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Immune checkpoint therapies (ICT) have transformed the treatment of cancer over

the past decade. However, many patients do not respond or suffer relapses.

Successful immunotherapy requires epitope spreading, but the slow or

inefficient induction of functional antitumoral immunity delays the benefit to

patients or causes resistances. Therefore, understanding the key mechanisms

that support epitope spreading is essential to improve immunotherapy. In this

review, we highlight themajor role played by B-cells in breaking immune tolerance

by epitope spreading. Activated B-cells are key Antigen-Presenting Cells (APC) that

diversify the T-cell response against self-antigens, such as ribonucleoproteins, in

autoimmunity but also during successful cancer immunotherapy. This has

important implications for the design of future cancer vaccines.
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1 Introduction

The breakthrough in cancer immunotherapy was awarded by the Nobel Prize in

Physiology or Medicine to James Allison and Tasuku Honjo in 2018 (1). Immune

checkpoints Therapies (ICT) have fundamentally changed cancer treatment approaches

over the past decade. ICT have become a robust method to reinvigorate exhausted T-cells

targeting neoepitopes on cancer cells. Neoepitopes occurrence in tumors correlates with tumor

mutation burden (TMB). Some neoepitopes are recognized as foreign antigens by T-cells and

become major drivers of antitumoral immunity when their activity is prolonged by ICT [1].

However, the delay between treatment initiation and response is a weakness. Indeed,

the benefit of ICT is not apparent until 2-3 months, and sometimes not until 6-12 months
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after treatment initiation, comparing unfavorably to chemotherapy

(2, 3). Therefore, ICT is often less effective for very aggressive

tumors. Combining ICT with intra-tumoral injections of the

replicating virus T-VEC (FDA-approved), failed to accelerate

therapeutic responses: the mean time to response was 8.4 months

(4). In a HNSCC trial combining T-VEC and ICT, 27.8% of patients

died before the first evaluation at week 9 (5), highlighting the need

to accelerate the induction of functional antitumor immune

responses. Moreover, the majority of patients do not respond at

all to ICT, because most tumors do not present enough neoepitopes.

Persistent clonal neoepitopes, required for long term remissions, are

often missing (6, 7), and inefficient epitope spreading to non-

mutated tumor associated-antigens (TAA), explains the primary,

but also secondary resistance to ICT (8).

Developing diversified immune responses is critical to

overcome the limitations of current immunotherapies.

Understanding why and how epitope spreading occurs holds the

key. In this review, we take an evolutionary approach to provide a

unifying explanation for this phenomenon and describe the key

pathways driving it. By leveraging these insights, future

immunotherapies can be designed to activate these pathways and

unleash the full potential of the immune system against cancer.
1.1 Break of tolerance
during immunotherapy

Neoepitopes and chronic inflammation in some tumors break

immune tolerance to tissue-specific, non-mutated, self-antigens (8),

leading to serious adverse events when these tumor antigens are

expressed in other normal tissues (9). Nevertheless, these

autoimmune side effects often correlate with survival in patients

treated with ICT (10). This suggests that these reactions are not only

adverse events but also real contributors to the therapeutic effect (11).
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They however remain difficult to predict. Self-tolerance does not

impede the generation of activated T-cells against many self-antigens,

but may strongly impair their functional activity in tissues (12).

Consequently, spontaneous immune responses occurring naturally

against self-associated tumor antigens, or T-cell responses elicited by

cancer vaccines do not consistently correlate with therapeutic

outcomes observed in vivo and can’t be used to prove or rule out a

break of immune tolerance, not even for neoepitopes (13).

Rather than relying on unpredictable, rare, delayed, poorly

targeted, and potentially dangerous autoimmune reactions, a

more rational immunotherapy should directly break immune

tolerance to specific cancer targets. This would allow safer, faster,

and more reliable tumor regression regardless of TMB or

neoepitope load. This was the original goal of cancer vaccines, but

their inability to reliably break immune tolerance, in clinical

conditions, has so far limited their efficacy, except in the rare

patients experiencing epitope spreading (14).

Epitope spreading is a diversification of the initial T-cell response

against novel epitopes that are different from, and not cross-reactive

with the original epitope(s) targeted in the primary immunization

(Figure 1). Epitope spreading can occur to cryptic epitopes of the

same targeted antigen (intra-molecular spreading) or against other

antigens (inter-molecular spreading or antigen spreading) (15).

Antigen spreading against other immunodominant epitopes readily

occurs through bystander activation duringmany immune responses,

but this is usually unrelated to a break of immune tolerance. On the

contrary, intra-molecular diversification of the T-cell response

reported for self-antigens such as MAGE Family Member A3

(MAGEA3) (16) or Telomerase (TERT) (17) provided stronger

evidence that a true break of immune tolerance occurred in the few

patients successfully reacting to cancer vaccines. Epitope spreading

occurred in these patients several months after the initial vaccination,

and this latter diversification of the T-cell response was correlated

with the appearance of objective therapeutic responses, as if the
FIGURE 1

Schematic view of T-cell epitope spreading into the sequences of antigens. The primary immune response targets dominant initiating T-cell epitope
(s). Then, the response may be further extended to other T-cell epitopes within the same antigen (intramolecular epitope spreading) or among other
antigens (antigen spreading/intermolecular epitope spreading).
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vaccine-induced T-cells were not the direct mediators of tumor

regression, but rather initiators of a broader T-cell response after

several cycles of epitope spreading (16–18). It is therefore crucial to

ident i fy which cel l populat ions are promoting such

epitope diversification.
1.2 Activated B-Cells promote
epitope spreading

As early as 1993, Charles Janeway hypothesized that B-cells are

the key antigen-presenting cells (APC) behind the diversification of

T-cell responses (19). In the last three decades, many studies have

supported the key involvement of B-cells as critical APC for T-cell

activation in many autoimmune diseases (20–25). The fundamental

role of auto-reactive B-cells as a key antigen presenting cell (APC)

to activate T-cells is widely established in autoimmune diseases (20–

24), where B-cells have even become a therapeutic target (24, 26). B-

cells diversify CD4 T-cell responses (22), cross-present antigens

during autoimmunity (27, 28) and also help CD8 T-cell

independently of antigen presentation (29). However, in cancer

immunotherapy, epitope spreading has been mostly attributed to

dendritic cells (DC) (30). The anti-tumoral role of B-cells has long

been neglected, because tumor mouse models have mainly

predicted a pro-tumoral role of B-cells, in contrast to the

situation in humans (31, 32). However, recent data has

strengthened the evidence for a strong correlation between B-cell

activation and successful immunotherapy in humans (33–38). This

suggests that B-cells play a key role in tumor antigen presentation

(39) and are critical for successful cancer immunotherapy (32, 40)

and also to the associated-autoimmune reactions (11, 25).
1.3 The viral escape theory: a potential
fundamental reason for epitope spreading

During a primary viral infection, DC capture and present

foreign antigens to activate high-avidity T-cells that kill infected

cells. Later, serum antibodies rise to suppress viral dissemination

and prevent recurrence. However, when the virus escapes through

random mutations at protective T-cell epitopes, B-cells still capture

virus particles released from infected cells resistant to T-cell killing

(41). In this situation, B-cells are continuously activated via their

BCR (B-Cell Receptor) and present antigens to T-cells. Thus,

persistent antigen presentation by memory B-cells means that an

immune response has been induced, but also that this immune

response has failed to completely remove the pathogen. Therefore,

these conditions may have been evolutionarily selected to provide

special signaling to recruit a new wave of effectors, that are more

likely to cause autoimmune damage, but are able to remove escape

variants that cannot be cured with the primary response (42–45).

High-avidity T-cells reacting against self-antigens are deleted by

central tolerance, but low avidity-cells T-cells are not deleted. They

are held in reserve in the case the primary response fails (42, 46–48).

With the help of B-cells, T-cells with gradually lower TCR affinity

are progressively recruited (45), which may ultimately break
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immune tolerance and cause autoimmune damage. During

stepwise expansion of the immune response, the hierarchical

order of epitope spreading starts with the most immunodominant

epitope and then extends to the least dominant (15). Activated T-

cell reaching subdominant epitopes and cryptic epitopes that have

not been tolerized break immune tolerance (49, 50).

B-cells are highly efficient at reconcentrating diluted antigens

released from dead cells by capture through their BCR which allows

the selective presentation of a specific antigen to activate T-cells (19).

On the contrary, DCs capture and present antigens non-specifically.

Therefore, DCs need to remain under the strict control of T regulatory

cells (Treg) (51), whereas B-cells are less stringently controlled by Treg

(52, 53). Indeed, B-cells have a unique ability to activate T-cells and

support the differentiation of low-avidity T-cells (44, 45) which are

normally suppressed by T-regulatory cells (Treg) (54, 55). DC play a

crucial role in the initial T-cell activation, but B-cells, not DC, uniquely

support CD4 T-cells cooperation and their further activation (22, 56)

through the OX40-OX40L pathway (22, 57). Memory B-cells act as

specific APC that overcome the suppressive activity of Treg in many

autoimmune disorders (23, 58, 59).

Activated B-cells also provide additional APC numbers to

bypass T-cell competition, reduce immunodominance and

diversify the T-cell response. Indeed, during viral infections, T-

cells compete for APC and costimulatory molecules, establishing a

state where only a few epitopes dominate the T-cell response.

Dominant epitopes usually display a high affinity for HLA and

provide the strongest T-cell activation (60), but immunodominance

can be bypassed by artificially increasing the number of APC (61–

63). During an infection, if the antigen is only presented by

dendritic cells (DCs), the number of activated APC is limiting,

therefore creating a competition between T-cells for the few

activated APCs and favoring the dominance of a T-cell response

against only a few epitopes. On the contrary, expanded B-cells can

outnumber DC and provide an increased number of APC that relief

the competition for APC. This bypasses the immunodominance

and support the extreme diversification of the immune response to

multiple new epitopes: epitope spreading (45). Moreover, plasma B

cells secrete high levels of antibodies that bind the antigen and

facilitate the subsequent mobilization of other non-conventional

APC (64), further enhancing antigen presentation and cross-

presentation which favors the break of tolerance (65).

Broad immune responses targeting multiple epitopes are more

efficient than restricted responses, but carry a higher risk of

autoimmunity (66). While the risk-benefit ratio of inducing a

broader T-cell activation may not always be positive during a

chronic infection, a live pathogen that acutely escape immune

control and becomes detected as a threat out-of-control, provides

a stronger signal than a chronic infection (67). Acute reinfection

with a pathogen expressing a self-antigen, but not a standard DC

vaccine, can directly activate low avidity T-cells and induce

autoimmunity after only one week (47), demonstrating that

epitope spreading is not necessarily a slow process but can be

accelerated. However, this also suggests that standard vaccine

technologies and current adjuvants are suboptimal for inducing

epitope spreading. It is therefore crucial to identify the most suitable

signaling pathways that, can efficiently drive epitope spreading.
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1.4 The unique role of TLR7 in B-cells to
break tolerance

Toll-like receptor (TLR) -9 or TLR3 agonists (CpG and PolyI:C)

are usually scored as the more powerful adjuvants for standard

antigens in mice, but a TLR7 agonist was reported as the most

effective adjuvant for a self-antigen (68). TLR7, a sensor for viral

RNA, has a superior ability to induce IL-6 dependent resistance to

the suppressive activity of Treg (69, 70). TLR7 agonists are more

effective in bypassing Treg than agonists for TLR4, TLR5 (71) and

even TLR3, RIG-I, MDA-5 (68, 72).

TLR7 plays an essential role in B-cells unlike any other TLR,

including TLR9, despite both receptors rely on MyD88 signaling

(73). TLR7, but not TLR2, TLR3, TLR4 or TLR9 is required for the

formation of spontaneous germinal centers in vivo (74). TLR7

agonists, but not TLR3, TLR4 or TLR9 agonists, induce the

accumulation of atypical memory CD11c+ B cells (ABCs),

associated with autoimmunity (75).

The major importance of TLR7 in the break of immune

tolerance is strengthened by the independent discovery that

several genetic/epigenetic variations in TLR7 leads to

autoimmunity (76–78). Indeed, at the genome level, a single gene

dupl ication in TLR7 induces autoimmune pathology,

demonstrating that TLR7 levels must remain tightly regulated in

vivo (79). At the transcription level, type II interferon potentiates

the TLR7 pathway (80, 81) and type I interferon up-regulates TLR7

expression 40-fold in B-cells, without changing the levels of other

TLR, thereby increasing the sensitivity of B-cells specifically against

RNA viruses (82). Of note, RNA viruses have a higher mutation rate

than any other pathogen. They pose the risk of escaping the

immune response by random mutation (41). As a result, TLR7

signaling in B-cells seems to have been evolutionarily selected to

respond efficiently against viral escape variants by facilitating

epitope spreading.
1.5 RNP: optimal inducer of the dual BCR/
TLR7 signaling

Ribonucleoproteins (RNPs) are RNA-protein complexes that

can be mistaken as RNA virus. They constitute a major class of self-

antigens targeted in autoimmune diseases (83). Autoantibodies

against different RNPs antigens are frequently found in various

autoimmune diseases. However, mice genetically deficient in

secreting antibody showed that serum antibodies are not essential

to the autoimmune pathology. Rather, it was found that the

presence of non-secreted auto-antibodies at the surface of B-cells

(the BCR) is critical, suggesting that it is the APC function of B-cells

which is key for autoimmunity (21, 22, 84). Genome-wide

association studies have also identified the BCR signaling among

the most frequent genetic polymorphisms predisposing to

autoimmunity (20).

Noticeably, RNPs induce a dual BCR/TLR signaling (Figure 2),

by the sequential engagement of the antigen signaling at the cell-

surface (BCR or FcR through their protein part), followed then by
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TLR7 signaling in endosomes (through their RNA part) (78). This

acute or prolonged dual signaling by RNPs better mimics a RNA

virus escaping immune control than any other self-antigen,

explaining why RNP often break tolerance by epitope

spreading (83).

The co-stimulation of the BCR is required to unleash the full

potential of TLR7 signaling. Otherwise, TLR7 activation alone is

rapidly restrained to hypo-responsiveness (85). Antigens that

activate the dual BCR/TLR7 signaling, but not dual BCR/TLR9 or

TLR7 alone, promote B-cell differentiation into plasma cells (86),

found to correlate with antitumor responses to anti-PD-L1 (37).

Noticeably, the dual BCR/TLR7 signaling has also been

experimentally found as the optimal combination for vaccination

with human B-cells (87). Current studies support a model where the

dual activation of the BCR/TLR7 signaling by a foreign RNP antigen

in B-cells is the first event that orchestrates the break of tolerance in

several autoimmune diseases (83, 88), suggesting a cooperation

between the three main autoimmune mechanisms: molecular

mimicry, bystander help and epitope spreading.

Ribonucleoprotein antigens are also the major class of self-

antigens targeted by B-cells in tumors (89). Among the most

studied TAA, telomerase is a RNP absent in most normal adult

tissues but reactivated in most cancers and essential for prolonged

tumor growth and metastasis. After vaccination with a single

peptide from TERT, extensive epitope spreading into the entire

TERT protein has been observed in the few patients achieving

tumor regression, but not in non-responders (17). In these

responders, the T-cell response against TERT was so widespread

that T-cell reactivity was detected at almost half of the positions
FIGURE 2

Dual BCR/TLR signaling. Viral Escape Mimetics (VEM), like RNPs
antigens, induce a dual BCR/TLR signaling in memory B-cells which
enhances antigen presentation to T-cells, and favors a break of
tolerance by epitope spreading.
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tested along the protein, providing evidence of profound epitope

spreading (17). Interestingly, the long-term survival of these

patients without autoimmune extension to other tissues (90),

illustrates the concept of beneficial autoimmunity (11). This

supports the development of immune activators capable of

directly eliciting such extensive and diversified immune responses

in the majority of patients.
2 Conclusions and perspectives

No cancer vaccine has been specifically designed to break

immune tolerance against a tumor antigen by inducing

intramolecular epitope spreading through the specific activation

of the dual BCR/TLR7 signaling in B-cells. All mRNA/DNA/viral

cancer vaccines suffer from a de-coupling of timing and localization

between early TLR/IFN stimulation in endosomes and the delayed

antigen expression in the cytoplasm (91). Current cancer vaccines

do not sequentially activate the BCR at the cell-surface, followed by

connected TLR7 activation and MHC antigen presentation in the

resulting endosome (28). Neither unassociated adjuvants

commonly co-administrated in protein/peptide vaccine

formulations, nor antigens delivered by mRNA/DNA/viral vectors

appropriately reproduce the temporospatial trafficking of a viral

particle captured by an APC.

Vaccines based on antigen-adjuvant conjugates should provide

better Viral Escape Mimetics (VEM) to induce epitope spreading.

Recently, peptides linked to the synthetic TLR7 agonists

(imidazoquinoline) have been tested (92). However, small

peptides do not contain enough B and T epitopes linked on the

same antigen to support direct epitope spreading, while the in vivo

adjuvancy of imidazoquinolines is vastly inferior to RNAs, because

of abnormal TLR7 trafficking when TLR7 is activated by these small

synthetic agonists instead of an RNA (93). Larger protein-RNA

complexes should be preferred, as antigens close to a viral size

display an optimal trafficking into lymph nodes, contrary to small

antigens (94). Finally, many of the current cancer vaccines still use

oil adjuvants which induce antibody production by B-cells that

prevent infectious diseases, but abrogate the antitumoral activity of

B-cells (95) and the response to ICTs (96). Therefore, future cancer

vaccine must activate the most potent type of B-cells for ICT.

Vaccines against neoepitopes can induce broader immune response,

but they have nevertheless mostly failed to solve the primary resistance

to ICTs (97), possibly because a standard immunization approach

doesn’t reverse self-tolerance (12, 47). Many neoepitopes do not

display enough foreignness and several work as suppressive regulatory

T cell epitopes (98). Therefore, in most patients, ICTs can only become

efficient with a break of immune tolerance induced by profound epitope

spreading against native non-mutated epitopes, a process lead by

activated B-cells, as evidence in autoimmunity.
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Glossary

ABCs atypical memory B cells. They are also called extrafollicular,
inflammatory double negative, or age-associated B cells. They
usually express CD11c, Tbet, FcRL4 but lack CD21, CD27
and IgD.

APCs Antigen-Presenting Cells (ex: dendritic cells or B-cells).

BCR B-Cell Receptor.

Cancer
immunotherapy

treatments that use the host immune system to fight cancer.

DC Dendritic cells.

ICTs Immune checkpoints Therapy are monoclonal antibodies
targeting critical regulators of the immune system like PD-1/
PDL-1, CTLA4, LAG-3 that revigorate exhausted T-cells and
prolong their activity. Some cancer cells also exploit this
regulation to protect themselves, but this cancer-associated
inhibition may be canceled with ICTs.

RNP Ribonucleoprotein (protein-RNA complexes).

T-
cell exhaustion

T cells often met during chronic pathology, where T-cells
display poor effector function to prevent immunopathology.

Neoepitopes mutated epitope.

TAA tumor associated-antigens.

TERT Telomerase Reverse Transcriptase.

Treg T-regulartory cell.

TLR Toll-like receptor.

VEM Viral Escape Mimetics are antigens that sequentially induce
the dual BCR/TLR signaling in memory B-cells. Acute or
persistent dual BCR/TLR signaling means that preexisting
immune responses already exist against this antigen, but has
failed to remove it, which provides a specific new signaling to
induce a more profound immune response:
epitope spreading.
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