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biomarkers and immune cell
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growth restriction
Xing Wei1†, Zesi Liu2†, Luyao Cai1†, Dayuan Shi1, Qianqian Sun1,
Luye Zhang1, Fenhe Zhou1 and Luming Sun1*

1Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai Key Laboratory of Maternal
Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai
First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China,
2Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University,
Dalian, Liaoning, China
Background: Fetal growth restriction (FGR) occurs in 10% of pregnancies

worldwide. Placenta dysfunction, as one of the most common causes of FGR,

is associated with various poor perinatal outcomes. The main objectives of this

study were to screen potential diagnostic biomarkers for FGR and to evaluate the

function of immune cell infiltration in the process of FGR.

Methods: Firstly, differential expression genes (DEGs) were identified in two Gene

Expression Omnibus (GEO) datasets, and gene set enrichment analysis was

performed. Diagnosis-related key genes were identified by using three machine

learning algorithms (least absolute shrinkage and selection operator, random

forest, and support vector machine model), and the nomogram was then

developed. The receiver operating characteristic curve, calibration curve, and

decision curve analysis curve were used to verify the validity of the diagnostic

model. Using cell-type identification by estimating relative subsets of RNA

transcripts (CIBERSORT), the characteristics of immune cell infiltration in

placental tissue of FGR were evaluated and the candidate key immune cells of

FGR were screened. In addition, this study also validated the diagnostic efficacy of

TREM1 in the real world and explored associations between TREM1 and various

clinical features.

Results: By overlapping the genes selected by three machine learning

algorithms, four key genes were identified from 290 DEGs, and the diagnostic

model based on the key genes showed good predictive performance (AUC =

0.971). The analysis of immune cell infiltration indicated that a variety of immune

cells may be involved in the development of FGR, and nine candidate key

immune cells of FGR were screened. Results from real-world data further

validated TREM1 as an effective diagnostic biomarker (AUC = 0.894) and

TREM1 expression was associated with increased uterine artery PI (UtA-PI) (p-

value = 0.029).
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Conclusion: Four candidate hub genes (SCD, SPINK1, TREM1, and HIST1H2BB)

were identified, and the nomogram was constructed for FGR diagnosis. TREM1

was not only associated with a variety of key immune cells but also correlated

with increased UtA-PI. The results of this study could provide some new clues for

future research on the prediction and treatment of FGR.
KEYWORDS

fetal growth restriction, machine-learning, immune cell infiltration, placenta, TREM1
(triggering receptor expressed on myeloid cells)
1 Introduction

Fetal growth restriction (FGR) affects 10% of all pregnancies

worldwide and is a major cause of poor perinatal outcomes (1, 2). It

is a condition in which a fetus does not attain its genetically

conferred growth potential because of underlying pathologies,

including maternal, fetal, infection, and placental abnormalities.

FGR is commonly defined as the estimated fetal weight (EFW) or

abdominal circumference (AC) less than the tenth percentile for the

gestational age (3, 4).

The placenta is an important organ during pregnancy as the

interface between fetal development and maternal circulation (5).

Placenta dysfunction is a common cause of FGR, and accounts for

25%~30% of all FGR cases, which can increase the risk of iatrogenic

preterm birth, very low birth weight, and poor long-term

neurological prognosis (6, 7). Many major clinical problems in

human pregnancy, such as FGR and preeclampsia (PE), although

classically presenting in the third trimester, have their origins in the

first trimester when immune regulation at the mother-fetus

interface is abnormal, namely placenta dysfunction (8). Several

studies have shown that immune regulation at the mother-fetus

interface in embryo implantation, decidualization, and placentation

(9, 10) plays an important role in the process, and is an important

factor affecting the outcome of pregnancy. Furthermore, with the

development of high-throughput sequencing technology, it is

possible to explore the relationship between the expression of

pathogenic genes and FGR caused by placental dysfunction at the

transcriptome and epigenetics levels. In vitro and in vivo studies,

differential expression of multiple genes have been detected through

cell models and placental tissue, which may contribute to abnormal

placental function through various ways, including immune

regulation, and are strongly associated with pregnancy-related

diseases (11–13). Additionally, given its high incidence and

associated mortality rate, timely diagnosis and prediction of FGR

are linked to improved outcomes (4). Various invasive diagnostic

methods, such as chorionic villus sampling, have been proven

effective in diagnosing and analyzing aberrant gene regulatory
02
networks in fetuses suspected of having FGR (2). These results

add new perspectives to the study of the mechanisms of FGR on one

hand and provide possible clues for molecular or drug therapies

targeting candidate genes and diagnostic genes to prevent and

predict placenta-related diseases on the other.

Despite the exciting results of genes research in the human

placenta, there is still a lack of effective diagnostic biomarkers for

FGR, and our current knowledge of how numerous genes

contribute to human placental development and function in

pregnancy processes is still very limited. The critical role of

immune factors in embryo implantation and placenta formation

has also received extensive attention (14).

In this study, we used three machine learning algorithms to

explore the potential biomarkers and underlying pathways involved

in the development of FGR and conducted immune-related analysis

of FGR placental tissue. In addition, real-world data were collected

to validate the diagnostic efficacy of the biomarkers of interest

identified in this study and to explore its relationship with multiple

clinical parameters.
2 Methods

2.1 Data processing and identification of
differentially expressed genes

GSE147776 and GSE203507 are data sets from GEO database

for gene expression microarray analysis of placental tissues.

GSE147776, based on the GPL20844 platform, contains 13

samples of FGR and 8 samples of normal pregnancy. GSE203507,

based on the GPL16791 platform, contains 21 samples of FGR and

10 samples of normal pregnancy (Supplementary Table 1). By

applying R packages “limma” and “sva”, we standardized the data

in datasets, performed batch effect correction, and screened

differentially expressed genes (DEGs). The cut-off criteria were

adjusted p < 0.05 and | log fold change (FC)| > 1. The heatmap

and volcano diagram were obtained using the “ggplots” package.
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2.2 Enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed by

using the “clusterProfiler” and “pathview” R packages to predict the

potential function of DEGs between two groups. The potential

underlying molecular mechanisms of DEGs were further

investigated by applying gene set enrichment analysis (GSEA). In

addition, we performed disease ontology (DO) enrichment analysis

of DEGs using the “Dose” R package (15).
2.3 Hub gene identification and
construction and evaluation of
diagnostic model

In this experiment, hub genes were defined as overlapping genes

from three machine learning algorithms, including: least absolute

shrinkage and selection operator (LASSO) regression curve with

“glmnet” package (16), random forest (RF) with the

“randomForest” package (17) and support vector machine model

(SVM-RFE) with the “e1071” package (18). Based on the selected

hub genes, we constructed a nomogram model through the “rms”

package to predict the incidence of FGR. The calibration curve and

receiver operating characteristic (ROC) curve were drawn to

evaluate the suitability of our nomogram for clinical use (19, 20).
2.4 Gene set enrichment analysis and
immunological correlation analysis

The “clusterProfiler” package was also used to conduct GSEA

enrichment analysis to explore potential molecular mechanisms for

TRMDGs. The “CIBERSORT” package was used to analyze

differences in 22 immune cell infiltration levels between FGR and

control groups. Box plots can show the differences in immune cells

between the different groups. LASSO regression analysis was

performed to identify the FGR group of candidate key immune

cells from 22 types of immune cells. In addition, the correlation

relationship between TREM1 and the immune cell infiltration level

was analyzed and a lollipop plot was drawn to summarize the

correlation between each immune cell and TREM1.
2.5 Validation based on the real-world data

To validate the expression changes and the prognostic value of

TREM1, placenta tissues were collected from 62 singleton

pregnancies with FGR and 24 singleton controls undergoing

routine prenatal monitoring at the Department of Fetal Medicine

& Prenatal Diagnosis Center of Shanghai First Maternity and Infant

Hospital in China from January 2021 to December 2023. The

clinical characteristics of patients are presented in Table 1 and

Supplementary Table 2. FGR was defined as birthweight below the

10th percentile for gestational age. Cases complicated with other
Frontiers in Immunology 03
fetal major structural and chromosomal anomalies were excluded.

All placental tissues were collected during cesarean sections or

spontaneous vaginal delivery. Tissue samples of approximately 1

cm3 from various regions near the cord attachment on the maternal

side were dissected. These tissues were rinsed in saline solution to
TABLE 1 The clinical characteristics of the FGR and control groups.

Control FGR
p-value

(N=24) (N=62)

Age

Mean (SD) 32.0 (4.2) 31.5 (4.3)

0.603Median
[Min, Max]

31.0 [24.0, 41.0] 31.0 [23.0, 42.0]

Gestational days

Mean (SD) 214.0 (45.9) 221.0 (37.8)

0.475Median
[Min, Max]

231.0
[139.0, 270.0]

228.0
[147.0, 269.0]

BMI

Mean (SD) 21.5 (2.8) 22.0 (2.9)

0.697Median
[Min, Max]

21.2 [15.2, 35.0] 21.4 [17.3, 29.0]

Offspring gender

Female 14 (58.3%) 25 (40.3%)
0.210

Male 10 (41.7%) 37 (59.7%)

EFW (percentile)

Mean (SD) 66.8 (26.4) 1.09 (2.9)

<0.001Median
[Min, Max]

75.6 [10.4, 98.9] 0.200 [0, 9.5]

Umbilical Artery Doppler

Normal - 31 (50.0%)

-
Elevated PI value - 4 (6.5%)

AEDV - 16 (25.8%)

REDV - 11 (17.7%)

Uterine Artery PI

Normal – 16 (25.8%)
-

Elevated – 46 (74.2%)

Uterine Artery Notch

Normal - 31 (50.0%)
-

Notch - 31 (50.0%)

Pre-eclampsia

No – 43 (69.4%)
–

Yes – 19 (30.6%)
FGR, fetal growth restriction. SD, standard difference. BMI, body mass index. EFW, estimated
fetal weight. PI, pulsatility index. AEDV, absent end-diastolic volume. REDV, reverse end-
diastolic volume.
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eliminate maternal contamination. A portion of the tissues was

fixed in a 4% paraformaldehyde solution, embedded in paraffin, and

subjected to immunohistochemistry staining (21). The remaining

samples were removed the maternal side and fetal side of the

placenta, snap-frozen in liquid nitrogen and stored at −80°C for

subsequent RT-PCR analysis (22) and Western blot (23). Then, we

also underwent immunohistochemical (IHC) staining. Detailed

methods are found in the Supplementary Materials.

Partial clinical information from patients in the FGR group and

the control group also were collected and the following variables for

this study were extracted: age, gender of offspring, fetal weight,

features of umbilical artery (UA) and uterine artery (UtA) Doppler

examination in pregnancy, and the history of PE. The pulsatility

index (PI) was estimated by the ultrasonography software.

TREM1 differentially expressed analysis between groups was

performed using the “limma” R package. Spearman’s correlation

analysis was used to describe the correlation between TREM1

expression and clinical traits. Furthermore, a ROC curve was used

to assess the predictive value of TREM1 for FGR in the real world.

This study was approved by the Ethics Committee of Shanghai First

Maternity and Infant Hospital (Ethical number KS2133), and

written informed consent was obtained from all participants

before the collection of clinical samples and data.
2.6 Statistics analysis

All statistical analyses were conducted using R packages [R

software (version 4.2.0)]. A p-value < 0.05 was considered

statistically significant (p-value < 0.001 = ∗∗∗, p-value < 0.01 =

∗∗, and p-value < 0.05 = ∗). The process and study design are

presented in a flowchart (Figure 1).
Frontiers in Immunology 04
3 Results

3.1 Identification of differentially
expressed genes

After standardization and batch effect removal of two GEO

datasets (Figures 2A, B), a total of 290 DEGs were screened

(Figure 2C). Top 20 up and down-regulated genes were shown in

Figure 2D. Among them, 133 genes were up-regulated, and 157

genes were down-regulated in the FGR group (Supplementary

Table 3). The protein-protein interaction network of DEGs was

analysised through the public database STRING and we visualized

the result using Cytoscape, a network visualization software

(Supplementary Figure 1).
3.2 Enrichment analysis

Enrichment analysis of 290 DEGs was performed. Specifically,

in the DO enrichment analysis, we found that DEGs may be related

to the occurrence and development of female reproductive system

diseases, asthma, pre−eclampsia and other diseases (Supplementary

Figure 2A). The specific p-values of the DO enrichment analysis

were shown in Supplementary Table 4. On the other hand,

biological process (BP) analyses showed that leukocyte migration,

regulation of cell-cell adhesion, and lymphocyte mediated

immunity are the biological activities in which the DEGs are

primarily involved. The result of cellular component (CC)

analysis showed that the DEGs are involved in the composition of

lumenal side of endoplasmic reticulum membrane, basal plasma

membrane, and basolateral plasma membrane. Immune receptor

activity, glycosaminoglycan binding, and cytokine receptor binding
FIGURE 1

The flow chart for the whole design. DEGs, differentially expressed genes. CIBERSORT, cell-type identification by estimating relative subsets of RNA
transcripts. GO, Gene Ontology; DO, disease ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis;
SVM-RFE, support vector machine-recursive feature elimination; LASSO, least absolute shrinkage and selection operator;
IHC, immunohistochemical.
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were mainly enriched according to the molecular function (MF)

analysis (Supplementary Figure 2B). KEGG pathways analysis also

indicated that DEGs are enriched in several cytokine interactions

and immune-related pathways (Supplementary Figure 2C). GSEA

analysis was performed, and the enriched pathways in the FGR

group are presented in Supplementary Figure 1D.
3.3 Screening for key genes based on
machine learning models

The 290 pivotal gene expression profiles were used to

construct prediction functions using three machine learning

models: Firstly, a total of 290 genes were screened from the

DEGs via 10-fold cross-validation by SVM-RFE algorithm as

diagnostic markers (Figure 3A). LASSO regression selected 18

predicted genes from among the statistically significant univariate

variables out of candidate variables (Figure 3B). And 50 genes

were screened from DEGs using RF and top 30 genes relative

relevance was ranked from high to low (Figure 3C). Finally, the

three algorithms identified four key genes (SCD, SPINK1, TREM1

and HIST1H2BB) with overlap (Figure 3D). In addition, we also

found a correlation between the expression levels of four hub

genes in the FGR group, and the specific correlation coefficients

and p-values are displayed in Figure 3E. We observed significant

intercorrelations among the expression levels of these four hub

genes in the FGR placenta.
Frontiers in Immunology 05
3.4 Construction of diagnostic model and
developing a nomogram

The expression levels of four key genes in the FGR group and the

control group were extracted, and a multivariate Logistic regression

model was constructed. The results of Logistic regression model

suggested that four key genes have predictive efficacy for the

occurrence of FGR (SCD, p-value < 0.001; SPINK1, p-value =

0.001; TREM1, p-value = 0.001; HIST1H2BB, p-value = 0.008)

(Supplementary Table 5). To graphically evaluate each individual

(SCD, SPINK1, TREM1 and HIST1H2BB), a nomogram was

developed based on 4 key genes to predict the likelihood of FGR in

each fetus (Figure 4A). According to the results of the decision curve

analysis (DCA), the nomogrammodel offered a better clinical benefit.

Furthermore, the calibration plot indicated that the nomogram

operated in line with the ideal model (Figures 4B, C). The result of

ROC curve showed that the prediction model based on 4 key genes

had high accuracy in diagnosing FGR and the area under the curve

(AUC) is 0.971 (Figure 4D).
3.5 GSEA analysis and immune
characteristics analysis

GSEA results revealed the potential mechanisms of 4 hub genes

and the details were presented in Supplementary Figures 2A–D. The

results of immune cell infiltration analysis showed that the
FIGURE 2

Combining different datasets and identification of DEGs. (A, B) Boxplots of mRNA expression distribution before and after removing batch effects.
(C, D) DEG heatmap and volcano plot between FGR and control group. DEGs, differentially expressed genes; FGR, fetal growth restriction.
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infiltration level of 22 immune cells was significantly different

between the FGR group and the control group (Supplementary

Figures 5A, D. Specifically, the infiltration level of T cells follicular

helper (p-value = 0.016), NK cells activated (p-value < 0.001) and

Macrophages M1 (p-value = 0.001) increased significantly in the

FGR group. The level of infiltration of Macrophages M2 (p-value =

0.006) and Dendritic cells activated (p-value = 0.001) in placental

tissues of FGR was significantly lower than that of control group

(Supplementary Figures 4A–E). In order to further screen out key

immune cells that may play an important role, we performed

LASSO regression analysis (Supplementary Figure 5B) on 22

immune cells. B cells naive, B cells memory, T cells gamma delta,

NK cells resting, NK cells activated, Macrophages M0, Macrophages

M1, Macrophages M2 and Dendritic cells activated were selected as

candidate key immune cells in the FGR group (Supplementary

Figure 5C). The correlation between the level of infiltration of 22

types of immune cells in FGR placental tissue were also investigated

and the results were shown in Supplementary Figure 5E.
3.6 Immunologic correlation analysis
of TREM1

In this study, we further explored the correlation between the

expression level of TREM1 and 9 key immune cells and found that
Frontiers in Immunology 06
TREM1 was positively correlated with T cells follicular helper

(Correlation coefficients: 0.36, p-value = 0.008) and Macrophages

M1 (Correlation coefficients: 0.35, p-value = 0.012); and negatively

correlated with Dendritic cells activated (Correlation coefficients:

-0.31, p-value = 0.026) and Macrophages M2 (Correlation

coefficients: -0.32, p-value = 0.023) (Figure 5A).
3.7 Validation of TREM1 in the real-world

Samples from two groups were matched based on maternal age,

gestational age at delivery, gravidity and parity and the FGR

singleton placentas exhibited a statistically significant increase in

mRNA expression of the TREM1 gene than the normal placentas, as

quantified by RT-qPCR (p-value = 1.729e−08), which was

consistent with our results above (Figure 5C). Western blot

analysis further confirmed this result (p-value = 1.678e−11)

(Figures 5G, H). IHC revealed localization of the TREM1 protein

on syntrophoblast and extravillous trophoblast (EVT). Analysis of

average optical density (AOD) demonstrated a significantly higher

expression intensity of TREM-1 in the FGR group compared to the

normal group (p-value = 0.044) (Figures 5D–F).

We further explored the differences in TREM1 expression in

different subgroups, including age, gender of offspring, history of

PE, and features of UA and UtA Doppler examination pregnancy
FIGURE 3

Hub gene identification and correlation analysis. (A) based on SVM-RFE to screen biomarkers. (B) LASSO logistic regression algorithm to screen
diagnostic markers. (C) top-10 genes according to their discriminant ability in the RF algorithm. (D) The Venn diagram showed the intersection of
diagnostic markers obtained by the results of three algorithms. (E) Correlation between 4 diagnostic genes. *P< 0.05, **P< 0.01, ***P< 0.001. SVM-
RFE, support vector machine-recursive feature elimination; LASSO, least absolute shrinkage and selection operator; RF, random forest.
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(Supplementary Figures 6A–D). The results indicated that elevated

TREM1 expression in the placenta of FGR patients with UtA

spectrum abnormalities (p-value = 0.043) (Figure 5H). Therefore,

patients in the FGR group were divided into three groups: normal

UtA, UtA with bilateral notch, and elevated UtA-PI. Then the

analysis of differences in TREM1 expression among the three

groups were performed (Figure 5I). We found that the TREM1

expression in patients with elevated UtA-PI is significantly higher

than that in patients with normal uterine artery spectrum (p-value =

0.029). In addition, ROC curve results indicated TREM1 likelihood

as valuable biomarkers in the real world (AUC = 0.894) (Figure 5B).
4 Discussion

FGR caused by placenta dysfunction is a risk factor for multiple

adverse pregnancy outcomes including fetal death (24). However, to

our knowledge, there is still a lack of biomarkers that can effectively

predict or treat placenta-derived FGR. Therefore, in this study, we

obtained DEGs by comparing gene expression levels in placental

tissues of FGR group and control group. Then, three machine

learning algorithms (RF model, SVM-RFE and LASSO) were used

to screen out four key genes and construct a prognostic model.

Whether using supervised or unsupervised techniques, machine
Frontiers in Immunology 07
learning algorithms can handle complex non-linear relationships,

efficiently process large-scale data, automatically identify patterns

and regularities, rapidly iterate and optimize models, and provide

evaluations of predictive performance and accuracy (25, 26).

Nomogram is also more quantitative and intuitive, which is

convenient for clinicians to use (27). TREM1 has been shown to

play a key role in both innate and adapted immune responses and is

considered as a potential pathogenic gene for a variety of diseases

(28, 29). Therefore, we took TREM1 as the focus of follow-up

studies to further explore the relationship between TREM1

expression and immune cell infiltration in the FGR group.

TREM1, which was identified as the potential biomarker, is

highly correlated with the degree of infiltration of four immune

cells (T cells follicular helper cells, Macrophages M1, DC and

Macrophages M2). In addition, we also verified its expression

levels and diagnostic efficacy using real-world data and explored

its relationship with various clinical features.

The RF model, SVM-RFE and LASSO were subsequently

screened for four key diagnostic biomarkers (HIST1H2BB, SCD,

SPINK1 and TREM1). HIST1H2BB (Histone Cluster 1H2B Family

Member B) encodes histone H2B type 1-b, which is a replication-

dependent histone. This gene participates in the packaging of

Telomere ends and RNA polymerase I promoter opening, DNA

repair, transcription regulation. DNA replication plays an
FIGURE 4

Hub genes for FGR diagnosis. (A) Nomogram is constructed to predict the occurrence of FGR. (B) DCA curves. (C) the calibration curves. (D) the
diagnostic efficacy verification based on the ROC curve of nomogram and 4 hub genes respectively. OR, odds ratio; CI, confidence interval; FGR,
fetal growth restriction; DCA decision curve analysis; ROC, receiver operating characteristic curve; AUC, area under the curve.
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important role in chromosomal stability and has been shown to be a

potential biomarker for high-grade serous ovarian cancer (30).

However, its implication in placental diseases remains

undisclosed. SPINK1 encodes a trypsin inhibitor secreted from

pancreatic acinar cells into pancreatic juice, which plays an

important role in various digestive systems (31). While mRNA

expressing of SPINK1 was noted to be altered in mouse placenta

development, its specific function in the placenta remained

unknown (32). No associations with other pregnancy

complications have been reported for SPINK1. SCD (Stearoyl-

CoA desaturase) encodes a critical enzyme in fatty acid

metabolism, catalyzing the rate-limiting step in the formation of

monounsaturated fatty acids (33, 34). A previous study revealed

that the inhibition of SCD attenuated the impact of oleic acid,
Frontiers in Immunology 08
resulting in the downregulation of migration and proliferation in

human extravillous trophoblast (EVT) cells (35). Elevated placental

mRNA and protein expressions of SCD were observed in gestational

diabetes mellitus (GDM) pregnancies due to promoting the

synthesis of palmitic acid (PA) into palmitoleic acid (POA) with

anti-inflammatory effect, suggesting a potential association between

SCD and the promotion of fetal growth (36, 37). Placental

inflammation is often one of the main causes of FGR (38), so we

hypothesized that the up-regulation of SCD expression in the

placenta of FGR may be a compensatory effect against the

inflammatory response. TREM1 encodes an immunoglobulin (Ig)

superfamily transmembrane protein plays a key role in regulating

innated and adaptive immunity. Specifically, TREM1 can

multimerizes and forms a complex with transmembrane adapter
FIGURE 5

Immunologic and clinical correlation analysis of TREM1 and validation based on real-world data. (A) the correlation between TREM1 and immune cell
infiltration in the FGR group. (B) the ROC curve of the diagnostic efficacy verification of TREM1. (C) The placental mRNA expression of TREM1 in
placental tissue of normal (n=24) and FGR (n=62) fetus by real-time quantitative PCR. (D) IHC in the control group. (E) IHC in the FGR group. (F) The
localization and expression of TREM1 in controls (n=6) and FGR (n=6) by IHC. The blue arrow points to extravillous trophoblast and the red arrow
points to syntrophoblast. The blue spots represent the nuclei and brown-particle represents positive expression of TREM1. (G) Representative
Western blot of TREM1. (H) The protein level of TREM1 in controls (n=24) and FGR (n=24) by western blot. (I) The relationship between TREM1
expression and uterine artery Doppler in the subgroup analysis. AUC, area under the curve; FGR, fetal growth restriction; IHC,
immunohistochemistry; AOD, The average optical density.
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TYROBP/DAP12, a SYK-mediated cascade of tyrosine

phosphorylation, activating multiple downstream mediators, such

as BTK, MAPK1 and MAPK3 to promote the release of pro-

inflammatory cytokines and chemokines (28, 39, 40). In addition,

upregulation of TREM1 expression can activate signaling pathways

including Toll-like receptor (TLR) and NOD-like receptor

engagement, which play a role in immune regulation (41, 42).

Recently, as more researchers have begun to explore the role

TREM1 plays in obstetric disorders, TREM1 have been reported

to be over-expressed in the third-trimester placenta and maternal

serum of PE in several studies (43–45). FGR and PE share similar

pathogenesis of inadequate placentation, inflammation, and

maternal vascular dysfunction (46). Furthermore, previous study

also mentioned that birth weight was negatively correlated with

sTREM-1 in preterm infants’ peripheral blood (47). However, no

studies have reported the association between FGR and TREM1 to

authors’ knowledge. Thus, in our study, we verified the mRNA and

protein expression of TREM1 in second and third trimester of FGR

placentas compared to gestational age-matched controls for the first

time by RT-PCR, Western blot and IHC. The mRNA and protein

levels of TREM1 were relatively low and stable in controls from 20

to 38 gestational weeks, while were significantly higher in FGR

placentas. We also explored that the elevated mRNA levels of

TREM1 was unrelated to the pregnant complicated with PE, or

the maternal age, fetal gender, and umbilical artery doppler. The

sole association between TREM1 overexpression and the elevated

UtA-PI, along with its localization within the syntrophoblast and

EVT in IHC, suggests a potential significant involvement of TREM1

in the remodeling processes of uterine spiral arteries. Studies have

explored TREM1 can be both expressed in TEV-1 cells, an EVT cell

line and BeWo cells, mimicking the function and phenotype of

villous trophoblast (VT) cells (48). EVTs plays a dominant role in

the remodeling of spiral arteries by invading spiral artery wall and

replacing the smooth muscle, and finally reducing blood vessel

resistance and plasticity (49, 50). However, the study manifested

that the overexpression of TREM1 gene promotes migration and

invasion of TEV-1 cells through activation of the NF-kB pathway

(43). BeWo is the most extensively used as a cell culture model to

mimic in vivo essentialization of placental villous trophoblast (51).

The study suggested that although TREM1 did not appear to play a

role in BeWo cell fusion, it is required for the induction of human

chorionic gonadotropin hormone (hCG), a placental-specific

protein associated with syncytialization (44). Although the

upregulation of TREM1 in FGR placenta and its positive

regulatory effects on EVTs seem to be contradictory, the event of

placentation involves an intricate coordination of multiple cells,

products, formed structures and immune system (52). TREM1

serves as a unique insight into understanding of this complex

coordination under physiological and pathological conditions.

The interactions between the trophoblast cells and the maternal

various immune cells have an impact on the outcome of the

pregnancy (53). In the third trimester placental pathology of

FGR, the expression of CD68+ Macrophages was higher, while

the ratio of Macrophages M2 with anti-inflammatory effect was

decreased (54), which is consistent with our findings through

immune characteristics analysis. According to the results of the
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previous studies mentioned above and combined with the results of

this study, we assume that the decrease in the number of

Macrophages M2 is related to the increased production of various

pro-inflammatory cytokines (55, 56), which may be related to the

pathogenesis of FGR. Our study also showed increased T cells

follicular helper, natural killers (NK) cells activated and decreased

dendritic cells (DCs) activated in FGR placenta. in pregnant women

of FGR. T cells helper cells are a special type of CD4+T cells, which

can play a key role in adapted immune response by promoting B cell

activation and antibody production and regulating immune

memory (57). And a Single-cell RNA sequencing demonstrated

that Aire+ cell depletion in pregnancy, which was thought to be a

sign of causing FGR during early mouse pregnancy, results in

expansion of T follicular helper cells (58). Although the specific

mechanism is not clear, this result suggested that T cells follicular

helper cells may be one of the causes of FGR. Studies manifested

higher proportion of NK cells in umbilical cord blood (59) and

reduced activation of peripheral blood DCs (60) in FGR

pregnancies. DC, as an antigen presenting cell (APC), plays an

important role in the development of FGR. On the one hand, DC

can recognize and present fetal tissue-specific antigens in the

process of placenta formation, thereby inducing maternal

immune tolerance to the fetus. On the other hand, in the process

of fetal growth and development, DC plays an important role in

maintaining the balance of maternal immune system by regulating

the activation degree of various T cells to avoid adverse effects of

excessive immune response on fetal growth and development (59).

Interestingly, TREM1 was significantly positively correlated

with T cells follicular helper cells and Macrophages M1, and

negatively correlated with DC and Macrophages M2 infiltration

levels. In addition, based on LASSO regression results, four immune

cells (T cells helper cells, DCs, Macrophages M1 and Macrophages

M2) overlapped with characteristic immune cells in the FGR group,

suggesting that TREM1 may play a role in regulating the immune

response to FGR by influencing characteristic immune cells.

Overall, multiple infiltrating immune cells collectively contribute

to the development of FGR, with TREM1 potentially playing a

crucial role in this process.

A limitation of this study is that first trimester placenta was not

available to examine the localization and over-expression of TREM-

1, which cannot provide more information about how TREM-1

influence the development of human placenta in early pregnancy.

Furthermore, although we found that TREM-1 was over expressed

in FGR with increased UtA-PI, uterine artery measurements in

these clinical cases were all at an advanced stage of the disease.

There is a lack of evidence regarding the relationship between UtA-

PI changes and TREM1 expression in the first trimester. This will be

our next research plan to explore the predictive value of TREM-1

for early screening of FGR that mediated by placental malperfusion.

This study concluded that SCD, SPINK1, TREM1 and

HIST1H2BB were diagnostic indicators of FGR by using three

machine learning algorithms, and a nomogram was constructed

to assess the probability of each patient developing FGR.

Furthermore, the results of this study suggested that a variety of

immune cells may have a role in the onset and progression of FGR,

and TREM1 was not only associated with four candidate key
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immune cells of FGR, but also correlated with increased UtA-PI,

which suggested that TREM1 may be involved in remodeling

processes of uterine spiral arteries through immune regulation,

thus affecting the development of FGR, and provide some new clues

for our future research on the prediction and treatment of FGR.
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Torres-Carranza D, et al. The pivotal role of the placenta in normal and pathological
pregnancies: A focus on preeclampsia, fetal growth restriction, and maternal chronic
venous disease. Cells. (2022) 11:568–600. doi: 10.3390/cells11030568
Frontiers in Immunology 12
53. Sanguansermsri D, Pongcharoen S. Pregnancy immunology: decidual immune
cells. Asian Pacific J Allergy Immunol. (2008) 26:171–81.

54. Bezemer RE, Schoots MH, Timmer A, Scherjon SA, Erwich J, van Goor H, et al.
Altered levels of decidual immune cell subsets in fetal growth restriction, stillbirth, and
placental pathology. Front Immunol. (2020) 11:1898. doi: 10.3389/fimmu.2020.01898

55. Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, et al.
The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol. (2023)
19:257–70. doi: 10.1038/s41581-022-00670-0

56. Schonkeren D, van der HoornML, Khedoe P, Swings G, van Beelen E, Claas F, et al.
Differential distribution and phenotype of decidual macrophages in preeclamptic versus
control pregnancies. Am J Pathol. (2011) 178:709–17. doi: 10.1016/j.ajpath.2010.10.011

57. Walker LSK. The link between circulating follicular helper T cells and
autoimmunity. Nat Rev Immunol. (2022) 22:567–75. doi: 10.1038/s41577-022-00693-5

58. Gillis-Buck E, Miller H, Sirota M, Sanders SJ, Ntranos V, Anderson MS, et al.
Extrathymic Aire-expressing cells support maternal-fetal tolerance. Sci Immunol.
(2021) 6:eabf1968–1992. doi: 10.1126/sciimmunol.abf1968

59. Huang L, Li P, Feng T, Xiong F. Changes of dendritic cell and natural killer cell
on the cord blood with idiopathic fetal growth restriction. J maternal-fetal neonatal
medicine: Off J Eur Assoc Perinatal Medicine Fed Asia Oceania Perinatal Societies Int
Soc Perinatal Obstet. (2022) 35:7526–31. doi: 10.1080/14767058.2021.1951214

60. Cappelletti M, Giannelli S, Martinelli A, Cetin I, Colombo E, Calcaterra F, et al.
Lack of activation of peripheral blood dendritic cells in human pregnancies
complicated by intrauterine growth restriction. Placenta. (2013) 34:35–41.
doi: 10.1016/j.placenta.2012.10.016
frontiersin.org

https://doi.org/10.1080/14767058.2020.1846706
https://doi.org/10.1016/j.ajog.2017.11.577
https://doi.org/10.1016/j.ajog.2017.11.577
https://doi.org/10.1177/039463201002300439
https://doi.org/10.1177/039463201002300439
https://doi.org/10.1111/j.1479-828X.2006.00589.x
https://doi.org/10.1111/j.1479-828X.2006.00589.x
https://doi.org/10.1111/j.1469-7580.2008.00978.x
https://doi.org/10.1530/rep-10-0221
https://doi.org/10.3390/cells11030568
https://doi.org/10.3389/fimmu.2020.01898
https://doi.org/10.1038/s41581-022-00670-0
https://doi.org/10.1016/j.ajpath.2010.10.011
https://doi.org/10.1038/s41577-022-00693-5
https://doi.org/10.1126/sciimmunol.abf1968
https://doi.org/10.1080/14767058.2021.1951214
https://doi.org/10.1016/j.placenta.2012.10.016
https://doi.org/10.3389/fimmu.2024.1381795
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integrated transcriptomic analysis and machine learning for characterizing diagnostic biomarkers and immune cell infiltration in fetal growth restriction
	1 Introduction
	2 Methods
	2.1 Data processing and identification of differentially expressed genes
	2.2 Enrichment analysis
	2.3 Hub gene identification and construction and evaluation of diagnostic model
	2.4 Gene set enrichment analysis and immunological correlation analysis
	2.5 Validation based on the real-world data
	2.6 Statistics analysis

	3 Results
	3.1 Identification of differentially expressed genes
	3.2 Enrichment analysis
	3.3 Screening for key genes based on machine learning models
	3.4 Construction of diagnostic model and developing a nomogram
	3.5 GSEA analysis and immune characteristics analysis
	3.6 Immunologic correlation analysis of TREM1
	3.7 Validation of TREM1 in the real-world

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


