was considered inactivated and used for further

testing, whereas the 1 mA-treated material was not completely

inactivated and therefore discarded (Supplementary Figure S4A).

FI-RSV was used as a control for chemical inactivation after proving

complete inactivation (Supplementary Figure S4A).

The conservation of the RSV surface proteins RSV-F and RSV-G

was analyzed by using ELISA. In addition, the conservation of the

prefusion RSV-F (RSV-preF) was assessed since the presence of RSV-

preF is crucial for the induction of balanced immune responses after

vaccination (32). Whereby the surface antigens in the process control

were comparable to the untreated RSV, irradiation with 1.25 mA

caused a 2.1-fold reduction for RSV-preF (Figure 2), while for FI-RSV

the surface protein antigenicity was highly reduced (6,853-fold RSV-

F, 103-fold RSV-preF, and 192-fold RSV-G) (Figure 2). The dot blot

analysis showed comparable results whereby no signals for FI-RSV

were detectable (Supplementary Figure S4B).
3.2 Protection in mice

To test the efficacy of our mucosal vaccine candidates, we used

the commonly accepted RSV infection BALB/c mouse model (33).

The mice were vaccinated either i.n. four times bi-weekly, including

the vehicle control, or, for comparison, twice i.m. using a

homologous prime-boost regimen with a 4-week interval (Figure 1).

3.2.1 IgA antibodies only in mucosally
vaccinated mice

Systemic IgG antibodies against the RSV-A strain were

quantified. Since RSV-A was used for vaccine preparation, we

expected anamnestic immune responses against the identical

antigens after all vaccinations. A statistically significant induction

of IgG-antibodies compared to the vehicle control group could be

observed in all vaccination groups in the second and third serum

samples (Figure 3A; Supplementary Table S1).

IgA antibodies are the main immunoglobulins in mucosal

immune responses, and RSV-A-binding IgAs could only be

detected in the serum of the two groups with i.n. vaccination

(Figure 3B), but not in the i.m. vaccinated groups. The IgA

induction in the i.n. groups was statistically significant compared

to the vehicle (17-fold PC-LEEI-RSV and 13-fold DD-LEEI-RSV)
FIGURE 2

Conservation of RSV surface proteins after irradiation. The conservation of RSV-F (18F12), RSV-preF (D25), and RSV-G (8C5) after inactivation was
measured in untreated control (untreated), the LEEI process control (0 mA), and after inactivation with 1.25 mA LEEI or formalin (FI) by ELISA. Shown
are LEEI-RSV inactivated in MFC and formalin-inactivated RSV (FI-RSV) used in the animal-experiments in comparison to the respective controls. The
bars indicate the mean of each group; every dot is a replicate, and shown is a representative experiment out of two. The calculated fold reduction to
the respective 0 mA control is indicated above each group.
TABLE 1 Antibodies for staining-mastermix; all antibodies were diluted
at 1:50 and acquired from Miltenyi Biotec (Germany).

Antigen Fluorophore Clone

CD45 VioGreen REA737

CD11b VioBlue REA592

CD11c APC-Vio770 REA754

MHCII PerCP REA813

CD3 APC-Vio770 REA641

Ly6G APC-Vio770 REA526

CD49b APC-Vio770 REA981

CD4 PE-Vio770 REA641

CD8 VioBrightFITC REA601

CD170 PE REA798
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and to i.m. vaccinated groups (13-fold PC-LEEI-RSV and 10-fold

DD-LEEI-RSV) (Figure 3B; Supplementary Table S1).

Compared to the vehicle-immunized group, all groups showed

significantly higher amounts of systemic neutralizing antibodies

against RSV-A after boost vaccination (Figure 3C). LEEI-RSV i.m.

induced the highest neutralizing antibody titers in the sera that were

significantly higher than all other groups by a factor between 7- and

69-fold (Supplementary Table S2).

To analyze the broad antibody response and cross-reactivity

after vaccination, the antibody binding capacity to RSV-B subtype

was additionally tested. The RSV-B-binding serum-IgG antibodies

of all vaccinated groups showed a statistically significant increase in

the second and third serum samples compared to the vehicle group

(Figure 3D). The RSV-B-binding IgA antibodies were significantly

induced after mucosal vaccination with DD-LEEI-RSV (17-fold)

and PC-LEEI-RSV (20-fold) compared to the vehicle group

(Figure 3E). The LEEI-RSV i.m. third serum samples also had

significantly higher amounts compared to the vehicle group, but

this 1.6-fold induction can be considered negligible. Both mucosally

vaccinated groups had statistically significant 12-fold (PC-LEEI-
Frontiers in Immunology 06
RSV) and 10-fold (DD-LEEI-RSV) higher IgA amounts compared

to the LEEI-RSV i.m. group (Supplementary Table S2).

3.2.2 Viral load reduction in DD-LEEI-RSV and
LEEI-RSV i.m. groups

To test the protective efficacy of the different vaccines and regimen,

the mice were challenged with 106 FFU RSV and scored for 5 days

(Figure 1). Severe clinical symptoms were absent (Supplementary

Figure S5). At 5 days after challenge, the animals were sacrificed to

quantitatively analyze the viral load in lung homogenates. The DD-

LEEI-RSV group showed a statistically significant 352-fold reduction of

RSV-RNA copy numbers in lungs, only surpassed by the LEEI-RSV

i.m. group with a 2.7-fold higher reduction (Figure 4A). The FI-RSV

group showed a 104-fold and the PC-LEEI-RSV group a 61-fold

reduction, both of which were not statistically significant (Figure 4A).

3.2.3 Mucosal immunization solely led to IgA
antibodies in BALF

The IgG antibodies in the BALF after challenge were found in

all immunized groups, as expected, whereby PC-LEEI-RSV (878-
A

B

D

E

C

FIGURE 3

Systemic humoral immune response of immunized animals. BALB/c mice were vaccinated as described in Figure 1. The humoral immune responses
before and after vaccination were detected by RSV-binding and RSV-neutralizing antibodies in serum samples. Before (first serum sample) and at 3
weeks after the i.m. prime (second serum sample) and boost (third serum sample) vaccination or, respectively, 1 week after two i.n. (second serum
sample) and after four i.n. vaccinations (third serum sample), blood samples were collected to monitor the systemic humoral immune responses.
RSV-binding serum IgG antibodies (A, D) and IgA antibodies (B, E) were tested by using ELISA either against an RSV-A (A, B) or an RSV-B (D, E)
subtype. Furthermore, 50% plaque neutralization titers (PRNT50) in sera were tested in a microneutralization assay against RSV-A (C). Every dot is the
mean of the duplicate of one animal, and shown is a representative experiment (A, B, D, E). In (C), every dot represents the mean of two to three
separate measurements in duplicates of one animal. Statistical evaluation was performed by using Mann–Whitney test in comparison to the
respective vehicle-vaccinated animal (indicated above each group). (*p ≤ 0.05, **p ≤ 0.01; LOD, limit of detection for the virus neutralization titer at
1:6; n = 6; relative light units per second = RLU/s).
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fold) and LEEI-RSV i.m. (1,280-fold) induced statistically

significantly higher amounts than vehicle-vaccinated animals for

binding RSV-A and RSV-B (Figures 4B, C). DD-LEEI-RSV had a

notable 704-fold (RSV-A) or 901-fold (RSV-B) induction compared

to vehicle and FI-RSV i.m. 438-fold (RSV-A) or 697-fold (RSV-

B), respectively.

In contrast, RSV-A-binding IgA antibodies were significantly

induced by PC-LEEI-RSV (56-fold) and DD-LEEI-RSV (91-fold)

compared to the vehicle, whereby DD-LEEI-RSV induced

significantly more IgA than the two i.m. groups (Figure 4B). For

RSV-B-binding IgA antibodies, both i.n. groups induced statistically

significantly more antibodies than the vehicle and the FI-RSV i.m.

group (Figure 4C). These IgA antibody data are consistent with the

serum data and highlight the exclusive IgA production after

mucosal vaccination.
3.3 Immune system after challenge

The exclusion of adverse immunological effects became

essential for RSV vaccines after the adverse outcome of a

vaccination trial in the 1960s (28). The overwhelming immune

response was, among others, associated with a Th2-like immune

response in vaccines (28).

3.3.1 IgE antibodies and histopathology induction
in i.m. vaccinated animals

In this regard, lung homogenates were analyzed for IgE levels

after RSV challenge. Both i.m. vaccinated groups, LEEI-RSV i.m.
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(threefold) or FI-RSV i.m. (twofold), induced statistically

significantly higher levels of IgE than the vehicle animals

(Figure 4A). In contrast, the IgE amounts of both mucosally

vaccinated groups were only slightly (1.5-fold) elevated compared

to the vehicle (Figure 5A) and comparable to untreated control

BALB/c mice (healthy control, Figure 5A).

Further analyses were performed by the pathological

assessment of histologically prepared lung tissue after H&E

staining. Peribronchiolitis was obviously detectable only in the FI-

RSV i.m. group showing elevated levels compared to the other

groups (Figure 5B). For interstitial pneumonia, the two i.n. groups

showed slightly higher scores than the other groups (Figure 5B). In

addition, the two i.m. groups showed visibly higher levels of

perivasculitis than the other groups, and the two i.n. groups

seemed to have lower effects than the vehicle animals (Figure 5B).

This reduced inflammation observed by determining perivasculitis

and peribronchiolitis in mucosally vaccinated animals is presented

by representative lung sections as shown in Figure 5C.

The absence of strong adverse or tissue-harming effects of DD-

LEEI-RSV was also observed in human PCLS experiments

(Supplementary Figure S6).

3.3.2 Th2 cytokine secretion elevated after
i.m. vaccination

Additionally, cytokines of BALF were analyzed after vaccination

and challenge (Figure 6). Interestingly, all three LEEI-RSV-groups

showed lower levels of IFN-g with PC-LEEI-RSV showing 57-fold,

DD-LEEI-RSV 33-fold, and LEEI-RSV i.m. 60-fold reduction

compared to the vehicle group. The FI-RSV i.m. vaccinated
A

B C

FIGURE 4

Viral load in lungs and RSV-binding antibodies in the BALF after RSV challenge. BALB/c mice were treated as described in Figure 1. At 4 weeks after i.m.
boost immunization, the animals were challenged with 106 FFU RSV-A per mouse. At 5 days after challenge, the mice were euthanized, and lung tissue
and bronchoalveolar lavage fluid (BALF) were collected. The RSV load was measured in the lungs via qRT-PCR (A), and RSV-A- (B) or RSV-B- (C) binding
antibodies in BALF were quantified by using ELISA. Shown is the viral copy number of each animal measured in duplicate with the corresponding
geometric mean of each group (A). The calculated viral load reduction to the untreated control is indicated above each group. In (B, C), every dot is the
mean of the duplicate of one animal, and also shown is a representative experiment out of two. Statistical evaluation of the data was performed by using
Kruskal–Wallis test. The asterisks above the groups indicate statistical significance in comparison to the vehicle animal and with lines between the
respective groups. Brackets above several groups indicate that all included groups were statistically significantly different compared to the corresponding
group outside of the bracket (*p ≤ 0.05, **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001; LOD, limit of detection at 50 FFU for viral load; n = 6).
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animals had only slightly lower levels of IFN-g which were

statistically significantly higher than LEEI-RSV i.m. animals (31-

fold). The DD-LEEI-RSV mice secreted significantly less IL-6 than

the vehicle (22-fold) and FI-RSV i.m. group (35-fold). The PC-
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LEEI-RSV group secreted less IL-6 than the LEEI-RSV i.m. animals

(fourfold) and the vehicle group (eightfold). TNF-alpha and IL-

12p70 showed only slight changes, and IL-2 and IL-10 had no

visible effects.
A B

C

FIGURE 5

Lung IgE antibodies and H&E staining of lung tissue of immunized and challenged animals. BALB/c mice were vaccinated and challenged as described in
Figure 1. After euthanasia, the right lung lobes were taken, and IgE-antibodies from lung homogenates were determined by using ELISA (A). The left lung
lobes were histologically examined after H&E staining for peribroncholitis, perivasculitis, and interstitial pneumonia (0: non, 1: minimal, 2: mild, 3: moderate,
4: severe; (B)). In (C), representative examples for each analyzed group of H&E-stained lung tissues are given (scale = 200 µm). Statistical evaluation of the
data was performed by using Kruskal–Wallis test. The asterisks above the groups indicate statistical significance in comparison to the vehicle animal (*p ≤

0.05, ****p ≤ 0.0001; n = 6).
FIGURE 6

Quantification of cytokines in BALFs of immunized and RSV-infected mice. BALB/c mice were treated as described in Figure 1. Bronchoalveolar
lavage fluid (BALF) was obtained and analyzed for secreted cytokines. The cytokine levels of IFN-g, IL-10, IL-6, TNF-a, IL-5, IL-2, IL-4, IL-13, and IL-
12p70 were quantified using a bead-based multiplex assay. Limit of detection was defined at 273.42 fg/mL. Data points represent the cytokine level
with the median of each group. Statistical evaluation of the data was performed by using Kruskal–Wallis test. The asterisks above the groups indicate
statistical significance in comparison to the vehicle group, and the significance between groups is indicated by lines. Brackets above several groups
indicate that all included groups are significant compared to the corresponding group outside of the bracket. *p ≤ 0.05, **p ≤ 0.01; n = 6.
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For the Th2 cytokines IL-4, Il-5, and IL-13, higher levels of

cytokines were secreted in the i.m. groups. The LEEI-RSV i.m.

showed a statistically significant 10-fold increase in IL-4 compared

to the PC-LEEI-RSV group and sixfold to the DD-LEEI-RSV group.

The FI-RSV i.m. group exhibited a statistically significant 13-fold

increase in IL-4 compared to the PC-LEEI-RSV group and eightfold

to the DD-LEEI-RSV group. The mucosally vaccinated mice

secreted less IL-4 than the vehicle group with a twofold decrease

for PC-LEEI-RSV and a 1.2-fold decrease for DD-LEEI-RSV.

Regarding IL-5, the LEEI-RSV i.m. and FI-RSV i.m. vaccinations

induced statistically significant increases of 47- and 53-fold,

respectively, compared to the vehicle group and PC-LEEI-RSV

animals. However, for DD-LEEI-RSV, single animals secreted

lower levels of IL-5 than i.m. groups with a 15-fold increase for

LEEI-RSV and a 17-fold increase for FI-RSV. For IL-13,

significantly higher levels were measured in the i.m. mice

compared to the vehicle group (14-fold increase for LEEI-RSV

and 11-fold increase for FI-RSV) and the DD-PC-LEEI animals

(ninefold increase LEEI-RSV and sevenfold increase FI-

RSV) (Figure 6).
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3.3.3 Balanced immune cell composition with
mucosal vaccines

Moreover, the composition of the immune cells in the blood

and BAL was analyzed after vaccination and challenge. In the blood,

only eosinophils were statistically significantly higher in LEEI-RSV

i.m. (2.4%) and FI-RSV i.m. (1.7%) vaccinated animals compared to

the vehicle group (0.6%) upon infection (Figure 7A; Supplementary

Table S3).

The composition of immune cells in the BAL revealed more

significant differences (Figure 7B). Both i.m. groups had statistically

significantly fewer alveolar macrophages (AM) (7.5% LEEI-RSV;

10% FI-RSV) than the vehicle group (48%) (Supplementary Table

S3) and significantly more CD4+ T cells (40% LEEI-RSV, 41% FI-

RSV, and 12% vehicle) and eosinophils (34% LEEI-RSV, 23% FI-

RSV, and 0.3% vehicle) (Supplementary Table S3). Compared to the

vehicle group, both i.n. groups had more CD4+ T cells (31% PC-

LEEI-RSV and 29% DD-LEEI-RSV) (Figure 6B). Furthermore, it is

worth mentioning that PC-LEEI-RSV (32%) had fewer AM than the

DD-LEEI-RSV group (38%) (Figure 7B). LEEI-RSV i.m. had

significantly less CD8+ T cells (7%) and NK cells (5%) than the
A B

C

FIGURE 7

Analysis of cell composition after challenge with flow cytometry. BALB/c mice were vaccinated and challenged as described in Figure 1. Cell
composition of blood (A) and bronchoalveolar lavage (BAL) (B) were determined by flow cytometrical analysis. The cell groups were defined as
shown in Supplementary Figure S2 (for (A)) and Supplementary Figure S3 (for (B)). MoMaDC indicates clustered cell groups containing monocytes,
macrophages, and dendritic cells. In (C), the cell counts per milliliter for the indicated cell groups of the BAL cells is depicted. Shown is the mean
( ± SD) of each group. Statistical evaluation was performed by using Kruskal–Wallis test. The asterisks above the groups indicate statistical
significance in comparison to either the respective vehicle group indicated by asterisks directly over the groups or against each other as indicated
by lines. (*p ≤ 0.05, **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001; n = 6).
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vehicle (19% CD8+ T cells and 12% NK cells) and significantly fewer

NK cells and more eosinophils than PC-LEEI-RSV mice (12% and

0.9%, respectively) (Supplementary Table S3).

Regarding immune cell counts per milliliter, the two i.m. groups

had more lymphocytes (CD45+ cells) than the other groups and

fewer AMs, with DD-LEEI-RSV animals having the lowest

lymphocyte count (1 × 105 cells/mL) among the vaccinated

animals, indicating the lowest immune cell infiltration

(Figure 6C). The eosinophil counts (324-fold LEEI-RSV and 233-

fold FI-RSV) and CD4+ T cell counts (7.7-fold LEEI-RSV and 7.5-

fold FI-RSV) in i.m. vaccinated mice were statistically significantly

higher than the vehicle group and visibly higher than the i.n. groups

(29- to 71-fold). The differences of CD8+ T cell numbers were not

significant between all groups (Figure 7C).

The ratio of CD4+ to CD8+ T cells was calculated, as imbalanced

ratios have been associated with adverse effects (34, 35). A ratio of

1.5 to 2.5 is considered balanced, with higher values indicating an

over-bursting and lower values indicating an impaired immune

system (35). The i.n. vaccine candidates had ratios within the

balanced range, indicating a balanced but activated immune

system (Figure 7C). In comparison, the mean ratios of the i.m.

groups were 6.1 (LEEI-RSV) and 4.3 (FI-RSV), exceeding the

balanced immune response (Figure 7C). In contrast, the mean

CD4+/CD8+ ratio of the vehicle group was 0.7, which could be

explained by the experiment duration of 5 days in which a CD4+ T

cell induction is not possible. In summary, the calculations of the

CD4+/CD8+ T cell ratios underline the imbalanced immune

responses detected in animals due to the i.m. vaccination with

either Alhydrogel-adjuvanted LEEI-RSV or FI-RSV and more

balance after i.n. vaccination.
4 Discussion

Mucosal vaccines are advantageous as they induce mucosal

immunity and secretory IgA, which are essential for the defense of

respiratory pathogens (15, 36–38). Clinical data suggest that the

local immune system plays an important role in controlling RSV

infections (11). Recently, vaccines against RSV have been approved

for adults (5, 6), but the question remains as to whether a mucosal

vaccine, which protects at the site of infection, could provide

additional benefits. Combining mucosal with approved vaccines

could induce long-term protection (36, 39, 40).

Regarding an i.n. vaccine against RSV, we have developed an

optimized, formulated inactivated RSV vaccine that aims to protect

mice and prevent imbalanced immune responses. DD-LEEI-RSV

was able to protect mice with relatively low levels of systemic

binding and neutralizing antibodies but induced balanced

immune responses reflected in a non-pathological BAL cell

composition and cytokine levels. The absence of IFN-g could be

due to reduced viral replication during the initial infection phase,

resulting in lower cytokine induction. Similar immunological effects

were observed with PC-LEEI-RSV. However, the reduction in RSV

copies was 5.8 times lower than with DD-LEEI-RSV and not

significant compared to the vehicle control. One possible

explanation for this difference could be the molecular properties
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of the liposomes since PC is anionic whereas DD is cationic. These

charge differences could influence the uptake of liposomes by AMs,

leading to more efficient antigen presentation with positively

charged DD compared to negatively charged PC (41).

For FI-RSV, a clinical trial in the 1960s showed enhanced

disease symptoms and two fatal cases in FI-RSV-vaccinated

toddlers after natural infection (28). These adverse effects are

thought to be due to the misfolding of the RSV-F protein,

resulting in a poor and imbalanced immune response, absence of

RSV-neutralizing antibodies, antibody-dependent enhancement,

and a Th2 bias (42, 43). We observed adverse immunological

effects in mice immunized with i.m. applied FI-RSV and LEEI-

RSV after challenge. These effects included high IgE levels, severe

lung damage (Figure 5), and high levels of Th2-related cytokines

(Figure 6) despite nearly undetectable viral replication and robust

humoral immune responses (Figures 3, 4). In the Th2 response, Th2

cells produce IL-4, which leads to a class switch to IgE-producing B

cells and further Th2 cell priming, and IL-5, leading to eosinophil

activation and recruitment. These Th2-biased immune responses

have been linked to lung pathologies (44) which we also observed

(Figure 5). We showed earlier that the choice of adjuvant is a critical

factor regarding Th2 bias as the i.m. vaccination with LEEI-

inactivated RSV in combination with Alhydrogel induces a Th2

immune response in mice (20). Despite a reduced Th2 bias when

using the same vaccine and vaccination route but other adjuvants

(20), we decided to use Alhdyrogel to enable a comparison with FI-

RSV. It is known that Alhydrogel induces a Th2 bias (20, 44) and

suboptimal T cell responses (36) which could contribute to the

adverse immunological effects observed. We hypothesize that the

use of Alhydrogel and the i.m. vaccination route induced a Th2

immune response associated with enhanced inflammation after

RSV challenge. Importantly, both formulated mucosal LEEI-RSV

vaccines did not show Th2-biased or misbalanced immune

responses. It is worth mentioning that the vaccination routes

cannot be compared directly head to head as the packaging,

application route, and application frequency differ. However, the

LEEI-RSV i.m. vaccination group was included as a positive control

for protective efficacy, which was shown before (19). However, the

protective efficacy using mucosal vaccination independent on the

application frequency is promising and might open a new option

for the effective protection against RSV.

In the presented vaccination trial, only the mucosal vaccines

induced RSV-specific IgA antibodies. IgA antibodies are known to

be present mainly on the mucosa. Previous studies have shown that

RSV-specific IgA antibodies are important correlates of protection

and can help to reduce the severity of infection (8, 9, 37, 38),

highlighting the significance of the findings in the present study.

Consequently, the antibodies in the BALF may provide a first-line

defense by binding and neutralizing RSV, whereas serum-

neutralizing antibodies first need to transudate through the lung

mucosa (36).

To induce protection against mucosal pathogens directly at the

site of infection, mucosal vaccines have become increasingly

popular. In this approach, it is important to consider strategies to

overcome the mucus barrier such as multiple applications, the use

of optimized mucosal formulations like liposomes or lipid
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nanoparticles, or the use of infection- and replication-competent

vaccines. In this regard, LAAVs or other virus vectors have shown

promising results in several preclinical and clinical trials (8, 9, 12–

15, 40, 45, 46). LAAVs mimic natural virus infection and thereby

activate both the innate and the adaptive immune systems (13, 15,

45, 46). Currently, only i.n. LAAV vaccines against influenza are

approved, which are well tolerated and, in terms of efficacy, with

cross-protective effects against drifted influenza strains (15). For

RSV, some LAAV vaccines are in phase 1 clinical trials but require

further extensive testing to exclude rare events as a case of lower

respiratory illness was observed (13). The history of RSV-LAAV is

characterized by either severe disease symptoms due to insufficient

attenuation (46) or insufficient protection due to over-

attenuation (45).

Another replication-competent vaccine technology for mucosal

application is the use of different viral vectors (8, 9, 12, 14, 39, 40).

Adenoviral vectors (AdV), already approved for i.m. vaccination

against SARS-CoV 2 (47), have been shown to induce superior

protective efficacy when applied mucosally compared to i.m.

application (9, 12, 40). In the context of RSV, an AdV vaccine

induced higher protection than a natural infection in mice, with

better cellular and humoral immune responses (8). Other vectors,

such as the modified vaccinia Ankara virus (MVA) vector, have also

been used in mucosal applications, showing strong antibody

induction and protection against RSV in mice (9, 14).

Despite these promising approaches, there are several

disadvantages associated with replication-competent vaccines.

Pre-existing immunity against the vaccines may reduce the

efficacy, and cases of reversion to a virulent pathogen or

retrograde transmission to the brain have been reported (16–18,

45–47). In addition, AdV vaccines against SARS-CoV-2 have rarely

been associated with a severe side effect of immune thrombotic

thrombocytopenia, leading to concerns regarding their safety (47).

Non-replicating, inactivated vaccines, on the other hand, do not

pose these safety concerns, making them potent candidates for

mucosal application against respiratory viruses (11, 19, 48–50). This

has been demonstrated for an irradiated H1N1 influenza vaccine

which showed protective efficacy only after mucosal application and

not through systemic routes (48). In this i.n. vaccination study,

cross-reactive CD8+ T cells were induced, and a heterologous

challenge with lethal H5N1 was cleared (48). Moreover, a

chemically inactivated SARS-CoV-2 vaccine approach has shown

high levels of IgA after i.n. vaccination, providing better protection

in the URT compared to systemic immunization and potentially

enabling cross-protection (49). Even though we saw a viral load

reduction after i.m. vaccination, cross-reactive RSV-specific IgA

antibodies were solely detected in i.n. vaccinated animals which

correlated with protection against severe lung pathology.

Furthermore, we detected a healthier distribution of immune cells

in the BAL with 38% AM of CD45+ cells in DD-LEEI-RSV-

vaccinated mice and a balanced ratio of 2.3 between CD4+ and

CD8+ T cells. It is known that mucosal vaccines can induce lung-

specific resident memory CD4+ and CD8+ T cells, and the presence

of lung-specific resident memory CD4+ T cells is particularly

important for long-term immunity (36).
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Our lipid formulation using DD and RSV-LEEI demonstrated a

protective efficacy in mucosally vaccinated mice and induced a

balanced immune response visible in cell composition and cytokine

secretion. Additional adjuvanting could further enhance the

protective efficacy. Promising options include pattern recognition

receptor ligands such as cyclic di-nucleotides (51) or LP-GMP (36),

detoxified enterotoxins such as CTA1-DD (11), or cytokines such as

IL-1b or IL-12 (8, 11). These adjuvants have shown improved

protective efficacy in mucosal applications against RSV (8),

influenza (11, 51) or SARS-CoV-2 (36). However, it is important

to note that the usage of additional adjuvants may also result in

unwanted side effects such as facial paralysis or diarrhea (11).

A limitation of the presented study is that T cells were not

further distinguished into resident, circulating, or memory T cells to

assess the durability of protection (36). Additionally, evaluating the

effects of the vaccine without challenge could give interesting

insights but was not the focus of this study, as the main objective

was the comparison with FI-RSV and the immune response

after challenge.

DD-LEEI-RSV is a promising i.n. vaccine candidate for

protection against RSV. As i.n. vaccination in humans can be

self-administered with minimal medical assistance, this approach

might have implications for various respiratory viruses with

temporary immunity and might be an option for booster

vaccinations. We have developed a potent vaccine that has shown

superior protection compared to our previous approaches and

provided new insights into the immunological impact of our

vaccine after a virus challenge. In summary, our study suggests

that LEEI-RSV formulated with DDmay be a valuable approach for

protecting humans against RSV.
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