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The lack of PPARa exacerbated
the progression of non-alcoholic
steatohepatitis in mice with
spleen deficiency syndrome
by triggering an
inflammatory response
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Jiabing Chen1, Qincheng Yi1, Min Qiu1, Tingting Chen1,
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Yanqing Pang3, Lei Zhang1,4*, Chong Zhong5* and Yong Gao1*

1Science and Technology Innovation Center, Guangzhou University of Chinese Medicine,
Guangzhou, China, 2Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College,
Nanchong, China, 3Department of Phase I Clinical Research Center, The Second Affiliated Hospital of
Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine),
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Background: In addition to abnormal liver inflammation, the main symptoms of

non-alcoholic steatohepatitis (NASH) are often accompanied by gastrointestinal

digestive dysfunction, consistent with the concept of spleen deficiency (SD) in

traditional Chinese medicine. As an important metabolic sensor, whether

peroxisome proliferator-activated receptor alpha (PPARa) participates in

regulating the occurrence and development of NASH with SD (NASH-SD)

remains to be explored.

Methods: Clinical liver samples were collected for RNA-seq analysis. C57BL/6J

mice induced by folium sennae (SE) were used as an SD model. qPCR analysis

was conducted to evaluate the inflammation and metabolic levels of mice.

PPARa knockout mice (PPARako) were subjected to SE and methionine–

choline-deficient (MCD) diet to establish the NASH-SD model. The phenotype

of NASH and the inflammatory indicators were measured using histopathologic

analysis and qPCR as well.

Results: The abnormal expression of PPARa signaling, coupled with metabolism

and inflammation, was found in the results of RNA-seq analysis from clinical

samples. SD mice showed a more severe inflammatory response in the liver

evidenced by the increases in macrophage biomarkers, inflammatory factors,

and fibrotic indicators in the liver. qPCR results also showed differences in PPARa
between SD mice and control mice. In PPARako mice, further evidence was
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found that the lack of PPARa exacerbated the inflammatory response phenotype

as well as the lipid metabolism disorder in NASH-SD mice.

Conclusion: The abnormal NR signaling accelerated the vicious cycle between

lipotoxicity and inflammatory response in NAFLD with SD. Our results provide

new evidence for nuclear receptors as potential therapeutic targets for NAFLD

with spleen deficiency.
KEYWORDS

nuclear receptor, lipid metabolism, non-alcoholic steatohepatitis, inflammatory
response, PPARa
1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common

chronic liver disease worldwide, affecting 12.5% of the global

population (1). Non-alcoholic steatohepatitis (NASH) is the

advanced stage of NAFLD, which typically increases the risk of

developing into cirrhosis and hepatocellular carcinoma (HCC),

ultimately leading to HCC (2). So far, NASH has become the

fastest-developing cause of HCC. In clinical practice, changing

lifestyle and drug therapy are the commonly used coping strategies

mainly because there is currently no specific treatment method for

NASH and the specific cause of NASH is not yet clear (3).

NASH is a chronic liver disease closely related to metabolic

disorders, characterized by hepatocyte steatosis, inflammation, and

fibrosis (4). Among them, inflammation is an important feature of

NASH, which is a complex process caused by multiple factors. In

brief, immune cells such as macrophages and T lymphocytes are

activated by fatty acids and oxidative stress, releasing pro-

inflammatory cytokines, leading to the progression of inflammation

and fibrosis (5, 6). Secondly, abnormal fatty acid metabolism is one of

the key factors in NASH inflammation. Once liver fatty acid

metabolism is imbalanced, fatty acids accumulate excessively in

hepatocytes, leading to the formation and enlargement of lipid

droplets, thereby triggering an inflammatory response in the liver

(7). Moreover, when exposed to excessive fatty acids and free radicals,

hepatocytes can also result in increased oxidative stress, further

increasing the inflammatory response and exacerbating the

progress of NASH (8). In traditional Chinese medicine (TCM),

spleen deficiency (SD) is the basis of NASH, which can be

manifested as chest and rib swelling and pain, sighing, depression

or irritability, lack of appetite, bloating, and loose stools (9). Mice

gavaged with folium sennae were usually used as the SD model,

exhibiting diarrhea, imbalance of short-chain fatty acid metabolism,

and severe inflammation (10). However, it is not clear whether this

severe inflammation will cause an inflammatory response in the liver

and ultimately lead to metabolic disorders in the liver.

Peroxisome proliferator-activated receptors (PPARs) are ligand-

activated transcription factors of the nuclear hormone receptor
02
superfamily comprised of three subtypes, namely, PPARa, PPARb/
d, and PPARg, and they play a crucial role in glucose and lipid

metabolism and inflammation (11). Among them, PPARa can

promote the uptake and oxidation of fatty acids, inhibit adipocyte

differentiation, and also promote the reverse transport of cholesterol

by regulating the expression of related genes (12, 13). Although

abnormal PPARa signaling is often associated with abnormal liver

lipid metabolism, its abnormal expression is also accompanied by

inflammatory reactions in the liver (14). Recent studies have begun to

consider the crosstalk between hepatocytes and immunocytes. It is

known that lipotoxicity caused by lipid metabolism disorders in

hepatocytes can induce inflammatory reactions as shown in our

previous study (15). The administration of the PPARa/g dual agonist
tesaglitazar had anti-inflammatory effects in ob/ob mice by reducing

the number of pro-inflammatory adipose tissue macrophages (16).

The current study investigated the hypothesis that SD-induced liver

inflammation leads to abnormalities in the PPARa pathway, thereby

accelerating susceptibility to NASH.

It is believed that once the inflammatory response intensifies, it

will further induce lipid metabolism disorders to form a vicious cycle,

ultimately exacerbating the development of the disease (17). Similar

to this point of view, our previous study proved that hepatic Zbtb18

protein transcriptionally activates FAO and CLTC expression, which

inhibits NLRP3 inflammasome’s activity, alleviating inflammatory

stress and insulin resistance. In this study, WT mice and PPARa
knockout (PPARako) mice gavaged with folium sennae (SE) were

used as the SD model, a methionine–choline-deficient (MCD) diet

was used as an incentive for NASH, and the molecular biology

techniques and transcriptomics were utilized for detecting changes in

inflammation, lipid metabolism, and PPARa expression.
2 Materials and methods

2.1 Animals

Six- to 8-week-old C57BL/6J mice were housed in an SPF-level

breeding environment (24°C ± 2°C, a 12/12-h light/dark cycle) and
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had free access to water and food supervised by the Ethics Committee

of Guangzhou University of Chinese Medicine. Mice were divided

into the CON group and the SD group. SD mice were gavaged with

0.4 ml of 10% SE (w/v), while mice in the CON group were given the

same equivalent normal saline. Seven days later, mice were executed,

and the liver of each mouse was collected for further examination.

Six- to 8-week-old WT mice and PPARa knockout (PPARako)

mice were fed with chow diet (CD) or MCD diet with SE gavage for

7 days. The serum and the liver of each mouse were collected for

further detection.
2.2 Sample analysis

For qPCR, the total mRNA of each liver sample was extracted,

followed by reverse transcription into cDNA, and then quantitative

PCR was performed using Master Mix (ABclonal Co., Wuhan,

China). The specific primers are shown in Supplementary Table S1.

For histopathologic analysis, liver samples were sliced after

embedding and fixation. For immunohistochemistry, hematoxylin

and eosin (H&E) staining kit, Oil Red O staining kit, and Sirius

Red staining kit were used following the instructions. For

immunohistochemistry (IHC), after dewaxing, hydration, and antigen

repair, slices were blocked and incubated with antibodies overnight at 4°

C, followed by incubation with the secondary antibody for 1 h, and

pictures were observed using a microscope after being sealed.
2.3 Clinical sample and RNA-seq analysis

The liver samples of NAFLD and NAFLD-SD patients were

collected from the First Affiliated Hospital of Guangzhou University

of Chinese Medicine in accordance with the guidelines of the
Frontiers in Immunology 03
Declaration of Helsinki, and written informed consent was

obtained from each patient supervised by the First Affiliated

Hospital of Guangzhou University of Chinese Medicine

Institutional Review Board and Ethics Committee.

For RNA-seq analysis, total RNA was extracted and RNA

purity, quantification, and integrity were evaluated. Sequencing

was conducted and the libraries were constructed according to

the manufacturer’s instructions. The RNA-seq analysis was

conducted by Berry Genomics Corporation (Beijing, China).
2.4 Statistical analysis

Data were shown as means ± SEM, and the significant

differences were evaluated using Student’s t-test. A p-value <0.05

was considered statistically significant.
3 Results

3.1 PPAR signaling was abnormal in the
liver of NAFLD-SD patients

To gain insight into the underlying molecular mechanisms of

NAFLD and NAFLD-SD, we performed RNA-seq analysis of clinical

liver samples from patients with NAFLD and NAFLD-SD (Figure 1A).

The results showed that 213 genes were differently expressed with 106

upregulated and 107 downregulated differentially expressed genes

(DEGs) (Figure 1B). RNA-seq data showed a significant difference

betweenNAFLD-SD andNAFLD (Figure 1C), and the KEGG pathway

analysis showed that the main differential pathways included

metabolism and inflammation, with the PPAR signaling pathway

closely associated with them (Figure 1D). In line with the KEGG
B C D

E F G

A

FIGURE 1

RNA-seq analysis of liver samples of NAFLD and NAFLD-SD patients (A). Scatter plot (B), heatmap (C), and KEGG analysis (D) of RNA-seq data.
Regulated gene sets (E), gene set enrichment analysis (GSEA) (F), and gene correlation analysis (G) of RNA-seq data.
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analysis, gene set enrichment analysis (GSEA) showed that the DEGs

(NAFLD-SD vs. NAFLD) were negatively correlated with the “PPAR

signaling pathway” categories and were positively correlated with

inflammation, suggesting that these changes could regulate the

nuclear receptor and inflammation (Figures 1E, F). Pearson’s

correlation analysis of the RNA-seq analysis data was performed to

further explore the correlation between PPAR and genes involved in

inflammation from the NAFLD-SD vs. NAFLD. The results showed

that PPARa and PPARr mRNA levels were negatively correlated with

the expression of the gene related to inflammation (Figure 1G).
3.2 The inflammatory response and fibrosis
were increased in the liver of SD mice

In order to explore the changes caused by SE-induced SD in the

liver, qPCR analysis was conducted. The results showed that

inflammatory genes such as Il6, Tnfa, Il1b, and nfkb were highly

expressed in the SD group (Figure 2A). The macrophage infiltration
Frontiers in Immunology 04
marker genes such as cd86 and iNos were also significantly

increased in the liver of SD mice (Figure 2B). PPARa signaling-

related genes were also detected, and it was found that PPARa was

downregulated while Pgc1a was upregulated by SD intervention

(Figure 2C). Moreover, the mRNA expression levels of asma, Tgfb,
Col2a1, and Col5a1 were increased in the liver of SD mice,

suggesting an increased tendency to liver fibrosis (Figure 2D).
3.3 The lack of PPARa exacerbated liver
fibrosis and inflammatory response in
NASH-SD mice

PPARako mice fed with MCD diet as well as gavaged with SE

(MCD+SD) were used for further exploration. When fed with CD,

there was barely any difference between WT and PPARako mice in

liver histopathological analysis, while when subjected to MCD+SD

intervention, more severe pathological manifestations of lipid

deposition and fibrosis were observed in the liver of PPARako
B C

D

A

FIGURE 2

qPCR analysis of liver samples of WT and SD mice, including inflammatory genes such as Il6, Tnfa, Il1b, and nfkb (A); macrophage marker genes cd86
and iNos (B); PPARa signaling-related genes such as PPARa and Pgc1a (C); and fibrosis-related genes such as asma, Tgfb, Col2a1, and Col5a1 (D). Data
are shown as the mean ± SEM, n = 6. *p < 0.05, **p < 0.01, ***p < 0.005, and ****p < 0.001.
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mice compared with WT mice (Figure 3A). Mice in the MCD+SD

group exhibited high mRNA expression levels of TGFb1 and Col1a1
in the qPCR results, with PPARako mice exhibiting higher

expression compared with WT mice (Figure 3B).

Further experiments focused on the liver inflammation of those

mice. When fed with CD, there was no significant difference in the

expression levels of inflammatory genes including Il6, Tnfa, and
Il1b as well as F4/80 in the liver of both WT and PPARako mice,

while when intervened with MCD+SD, those genes in PPARako

mice were significantly higher than those in WT mice (Figure 4).
4 Discussion

The pandemic of NASH has forced us to consider

countermeasures, and identifying susceptible populations of NASH

and preventing their process in NASH are two of the feasible ways.

TCM believes that SD, which is involved in the abnormal function of

the spleen and liver as well as organs of the digestive system, is the key

to the occurrence and development of NASH (18). An individual

with SD is more likely to exhibit symptoms of digestive and metabolic

abnormalities, which may trigger or accelerate NASH (19). Also,

TCM research on NASH has always focused on SD (20). SE is a

commonly used inducer for establishing SDmodels, and mice treated
Frontiers in Immunology 05
with its intervention may experience metabolic abnormalities,

diarrhea, and other symptoms, which are typical manifestations of

SD (21). This project outlines the increased susceptibility of SD

individuals to NASH and points out one of its potential therapeutic

targets—PPARa.
Inflammation is one of the important triggers in the

progression of NAFLD to NASH (22). In this study, there are

significant differences in metabolic and inflammatory pathways in

the RNA-seq analysis of liver samples from NASH-SD and NASH

patients, suggesting that metabolism and inflammation may be

triggers for the development of SD toward NASH, as demonstrated

by SD mice in our study. This is consistent with a recent study on

increased inflammation and metabolic disorders in SD mice (10).

However, SD-induced severe diarrhea in mice may also be

associated with intestinal barrier dysfunction and dysbiosis of gut

microbiota (23). For example, when transferred to sterile

mice, specific microbial characteristics may be reshaped, and the

progression of NASH can be delayed, indicating that mitochondrial

dysfunction promotes the progression of NASH by exacerbating the

gut–liver status as well as inflammation (24). Overall, the changes in

the microenvironment of liver inflammation caused by different

reasons will drive the activation of hepatic stellate cells and thereby

accelerate the development of NASH, which is consistent with our

research (25).
B

A

FIGURE 3

Histopathological analysis of liver samples of WT and PPARako mice intervened with CD or MCD+SD, including H&E staining, Oil Red O staining, IHC of
aSMA, and Sirius Red staining (A). qPCR analysis of liver samples of those mice, including fibrosis-related genes such as Tgfb, Col1a1, and aSMA (B). Data
are shown as the mean ± SEM, n = 6. *p < 0.05, ***p < 0.005, and ****p < 0.001.
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In NASH patients, not only severe inflammation and lipid

deposition but also a tendency for liver fibrosis was observed

(26). Similar results were observed in SD mice, indicating that

individuals with SD are more susceptible to NASH. Meanwhile,

NASH treatment strategies either seek to alleviate metabolic

disorders and cell damage or directly target the accompanying

inflammation and fibrosis, with targets for reducing the activation

of inflammatory cascade reactions including nuclear receptor

agonists (27). In this study, we observed that the liver of SD mice

exhibited not only elevated levels of inflammation and a tendency

toward fibrosis but also abnormal PPARa signaling, in which

PPARa is one of the nuclear receptors. When entering the

nucleus, PPARa can bind to promoters that are associated with

b-oxidation-related factors such as ACADM and CPT1A and also

enhance their transcriptional activity and ultimately drive the

process of fatty acid b-oxidation (28). Also, activated PGC-1a can

regulate fatty acid b-oxidation through synergism with

transcription factors such as PPARa, indicating the crucial role

that PPARa/PGC1a signaling plays in liver fatty acid metabolism

homeostasis (29). PPARa is downregulated in many liver diseases

such as NAFLD and NASH (30). In this study, we found for the first

time that PPARa is downregulated in the liver of SDmice. Thus, the

abnormal expression levels of PPARa and PGC1a occurred

simultaneously with fibrosis and elevated inflammatory response

in SD mice, indicating that this signaling may be the reason for the

increased susceptibility of SD mice to NASH.

In further research, we investigated whether PPARa deficiency

increased the susceptibility to NASH, using PPARako mice and WT

mice with MCD+SD intervention as the study subjects and

conducting histopathological observations. H&E staining and Oil

Red staining are commonly used to observe fat deposition in mouse

liver, while Sirius staining and immunohistochemistry for detecting

aSMA expression are commonly used to observe the severity of

liver fibrosis (31). In our study, PPARako mice treated with MCD

+SD intervention showed more severe fat deposition and fibrosis in

the above liver pathological analysis compared with WT mice, but

there was no difference between the two in the CD diet. It is known

that PPARa is highly expressed in the liver and participates in

regulating fatty acid metabolism (32). After binding to fatty acid

ligands, PPARa stimulates the transcription of genes containing

PPARa response elements in its enhancer, with the most significant

being those genes involved in lipid metabolism and energy
Frontiers in Immunology 06
homeostasis (33). Previously, Li’s research showed that there was

no significant difference in the liver between normally fed PPARko

mice and WT mice, which is consistent with our research results

(34). The absence of PPARa exacerbates the NASH performance

caused by MCD+SD intervention, which is related to the functions

of PPARa in regulating lipid metabolism homeostasis and

inflammatory response. Meanwhile, our results also indirectly

reflect that the absence of PPARa increases the susceptibility to

NASH. In addition, only a preliminary exploration of the

mechanism has been conducted, and the number of clinical

samples used was limited, which cannot be representative of all

situations. Further studies are needed in the future.

Overall, the lack of PPARa accelerated the vicious cycle

between lipid metabolism and inflammatory response in NAFLD

with SD. Similar results have been found in sepsis in which the

metabolic and inflammatory responses to bacterial infection were

impaired in the absence of PPARa, which leads to an enhancement

in mortality due to bacterial sepsis (35). Our previous studies also

exhibited that the ingredients of spleen-tonifying drugs can improve

NAFLD or NASH by regulating PPAR signaling, which indirectly

confirms the conclusion of this topic (36, 37). Unfortunately, there

was no separate comparison between the MCD group and the MCD

+SD group when setting up the groups, which will also be our next

research direction. In addition, only a preliminary exploration of

the mechanism has been conducted, and the number of clinical

samples used was limited, which cannot be representative of all

situations. Further studies are needed in the future.
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