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Background: Sleep disorders (SD) are known to have a profound impact on

human health and quality of life although their exact pathogenic mechanisms

remain poorly understood.

Methods: The study first accessed SD datasets from the GEO and identified

DEGs. These DEGs were then subjected to gene set enrichment analysis. Several

advanced techniques, including the RF, SVM-RFE, PPI networks, and LASSO

methodologies, were utilized to identify hub genes closely associated with SD.

Additionally, the ssGSEA approach was employed to analyze immune cell

infiltration and functional gene set scores in SD. DEGs were also scrutinized in

relation to miRNA, and the DGIdb database was used to explore potential

pharmacological treatments for SD. Furthermore, in an SD murine model, the

expression levels of these hub genes were confirmed through RT-qPCR and

Western Blot analyses.

Results: The findings of the study indicate that DEGs are significantly enriched in

functions and pathways related to immune cell activity, stress response, and

neural system regulation. The analysis of immunoinfiltration demonstrated a

marked elevation in the levels of Activated CD4+ T cells and CD8+ T cells in the

SD cohort, accompanied by a notable rise in Central memory CD4 T cells, Central

memory CD8 T cells, and Natural killer T cells. Using machine learning

algorithms, the study also identified hub genes closely associated with SD,

including IPO9, RAP2A, DDX17, MBNL2, PIK3AP1, and ZNF385A. Based on

these genes, an SD diagnostic model was constructed and its efficacy validated

across multiple datasets. In the SD murine model, the mRNA and protein

expressions of these 6 hub genes were found to be consistent with the results

of the bioinformatics analysis.

Conclusion: In conclusion, this study identified 6 genes closely linked to SD,

which may play pivotal roles in neural system development, the immune

microenvironment, and inflammatory responses. Additionally, the key gene-
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based SD diagnostic model constructed in this study, validated on multiple

datasets showed a high degree of reliability and accuracy, predicting its wide

potential for clinical applications. However, limited by the range of data sources

and sample size, this may affect the generalizability of the results.
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1 Introduction

Sleep is recognized as an essential physiological requirement for

humans, crucial not only for standard physical growth and

development but also for the stabilization and integration of

memory (1). Sleep disorders (SD) represent a group of conditions

characterized by difficulties in initiating sleep, maintaining sleep, or

experiencing restorative sleep. The 2017 third edition of the

“International Classification of Sleep Disorders” (ICSD-3) by the

American Academy of Sleep Medicine classifies SD into seven

categories: insomnia, sleep-related breathing disorders, central

disorders of hypersomnolence, circadian rhythm sleep-wake

disorders, parasomnias, sleep-related movement disorders, and

miscellaneous SD (2). In light of the evolving economy and society,

factors such as increasing work and life stress, along with lifestyle

modifications, have made sleep disorders (SD) a progressively more

significant concern. These disorders not only impact an individual’s

physical and mental well-being but also have a substantial influence

on social and emotional functioning, affecting both adults and

children (3). Research into SD is currently in its infancy, and its

etiological factors are intricate, encompassing various causative

elements such as physiological and psychological aspects, genetic

inheritance, body constitution, environmental conditions, social and

interpersonal dynamics, mental stimuli, somatic diseases, psychiatric

disorders, and adverse drug reactions (4, 5). These factors may induce

abnormalities in the brain’s sleep centers and their functions or

provoke neurobiochemical alterations, consequently disrupting the

structure and process of sleep (6).

A significant proportion of adults persistently fail to meet the

recommended sleep duration, despite the growing recognition of

the importance of healthy sleep. This renders the enhancement of

sleep quality a critical concern for global health policy. Research

demonstrates that adults exhibit heightened susceptibility to the

impacts of sleep quality and circadian rhythm disruptions,

potentially aggravating chronic health conditions (7, 8).

Furthermore, the modern 24/7 lifestyle, coupled with the

pervasive use of electronic devices and social media, has precipitated

widespread sleep deprivation among children and adolescents, posing

potential risks to their neurological development, mental well-being,

and cardiovascular health (9). Empirical research also indicates that

sleep deprivation is intricately linked with suboptimal cardiac
02
metabolic health, cognitive deterioration, and a heightened risk of

dementia in older adults, emerging as a significant modifiable risk

factor in contemporary health (10, 11).

In this study, we conducted a comprehensive investigation of

physiological functions, expression pathways, and gene expression

associated with SD by analyzing datasets from the GEO database.

This led to the identification of genes that hold significant diagnostic

and therapeutic potential. Based on these findings, we formulated a

diagnostic model predicated on hub genes and assessed the efficacy of

these genes in discerning SD. The developed model offers substantial

references for clinical diagnostics and therapeutics.
2 Methods

2.1 Data collection and normalization

We retrieved datasets related to SD and their corresponding

control groups from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/geo) (12). Human RNA expression

data from 17 individuals with SD and 25 healthy controls were

obtained from the GSE208668 dataset, derived from the GPL10904

platform. For the validation of the subsequently identified hub

genes, we utilized the GSE240851, GSE56931, and GSE98582

datasets, which were sourced from the GPL24676, GPL10379, and

GPL6244 platforms, respectively. These datasets included varying

numbers of SD patient and control samples. Additionally, the

GSE165041 dataset, generated on the GPL18573 platform,

comprised microRNA expression data from 10 SD patients and

an equal number of healthy controls. All datasets were normalized

using the “limma” package within the R software environment,

version 4.1.2 (13).
2.2 Identification of differentially
expressed genes

We utilized the limma package in R software to process the

normalized datasets GSE240851 and GSE208668, aiming to identify

DEGs. To ascertain statistical significance, DEGs were determined

based on |log2fold change| ≥ 0.58 and a false discovery rate <0.05.
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Subsequently, we employed the ggplot2 package to create volcano

plots for the DEGs. Moreover, we selected the top 20 genes, ranked

by |log2fold change|, to build heatmaps as part of our analysis.
2.3 Gene function enrichment analysis

The “c2.all.v2023.1.Hs.entrez” and “c5.all.v2023.1.Hs.entrez”

datasets, which serve as reference gene sets, were downloaded

from the GSEA official website originating from the MSigDB

database (14). Gene set enrichment analysis (GSEA) was then

performed using the “clusterProfiler” package in R software (15).

Subsequently, the analysis results were visualized utilizing the

“enrichplot” package in R software.
2.4 Immune infiltration analysis

We employed the ImmuCellAI and ssGSEA methodologies to

estimate the abundance of 24 and 28 distinct types of immune cells,

respectively, in the tissues of SD patients and a normal population,

thereby enabling precise delineation of immune cell profile

differences between the two groups (16, 17). Furthermore, we

conducted Spearman correlation analysis to elucidate the

interrelationships among the distributions of various immune cells.
2.5 ssGSEA

We downloaded the H: hallmark gene sets from the GSEA

official website to probe the functional disparities between SD

patients and the normal cohort. With these gene sets, we applied

the ssGSEA algorithm to evaluate 50 gene sets, aiming to discern

potential variances between the two groups. Subsequently, we

utilized the Mantel algorithm to analyze the correlations among

these gene sets (18). This approach allowed us to investigate the

differences in gene expression profiles between the two cohorts and

to identify potential molecular pathways associated with the disease.
2.6 Protein-protein interaction
network construction

For protein interaction analysis, we utilized the STRING 4

online platform and specifically selected PPI pairs with a

confidence score greater than 0.40. Subsequently, we employed

the Cytoscape V3.9.0 software for visualizing the PPI network (19).

Within the network, the significance of each node was determined

by calculating their Degree values using the CytoHubba plugin. This

analysis allowed us to identify the top 20 pivotal genes based on

their ranking of importance (20).
2.7 Random forest gene selection

For gene selection, we utilized the Random Forest (RF)

algorithm, a binary tree-based recursive partitioning method. The
Frontiers in Immunology 03
“randomForest” package in R was used, with parameters set to

ntree=1000, mtry=3, and importance=true (21). Employing the

Gini index as the primary assessment criterion, the Random

Forest algorithm was used to rank the DEGs, and the top 20

genes with a significance value greater than 3 were earmarked for

further analysis.
2.8 Support vector machine gene selection

We utilized the SVM-RFE (Recursive Feature Elimination)

approach to optimize the predictive model by minimizing the

number of feature vectors produced by the SVM. This approach,

being an effective binary classification tool, operates by constructing

a classification hyperplane to delineate decision boundaries. In

order to enhance the algorithm’s precision, we configured

parameters to method=repeatedcv and repeats=10 in the R

package “1071”, and employed ten-fold cross-validation. This

approach aimed at augmenting the algorithm’s precision (22).
2.9 Model construction and evaluation

To develop the LASSO model (23), we integrated genes

identified through CytoHubba, RF, and SVM algorithms. This

method effectively enabled the identification of critical hub genes

for diagnosing SD. We then employed the Logistic regression

approach to investigate pivotal factors associated with SD,

ultimately constructing a simplified model. Subsequently, we

evaluated the classification performance of the model using the

Receiver Operating Characteristic (ROC) curve and the

corresponding Area Under the Curve (AUC).
2.10 Validation of the diagnostic model

In order to evaluate the robustness and general applicability of

our developed diagnostic model, we computed the AUC of the ROC

curve for the model using three distinct datasets: GSE240851,

GSE56931, and GSE98582. This procedure aimed to ascertain the

model’s performance across diverse datasets. It was essential to

assess its efficacy in different contexts and ensure its capability to

perform consistently across varied data sources.
2.11 Exploration microRNAs targeting
the genes

We utilized the Limma package in R to conduct a differential

analysis of the expression matrix from GSE165041, aiming to

identify miRNAs that were differentially expressed (DEmiRNAs).

Our criteria for significance were miRNAs exhibiting a false

discovery rate <0.05 and |log2fold change| >0.5. Moreover, we

employed the miRNet database to investigate potential miRNAs

associated with differentially expressed genes (DEGs), in order to

gain further insight into their involvement in SD (24).
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2.12 Drug and gene interaction scoring

We obtained data on drugs related to core genes from the Drug-

Gene Interaction database (DGIdb) (25). We used the “ggplot2”

package in R to create bar charts showing interaction scores,

visually indicating the intensity of interactions between various

drugs and core genes.
2.13 Establishment of animal models

The SD model, following the methodology outlined by Alkadhi

and Alhaider (26), was established in 10-month-old male mice. The

experimental mice were subjected to SD treatment for a duration of

8 weeks by being placed on a small fixed platform encircled by

water, with access only to water and food. Meanwhile, for the

control group, another set of mice was housed in a comfortable

environment with a 12-hour light/dark cycle and unrestricted

access to water and food. All mice received standard pellet feed,

with the daily quantity of feed being maintained uniformly across all

groups. This experimental design aimed to simulate the effects of SD

on physiological functions, thus laying the groundwork for

subsequent investigations into gene expression and drug

treatment efficacy.
2.14 RT-qPCR

The cortex in SD mice was used for total RNA extraction,

employing the TransZol Up Plus RNA Kit (TransGEN, Beijing,

China) (27). The RNA concentration and quality were then assessed

using the Nanodrop Spectrophotometer (Termo Scientifc,

Waltham, MA, USA). Subsequently, reverse transcription was

carried out using the TransScript® One-Step gDNA Removal and

cDNA Synthesis SuperMix (AT311, TransGEN, Beijing, China).
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Amplification was monitored with the ChamQ Universal SYBR

qPCRMaster Mix (Novozymes Q711) and a QuantStudio™ 5 Real-

Time PCR System (Thermo Fisher Scientific). The internal

reference was b-actin, and the relative gene expression was

determined using the 2-DDCT formula. Detailed primer

sequences can be found in Table 1.
2.15 Immunoblotting for protein evaluation

Western blotting was performed for IPO9, RAP2A, DDX17,

and GAPDH, as described previously (Table 2). Enhanced

chemiluminescence reagents were used to detect protein

expression, and quantitative analysis was conducted using Image J

software (28).
2.16 Statistical analysis

The normality of the data was assessed using the Shapiro–Wilk

test. The t-test was utilized to compare the data between two groups,

while comparisons among multiple groups were conducted using

one-way ANOVA, followed by either the LSD post hoc test or

Tukey’s post hoc test. The statistical analyses were conducted using

R software version 4.2.1 and SPSS 25, with significance defined as

P < 0.05. Furthermore, all experiments were independently repeated

at least three times to ensure the validity of the results.
3 Results

3.1 Identification of DEGs

In the GSE208668 and GSE240851 datasets, a differential

expression analysis was conducted on SD samples and normal

control samples. The analysis identified 5964 DEGs in the

GSE208668 dataset and 1375 DEGs in the GSE240851 dataset.

Utilizing these DEGs, volcano plots (Figures 1A, B) were

constructed, and the top 20 genes with the highest |log2fold

change| values were selected for heatmap generation

(Figures 1C, D). These results demonstrate the effectiveness of

DEGs in distinguishing between the SD group and the normal

control group.
3.2 Functional enrichment analysis of DEGs

The differential gene analysis of GSE208668, using MSigDB’s

C2 and C5 gene sets, unveiled substantial differential expression in

gene clusters relevant to immune cell functions, stress responses,

and nervous system activities. Specifically, within the C2 gene set,

activation of the gene cluster associated with nervous system

development was observed, while the gene cluster linked to the B

lymphocyte network was suppressed. In the C5 gene set, gene

clusters involved in stress response regulation exhibited a

downregulated trend, indicating a potential imbalance in
TABLE 1 Primer sequences of mRNA for RT-qPCR.

Gene Primer sequence,
5’–3’ Forward

Reverse

IPO9 CAGTGACAGCCTTGGT
GAAA

TCTCCAGTAGGGCATG
GACA

RAP2A CAAACTGTACCACGCC
CTCT

GTTGCTAGGTGGATTG
GGCT

DDX17 TCTTCAGCCAACAATCCC
AATC

GGCTCTATCGGTTTCAC
TACG

MBNL2 CCCAAAAGTTGCCAGGT
TGAA

CTGGGTTTTTAAGTGTGT
CGGA

PIK3AP1 CTGGACTCTGCTTCTAA
CCCC

TGACACCATTCCTCCGCATC

ZNF385A CAGAACCAAGGGAAGG
GGAC

GAAGGGCAG
GATCTGCTTGA

b-Actin GCAGGAGTACGATGAG
TCCG

ACGCAGCTCAGTAACA
GTCC
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TABLE 2 List of the primary antibodies.

Antibody Catalogue
number

Brand Application Dilution Species MW(kDa)

IPO9 abs134286 absin WB 1:1000 Rabbit 116

RAP2A abs105749 absin WB 1:1000 Rabbit 21

DDX17 abs111924 absin WB 1:1000 Rabbit 72

GAPDH GB15002-100 Servicebio WB 1:2000 Rabbit 36
F
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FIGURE 1

DEGs and enrichment analysis of SD. (A, B) Volcano plot of DEGs between Sleep disorders and Normal groups in GSE208668 and GSE240856.
(C, D) Heatmap of top 20 DEGs in GSE208668 (C) and GSE240856 (D). (E, F) The top 10 gene sets that areactivated or inhibited in the C2 (E) and C5
(F) gene sets of MSigDB.
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environmental stress response regulation. Additionally, gene

clusters associated with spinal cord development demonstrated

differential expression. Moreover, immune-related gene clusters,

including those implicated in autoimmunity and T-cell deficiency,

exhibited alterations in expression levels (Figures 1E, F). Further

comprehensive details can be found in Supplementary 1.

The results of the GSEA analysis demonstrated significant

enrichment of terms in KEGG pathways closely associated with

neurodegenerative diseases and metabolic pathways, such as

Alzheimer’s disease, leishmaniasis infection, lysosomal function,

oxidative phosphorylation, Parkinson’s disease, and viral

myocarditis. Notably, major signaling factors involved in immune

regulation, including IL-4, IL-8, and IL-12, were also found to be

significantly enriched in various immune system pathways.

Furthermore, signaling pathways related to neural signaling,

including neurotrophic factor signaling, B cell receptor signaling,
Frontiers in Immunology 06
and tumor necrosis factor a signaling, demonstrated significant

enrichment Supplementary 2.
3.3 Analysis of immune cell infiltration

After integrating the GSE208668 and GSE240851 datasets and

mitigating batch effects, we observed significant discrepancies in the

distribution of various immune cell types between patients with

systemic lupus erythematosus (SD) and the normal control group.

This was confirmed by employing two distinct immune infiltration

scoring methods (Figures 2A–D). Notably, the infiltration scores for

Activated CD4+ T cells and Activated CD8+ T cells were

substantially higher in patients with SD compared to the normal

group. Moreover, central memory CD4 T cells, central memory

CD8 T cells, and natural killer T cells exhibited an increasing trend
A

B

DC

FIGURE 2

Immune Cell Infiltration (A, B) Violin plot comparing the results of two immune infiltration algorithms. ssGSEA (A) and ImmuCellAI (B).
(C, D) Heatmap of the proportions of two immune infiltration algorithms in the Sleep disorders and Normal groups. ImmuCellAI (C) and ssGSEA (D).
* p < 0.05, ** p < 0.01, *** p < 0.001.
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in SD patients. In contrast, the infiltration scores of Activated B

cells, Immature B cells, Th17 cells, and Th2 cells demonstrated a

declining trend in patients with SD relative to the normal group.

Correlation analysis based on both algorithms indicated a level of

concordance. Specifically, CD8+ T cells and memory T cells

consistently showed a strong positive correlation, while

neutrophils and regulatory T cells exhibited a negative or non-

significant correlation (Figure 3A). For a detailed correlation

analysis of the ImmuCellAI algorithm scores, please refer to

Supplementary 3.
3.4 Gene set scoring based on ssGSEA

The heatmap in Figure 3B displays the scores for 50 gene sets,

from which we chose 12 related to signaling pathways and 22

associated with physiological functions for further investigation. A

comparative analysis of the gene set scores between the groups

revealed that in the SD group, median scores for gene sets such as

androgen response, apoptosis, complement, hypoxia, and

inflammatory response were significantly higher, while the

median score for the myogenesis gene set was notably lower

compared to the normal group. Additionally, significant

disparities were observed in signaling pathways such as il2 stat5
Frontiers in Immunology 07
signaling, il6 jak stat3 signaling, the p53 pathway, and tgf beta

signaling (Figures 3C, D).

We then focused on 12 gene sets with significant differences in

physiological functions between the groups for further correlation

analysis. These analyses revealed that, except for the inflammatory

response gene set, other gene sets showed significant correlations

with immune infiltration and signaling pathway scores. Moreover,

the scores within these 12 biological function gene sets also

exhibited a high degree of correlation (Supplementary 4). For

detailed results on pathway scoring and physiological function

scoring correlations, please refer to Supplementary 5.
3.5 Identification of key genes in
PPI network

We first identified 138 co-expressed differential genes by

intersecting the DEGs from the GSE208668 and GSE240851

datasets (Figure 4A). Subsequently, 52 genes were selected

for network visualization in Cytoscape using the STRING

database for PPI analysis with a medium confidence threshold

of 0.4 (Figure 4B). To identify the top 20 key genes within

the PPI network, the CytoHubba plugin in Cytoscape was

employed (Figure 4C).
A B

DC

FIGURE 3

Gene set scoring. (A) Correlation graph for 28 types of immune cells. (B) Heatmap of scores for 50 gene sets. (C) Box plot comparing scores of 12
signaling pathways between Sleep disorders and Normal groups. (D) Box plot comparing scores of 22 physiological functions between Sleep
disorders and Normal groups. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.6 Utilizing machine learning for
enhanced feature gene selection

The assessment of hub genes started with the use of the

GSE208668 dataset and the RF algorithm, which led to the

identification of 138 co-expressed differential genes. The model’s

performance was then evaluated across a spectrum of tree

quantities, showing a gradual decrease in the error rate as the

number of trees increased, ultimately indicating enhanced stability

and reliability (Figure 5A). Following this, the feature importance

was assessed through the calculation of the percentage decrease in

mean impurity (%IncMSE), which resulted in the identification of

the top 20 genes that had the most significant contributions to the

model’s prediction (Figure 5B). Subsequently, the SVM algorithm

was utilized to determine the hierarchical importance of the 138

genes (Figure 5C). The model’s predictive efficacy was then

measured using the Root Mean Square Error (RMSE) through

cross-validation methodologies, as shown in Figure 5D. The

results indicated that the model demonstrated its strongest

predictive capability when N was set to 22, leading to the

selection of these 22 genes for further analysis.
Frontiers in Immunology 08
3.7 Development and verification of the
diagnostic model

After identifying 40 key genes through the amalgamation of

genes identified via CytoHubba, Random Forest, and SVM

(Supplementary 6 for details), LASSO regression was utilized to

select diagnostic genes. This process involved adjusting the

regularization parameter l and observing its effects on coefficient

estimation (Figure 5E). The optimal l value was determined

through the ten-fold cross-validation method (Figure 5F). In the

final analysis, diagnostic model construction involved the selection

of IPO9, RAP2A, DDX17, MBNL2, PIK3AP1, and ZNF385A.

When compared to the normal group, these 6 hub genes

demonstrated significant disparities (Figure 6A) and significant

correlations with scores of biological function genes (Figure 6B).

The interactions between hub genes and other functional scores are

presented in Supplementary 7. A nomogram was constructed based

on these 6 genes, with each gene correlating with a specific scoring

criterion (Figure 6C). The calibration curve of the nomogram

indicated commendable predictive performance of the model

(Figure 6D). ROC curve analysis further demonstrated the
A B

C

FIGURE 4

(A) Venn diagram of differential genes between datasets GSE20851 and GSE208668. (B) Identification of genes in the PPI network common to
differential genes. (C).Top 20 genes selected by the CytoHubba plugin.
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FIGURE 5

Gene selection through machine learning. (A) The correlation plot between the number of Random Forest trees and model error. (B) Top 20 genes
selected by the RF method. (C) Top 25 genes identified by SVM, ranked by the percentage decrease in mean impurity. (D) Results obtained from the
predictive model of the Root Mean Square Error through cross-validation. (E, F) Cvfit and lambda curves demonstrating the use of the LASSO
regression, performed with the minimum criteria.
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substantial diagnostic value of these genes with an overall AUC

value of 0.916 (Figure 6E). To corroborate the accuracy of the

model, three independent datasets were utilized in logistic

regression analysis. The AUC values for GSE240851, GSE98582,

and GSE56931 were 0.835, 0.863, and 0.751, respectively,

demonstrating the stability and reliability of the model in

diagnosing SD (Figures 6F–H).
3.8 Investigating miRNAs and prospective
therapeutic agents

The analysis of the GSE165041 dataset revealed 9 upregulated

DEmiRNAs that distinguished the SD group from the normal

group, as evidenced in Figure 7A. Subsequently, an exploration of

the association between these DEmiRNAs and the previously

identified 138 DEGs was conducted using the miRnet database,

resulting in the identification of 5 miRNAs with potential as
Frontiers in Immunology 10
therapeutic targets, as depicted in Figure 7B. Following this, a

validation of the potential therapeutic efficacy of the 5 identified

miRNAs and their corresponding key mRNAs was performed, as

shown in Figure 7C. Subsequently, compounds with high

interaction scores with the key genes were identified utilizing the

DGIdb, as illustrated in Figure 7D. These findings indicate that the

identified miRNAs and compounds might serve as potential

therapeutic agents for the treatment of SD. Nevertheless, it is

essential to note that further research is necessary to substantiate

their efficacy and safety.
3.9 Analysis of predicted gene expression
in brain tissue of SD mice

RT-qPCR was used to scrutinize the expression levels of 6 hub

genes in the tissue. The mRNA expression levels of 6 genes in the

SD group showed a significant elevation relative to the normal
A B

D

E F G H

C

FIGURE 6

Construction of a research and diagnostic model based on hub genes. (A) Expression of 6 hub genes in dataset GSE208668. (B) Correlation between
6 key genes and crucial signaling pathways. (C) A nomogram model, incorporating 6 hub genes, was constructed to predict risk. (D) The calibration
curve of the nomogram to test the predictive performance of the model. (E) ROC curves analysis of GSE208668 for the diagnostic model. (F–H)
display ROC curve analyses of the diagnostic model applied to GSE240851, GSE98582, and GSE56931 datasets. * p < 0.05, ** p < 0.01, *** p < 0.001.
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group, as illustrated in Figure 8A. Moreover, Western blotting

analysis revealed significant elevations in the protein levels of

genes such as IPO9, RAP2A, and DDX17 within the cortical

regions of mice suffering from SD, as depicted in Figures 8B, C.

These findings align with previous bioinformatics analysis

outcomes, providing further support for the correlation of

expression levels among these 6 hub genes.
4 Discussion

Epidemiological research has revealed that SD are prevalent

worldwide, with industrialized countries exhibiting a particularly

high prevalence (29). The correlation between SD and a range of

conditions, including cardiovascular diseases, diabetes, and mental

disorders, has been extensively documented. This emphasizes the

critical role of sleep quality in maintaining overall health. The
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significantly advanced the understanding of the molecular

mechanisms underlying SD, leading to the discovery of numerous

genes and molecular pathways associated with these disorders

(30, 31). Particularly in terms of genetics, studies by Lee YY et al.

have confirmed that genes play an important role in the

development of SD (32). The etiology of SD involves a complex

interplay of biological, psychological, and social factors, with

principal neurobiological mechanisms comprising substances and

regulators, genetic factors, lifestyle choices, and light exposure

(33, 34).

This research used advanced bioinformatics approaches to

analyze differentially expressed genes (DEGs) between patients

with SD and a normal group, revealing significant differences in

immune response, stress response, and nervous system

development. Notably, the study uncovered a close correlation

between inflammatory pathways (such as IL-2, IL-8, IL-12) and
A B

D

C

FIGURE 7

Potential therapeutic drug search based on miRNA. (A) Volcano plot of miRNA differential analysis results from the GSE165041 dataset. (B) Venn
diagram of DEmiRNAs and miRNAs obtained from miRNANet. (C) The Sankey plot shows the relationships between 5 miRNAs and their target genes.
(D) Interaction scores between genes and drugs were obtained from the DGIdb database.
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pathways relevant to neurodegenerative diseases. The intimate

association between sleep and the immune system suggests that

SD may result in immune dysregulation (35). Murine models have

shown that SD can influence the signaling of GM-CSF

(Granulocyte-Macrophage Colony-Stimulating Factor) by

regulating Th17 and activated CD4 T cells (36), which in turn

interacts with myeloid cells, exacerbating the progression of

autoimmune diseases. Simple sleep deprivation in rats has been

found to increase Natural Killer (NK+) and T cells (CD8+) in the

spleen and decrease B cells (37). Moreover, research indicates that

patients with central hypersomnia exhibit significantly higher levels

of activated CD4+ and CD8+ T cells in both peripheral blood and

cerebrospinal fluid compared to healthy controls (38). These

findings align with previous studies and reveal substantial

alterations in activated CD4+ T cells, CD8+ T cells, central

memory CD4 and CD8 T cells, natural killer T cells, activated B

cells, immature B cells, Th17 cells, and Th2 cells in patients with SD.

These results suggest that T cell-mediated autoimmune responses

may contribute to the pathogenesis of SD, and the increase in

memory T cells and other immune cells implies their intricate

involvement in SD. All of these studies corroborate with the results

of our analysis, suggesting the existence of complex physiological

mechanisms of immune cells in SD. Furthermore, the alterations in

B-cell and Th-cell infiltration scores identified in our research

provide a new perspective for comprehensive investigation into

the roles of these cells in the context of SD.

The implementation of gene set scoring methodologies has

elucidated the expression patterns of distinct gene sets in various

diseases, thereby aiding in the comprehension of the underlying

biological processes and pathological mechanisms (39). A multitude

of studies have demonstrated a close association between SD and

diverse biological and pathological processes (40). For instance,

research conducted by Séverine Lamon et al. found that total SD

results in reduced testosterone levels and muscle protein synthesis

in patients’ plasma, while the mouse experiments by Yin Cao et al.

observed excessive autophagy and apoptosis in hippocampal

neuronal cells, concomitant with the activation of the PI3K/AKT

signaling pathway (41, 42). Similarly, the study by Yongmei Li et al.

indicates that SD leads to the upregulation of autophagy-related

proteins, and Anna Brzecka et al. highlight that intermittent

hypoxia resulting from SD may elevate the risk of certain cancers

(43, 44). The research by Zhong Wang et al. demonstrates that SD
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may precipitate gut microbiota imbalance and cognitive function

decline, with observations of the activation of the Toll-like receptor

4/nuclear factor-kB signaling pathway in mice with transplanted SD

microbiota (45). In the context of signal pathway scoring, sleep

deprivation has been found to activate the P53 pathway. This

activation induces the expression of apoptotic proteins, such as

Bax and Bcl-2, leading to the onset of tongue cancer (46). In a

molecular mechanism study exploring the link between sleep and

breast cancer, a positive correlation was identified between TGF-b
and CRP levels and insomnia, while IL-6 showed a negative

correlation with sleep-inducing medications (47). Such gene sets

have substantiated the results of our bioinformatics research.

Our study findings uncovered a substantial correlation between

the scores of 12 signaling pathways and various biological gene sets.

Specifically, our results emphasized the significant association of the

hedgehog and kras signaling pathways with various biological

processes, suggesting their potential contribution to the onset of

SD. Additionally, the il2, il6, notch, and PI3K/AKT/mTOR

pathways also demonstrated relevance, signifying their potential

as crucial areas for further investigation in SD studies. The above

findings, which have been mentioned in other studies as having a

potential link to SD (48).

Leveraging a comprehensive analysis of differential genes in the

GEO dataset and various machine learning algorithms, our study

identified 6 pivotal genes - IPO9, RAP2A, DDX17, MBNL2,

PIK3AP1, and ZNF385A. These genes are instrumental in the

identification of biomarkers and potential therapeutic targets

for SD.

The IPO9 gene plays a key role in mediating the docking

process of the importin/substrate complex with the nuclear pore

complex, enabling the transport of the complex through the pore by

binding to nucleoporin proteins using energy-dependent and Ran-

dependent mechanisms (49). Research has indicated that the

expression of IPO9 is regulated by m6A modification sites, which

may be closely linked to the pathogenesis of obesity (50). RAP2A, a

member of the RAS oncogene family, encodes a crucial protein that

is essential for the activation of cAMP-dependent PKA and ERK

signaling pathways. Additionally, it is involved in a signaling

complex consisting of NEDD4, RAP2A, and TNIK, which

regulates the growth and differentiation of neuronal dendrites

(51). Furthermore, RAP2A is implicated in multiple signaling

cascades, including cytoskeletal rearrangement, cell migration,
A B C

FIGURE 8

Expression of mRNA and proteins in mice with SD. (A) Relative mRNA expression of the 6 hub genes. (B) Western blot results for 3 relative proteins.
(C) Relative protein expression. * p < 0.05, ** p < 0.01, *** p < 0.001.
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adhesion, and proliferation. It also exhibits abnormal expression in

various tumors, such as breast, liver, and gastric cancers (52). The

DDX17 gene encodes a DEAD box protein and is involved in

multiple cellular processes that require alterations in RNA

secondary structure (53). Research by Samaan et al. has

demonstrated that DDX17 plays a significant role in estrogen and

testosterone signaling pathways, influencing the use of alternative

promoters in estrogen-responsive genes and affecting the

transcription and splicing of many steroid hormone target genes

(54). Changes in DDX17 expression may affect mRNA processing

of hormones and neurotransmitters associated with sleep

regulation, thereby modulating sleep cycle and quality. This

finding not only explains the physiological role of DDX17, but

may also guide future personalized treatment strategies for SD

patients. MBNL2, a member of the muscleblind protein family,

encodes a C3H type zinc finger protein that regulates the selective

splicing of pre-mRNA (55). Knockout of the MBNL2 gene in mouse

models has been associated with diabetes-related characteristics in

the central nervous system, including abnormal rapid eye

movement sleep tendencies and spatial memory deficits.

Furthermore, these mice exhibited delayed recovery and

prolonged sleep duration following general anesthesia when

compared to wild-type mice (56). PIK3AP1 plays a crucial role in

diverse inflammatory responses and the regulation of signal

transduction. It connects B cell receptor signaling with the PI3K-

Akt signaling pathway, facilitating signal transduction relevant to B

cell development. It also links toll-like receptor signaling with PI3K

activation, hence helping to prevent excessive production of

inflammatory cytokines (57). ZNF385A, a zinc finger protein,

modulates the activity of p53/TP53 through direct protein

interactions, leading to cell cycle arrest. Emerging studies suggest

that this gene may be associated with the decline in cognitive

function in the elderly (58, 59). Finally, through the analysis of

mRNA and its corresponding protein expression in a mouse model

of SD, the involvement of these 6 genes in sleep disturbances was

confirmed, revealing significant differences in their expression

under diseased conditions.

In our study, using the miRNAnet platform, we identified 5

critical miRNAs targeting 13 genes implicated in SD. Among these

findings, hsa-miR-5096, mediated by exosomes, stood out due to its

potential to augment the heterogeneity of somatostatin receptors

(60). Additionally, a strong correlation was observed between miR-

642a-3p and the metabolic levels of adenosine and creatine in the

metabolic analysis of varicose veins (61). Furthermore, our research

integrated the DGIdb analysis, revealing the potential therapeutic

value of drugs such as MF101, ENTOSPLETINIB, FISPEMIFENE,

and FOSTAMATINIB. For instance, MF101 has the ability to

selectively modulate estrogen receptor b, possibly aiding in the

improvement of vasomotor symptoms and enhancing sleep quality

in menopausal women (62). Similarly, FISPEMIFENE, a tissue-

specific estrogen agonist/antagonist, is also considered beneficial for

improving sleep quality, as evidenced in previous research (63).

Our study has yielded potential insights into the molecular

mechanisms of SD; however, it is important to acknowledge its

limitations. Firstly, our analysis relies on secondary data from
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quality and representativeness. Furthermore, despite the

identification of numerous genes and pathways associated with

SD, there is a need for further investigation into the causal

relationships and specific mechanisms of action among them.

Lastly, our study primarily focuses on the genetic level and does

not comprehensively account for the potential impacts of proteins,

metabolites, and other non-coding RNAs. Future research efforts

should concentrate on validating the biological and clinical

significance of these findings, as well as further delineating the

specific roles of non-genetic factors in the pathogenesis of SD.

Our research leverages cutting-edge bioinformatics tools to

elucidate the genetic underpinnings of sleep disorders,

representing a significant advantage in terms of technological

application and data handling capacity. The multi-dataset

validation process serves as a robust proof of concept, indicating

that our findings have a high potential for generalizability across

different populations. However, the study is not without its

limitations. The dependence on publicly available genomic

databases might limit our insights to the data quality and

completeness of these resources. Furthermore, while our model

shows promising results in computational validations, actual

clinical utility will need to be established through prospective

clinical trials involving diverse patient demographics to address

the varying manifestations of sleep disorders.

Unlike previous studies on single genes and sleep disorders, this

study combined bioinformatics to screen key genes and construct a

diagnostic model for sleep disorders based on machine learning and

big data modeling, which was finally validated on an animal model.

Our investigation delves into the pathogenesis of SD from

multifaceted perspectives, including genetics, physiology, and

pharmacology. Through our analysis, we have discerned that

specific gene expression patterns under diverse physiological and

pathological conditions may either mitigate or exacerbate disease

progression. This influence occurs through their impact on immune

responses, epigenetic regulation, and numerous synergistic

regulatory mechanisms. The interactions between these factors

significantly contribute to our understanding of the complex

nature of SD.
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