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Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease with a

complex pathological mechanism involving autoimmune response, local

inflammation and bone destruction. Metabolic pathways play an important role

in immune-related diseases and their immune responses. The pathogenesis of

rheumatoid arthritis may be related to its metabolic dysregulation. Moreover,

histological techniques, including genomics, transcriptomics, proteomics and

metabolomics, provide powerful tools for comprehensive analysis of molecular

changes in biological systems. The present study explores the molecular and

metabolic mechanisms of RA, emphasizing the central role of metabolic

dysregulation in the RA disease process and highlighting the complexity of

metabolic pathways, particularly metabolic remodeling in synovial tissues and

its association with cytokine-mediated inflammation. This paper reveals the

potential of histological techniques in identifying metabolically relevant

therapeutic targets in RA; specifically, we summarize the genetic basis of RA

and the dysregulated metabolic pathways, and explore their functional

significance in the context of immune cell activation and differentiation. This

study demonstrates the critical role of histological techniques in decoding the

complex metabolic network of RA and discusses the integration of histological

data with other types of biological data.
KEYWORDS

rheumatoid arthritis, multi-omics integrative analysis, autoimmune diseases, metabolism,
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1 Background

Rheumatoid Arthritis (RA) is a chronic inflammatory

autoimmune disease affecting approximately 1% of the global

population (1). A distinctive feature of RA is the presence of

autoantibodies, particularly Rheumatoid Factor (RF) and Anti-

Citrullinated Protein Antibodies (ACPA). The pathogenesis of RA

involves the development of autoimmunity, localized inflammation,

and bone destruction. In RA, metabolic dysregulation reflects the

heightened biological energy demands and changes in oxygen and

nutrient supply in damaged tissues under a persistent inflammatory

state (2). The inflammatory response in the synovial lining is

particularly pronounced, with Synovial Tissue Macrophages

(STM) and Fibroblast-like Synoviocytes (FLS) exacerbating

immune cell infiltration and degradation of cartilage and bone

through excessive production of cytokines and enzymes,

significantly altering the local metabolic environment (3, 4).

Notably, metabolic reprogramming in immune cells is considered

a vital source of novel drug targets (5, 6). Therefore, it is crucial to

comprehend the metabolic pathways involved in RA and their

functional significance.

Over the past decade, the rapid development of omics

technologies has greatly enhanced our understanding of the

genetic and metabolic mechanisms underlying RA (7). With the

advent of the 21st century, the swift progress of high-throughput

technologies, Mass Spectrometry (MS) analysis, and single-cell

methods has provided powerful tools for in-depth elucidation of

the molecular and metabolic mechanisms of RA (8).

This article delves into the molecular and metabolic

mechanisms of RA, underscoring the central role of metabolic

dysregulation in the disease’s progression. The complexity and

functional significance of metabolic pathways in RA are revealed

by integrating advances in multi-omics technologies. The article

suggests the potential of genomics technologies in identifying

metabolism-related therapeutic targets and looks forward to the

prospect of multidimensional data fusion for deepening the

understanding of RA pathomechanisms.
2 RA pathogenesis and
metabolic dysregulation

2.1 Genetic foundations of RA

The genetic basis of RA exhibits considerable complexity.

Research has highlighted the close association between the major

histocompatibility complex (MHC) and the genetic predisposition

to RA, particularly the polymorphism of human leukocyte antigen

(HLA) gene loci, where HLA-DRB1 alleles and their encoded amino

acid sequence patterns (shared epitope, SE) play a pivotal role in RA

susceptibility (9, 10). The SE is associated with a higher risk of

ACPA-positive RA, which in turn is linked to more aggressive RA

and cardiovascular complications (11). Recent research has begun

to focus on the impact of rare variants on RA susceptibility.

Although an enrichment trend for CD2 encoding alleles has been
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observed in RA, further confirmation is yet to be established

(12, 13). Certain HLA-DRB1 alleles in Asians differ structurally

from susceptibility alleles in Caucasians, suggesting that genetic risk

factors for RA may vary among different populations (14).
2.2 Metabolic dysregulation in
RA pathogenesis

In the early pathogenic mechanisms of RA, metabolic

deviations in synovial cells play a crucial role (2). The typical

characteristics of RA include the activation of FLS, characterized

by enhanced proliferation, migration, and invasiveness, as well as

the activation of STM to produce pro-inflammatory mediators. The

pathogenic potential of FLS stems from the immune-regulatory

factors, adhesion molecules, and matrix metalloproteinases they

express. They are also viewed as “passive responders” in the RA

immune response, where their activated state reflects the impact of

the pro-inflammatory environment (15). During different stages of

RA development, various stimuli such as alterations in glucose and

phospholipid metabolism, and unique microenvironmental

conditions (like hypoxia and high pressure) prompt the activation

and transformation of FLS into an invasive phenotype (16, 17).

These stimuli typically activate specific receptors on the cell surface

or internally, triggering FLS signaling pathways (18). Activated FLS

alter the metabolism of four major macromolecules: proteins,

carbohydrates, nucleic acids, and lipids, adopting specific

metabolic characteristics to meet their functional requirements.

Studies indicate that stimuli like Tumor Necrosis Factor (TNF)

and Platelet-Derived Growth Factor enhance glucose metabolism

by promoting mitochondrial respiration and glycolysis (19).

Research also reveals an increase in molecules related to lipid

metabolism, especially choline (a crucial membrane phospholipid

component) in synovial tissue and RA FLS (20, 21). Mitochondria

play a pivotal role in cellular metabolism and immune responses.

Owing to the limited repair capacity of mitochondrial DNA

(mtDNA) and the propensity of oxidative phosphorylation to

generate reactive oxygen species (ROS), mtDNA exhibits

heightened sensitivity to mutations. Mitochondria not only

integrate multiple metabolic pathways to produce intermediates

for steroids, lipids, and heme, but also contribute to thermogenesis

(22). Under hypoxic conditions, mitochondria generate high levels

of ROS, leading to the release of damage-associated molecular

patterns (DAMPs) (23), including mtDNA, ATP, and N-formyl

peptides, playing a crucial role in non-infectious inflammation (24).

Growth factors and cytokines related to RA and associated

inflammation, such as TNF, IL-17, and PDGF, induce alterations

in FLS mitochondrial metabolism, resulting in excessive ROS

production, imbalances in ATP and Ca2+ generated by low-level

oxidative phosphorylation, upregulation of nitrogenous compound

production, extrinsic cell death, and opening of permeability

transition pores (25, 26).

In the pathogenesis of RA, CD4+ T lymphocytes assume a

crucial immunoregulatory role. In these cells, a suppression of

oxidative phosphorylation and glycolysis leads to a reduction in

ATP production, while the primary energy acquisition shifts
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towards glutaminolysis (27, 28). Furthermore, glucose is diverted

from glycolysis to the pentose phosphate pathway, facilitating the

accumulation of NADPH and resulting in cell cycle dysregulation

and uncontrolled proliferation of T lymphocytes (29). Studies also

indicate that B lymphocytes in the RA synovium can be activated by

CTLA (30, 31). Additionally, an increase in lactate secretion by

macrophages and monocytes not only upregulates the expression of

pro-inflammatory cytokines IL-23 and IL-6, thereby promoting

the proliferation of Th17 lymphocytes (a principal immune cell

group in RA) (32), but also inhibits the migration of CD8+ and

CD4+ T lymphocytes, causing their retention at the site of

inflammation (33).

In RA joint tissues, macrophages are the most abundant cell type

(34). Increasing research emphasizes the significant roles of glycolysis,

oxidative phosphorylation, mitochondrial metabolism, and glucose

consumption in the differentiation and activation of various

macrophage subtypes, such as pro-resolving and pro-inflammatory

ones. Under M1 polarization conditions, macrophages are induced by

interferon-gamma g and lipopolysaccharide to adopt a pro-

inflammatory state, consequently inhibiting the tricarboxylic acid

cycle and related mitochondrial oxidative phosphorylation, and

promoting high-level expression and efficient uptake of glucose via

Glut1. Furthermore, glucose facilitates the production of substantial

amounts of lactate through aerobic glycolysis (35). Peripheral blood

macrophages in RA patients exhibit increased levels of glycolysis and

oxygen consumption (36). Studies have identified that the HIF-1a
factor, active under hypoxic conditions, promotes the transcription of
Frontiers in Immunology 03
genes for glycolytic enzymes (26). Lactate causes the macrophage

microenvironment to become acidic, inducing changes in the

glycolytic enzyme pyruvate kinase, which then permeates into the

nucleus to activate the STAT3 gene, leading to the production of IL-6

and IL-1b by macrophages (34). Additionally, joint destruction in RA

also involves upregulation of cathepsin K protease expression in

macrophages (Figure 1) (37).
3 Applications of omics technologies
in the study of metabolic alterations
in RA

3.1 Genomics

Early studies in genomics primarily focused on determining

DNA sequences, involving the analysis of the arrangement of

nucleotides in specific DNA segments. With technological

advancements, the field has rapidly evolved to a more practical

level, encompassing the expression profiles and functional studies of

genes and proteins (38). The application of Genome-Wide

Association Studies (GWAS) and next-generation sequencing

technologies has facilitated the discovery of novel genomic

variations. GWAS research has revealed over 100 genetic loci

associated with the severity/risk of RA (39). Most other

discovered genetic variations are related to guanylation, the
FIGURE 1

Rheumatoid arthritis predominantly affects the joints and leads to metabolic dysregulation within the context of the immune cell milieu.
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immune system, inflammation, and cytokine-related genes, many of

which are known therapeutic targets (40). The discovery of these

genes not only deepens our understanding of the pathomechanisms

of RA, but also opens up new possibilities for personalized

treatment (41).

FLS occupy a crucial position in the metabolic processes of RA.

Researchers have investigated the potential mechanisms of action of

Wantong Jingu Tablet, a prospective effective drug for RA, in FLS

(42). Utilizing high-throughput sequencing technology and

bioinformatics analysis to screen target genes, the study discovered

that the drug potentially promotes apoptosis and inhibits cell

proliferation in FLS by suppressing the expression of THOC1,

SMC3, STAG2, and BUB1, suggesting that these genes might serve

as potential targets for RA treatment. Moreover, the application of

whole-genome analysis provides a deeper understanding of the

metabolic mechanisms of RA and aids in identifying other key

genes and epigenetic biomarkers. DNA microarray technologies

now cover all known genes (more than 35,000) and are capable of

measuring very small amounts of mRNA molecules within cells,

with a lower limit of detection of approximately 10 mRNA copies

per cell (43, 44). These technologies are able to measure mRNA

molecules over a wide linear range, providing rich data on genetic

information in autoimmune diseases. In addition, intra- and inter-

platform consistency of genomics technologies has been significantly

improved through appropriate gene filtering and probe sequence

standardization and optimization (45, 46). Despite significant

technological advances, low-abundance genes (e.g., certain

cytokines and transcription factors) may be missed or unreliably

detected (44). Different probe sequences are used by different

technology platforms, leading to differences in the binding

characteristics of target genes and thus inconsistent gene

expression data.
3.2 Metabolomics

Metabolomics is the scientific study of all small molecules or

metabolites in biological samples, revealing the functional state of

cells and organisms through the analysis of molecular changes. The

application of metabolomics not only reveals the responses of cells

and organisms in various disease states, growth stages, or under

environmental stimuli, but also provides unique insights into

biological systems. This aids in disease diagnosis and the

discovery of new therapeutic targets.

Researchers utilizing MS analysis of RA synovial tissues have

been able to identify specific citrullination sites on fibrinogen (47).

However, further research is required on the immunoregulatory

role of citrullinated molecules in RA, as these molecules have the

potential to serve as novel biomarkers or even as potential

therapeutic targets for RA. Utilizing ultra-high performance

liquid chromatography-quadrupole-time of fl ight mass

spectrometry, researchers have demonstrated that the levels of

tryptophan metabolites in RA synovial fluid are lower compared

to those in patients with osteoarthritis. Concurrently, the b-
oxidation pathways of cholesterol esters, taurine, and linoleic,

oleic, and sphingolipids are more intensely activated in RA
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patients (48). Another study using the same metabolomics

technique found significant changes in RA plasma metabolites

and pathways, such as amino acid and lipid metabolism (49).

Comparative studies based on metabolomics technology have

shown distinct metabolic pathway alterations between newly

onset RA (NORA) and chronic RA (CRA) patients (50). These

changes are significantly reflected in the dysregulation of histidine,

glycerophospholipid metabolism, and the metabolism of serine,

glycine, and threonine. Further research revealed significant

disturbances in the phenylalanine metabolism pathway in both

CRA and NORA patients. Metabolomics pathway analysis revealed

the mechanism of action of Aconitum carmichaeli with Ampelopsis

japonica in treating RA, identifying three key metabolic

pathways: glyceride metabolism, galactose metabolism, and

phosphatidylinositol metabolism (51). These significant changes

that occur in plasma metabolites and metabolic pathways can help

to identify biomarkers of RA, which in turn can lead to the

development of new diagnostic tools and therapeutic strategies

(Table 1). However, metabolomics faces some challenges such as

difficulty in identifying many compounds, lack of comprehensive

enzyme kinetic data, and complex data processing (55).
3.3 Transcriptomics

Transcriptomic research, utilizing real-time PCR and advanced

microarray technologies, has become a routine scientific inquiry

method. RNA sequencing (RNA-seq), capable of covering a broader

range of RNA types and providing richer information, occupies a

significant position in transcriptomic studies (56). However,

advancements are still needed in identifying reliable gene

expression patterns (57). Transcriptomics also provides a picture

of the dynamics of gene expression in patients before and after

different treatments, which allows for the assessment of treatment

efficacy. For example, before and after anti-IL-6 and TNFa
treatments, there are significant changes in patients’ gene

expression patterns, which can help predict treatment response

(58). However, transcriptomics technologies are complex for data

interpretation and require advanced statistical and bioinformatics

skills to manage and interpret large amounts of data. And the

relatively high cost of single-cell RNA-seq may limit its use in

routine clinical practice (59).

In immunological research, single-cell RNA-seq has garnered

widespread attention (60, 61), with researchers like Cheung et al.

focusing on its application in rheumatologic diseases (62). Single-cell

RNA-seq analysis of RA synovium has identified three distinct

fibroblast subgroups (two sub lining and one lining), each with

unique transcriptional profiles (63, 64). The inflammatory phenotype

of synovial fibroblasts is associated with changes in glucose metabolism

(65), and these subpopulations may be potential drug targets

independent of the immune system. Combining the network

topology of human metabolic profiles with single-cell RNA-seq and

applying a metabolic model in the form offlux balance analysis (FBA),

the researchers found that a key determinant of Th phenotypic

differentiation is polyamine metabolism (53). In another study,

RNA-seq was used to analyze gene expression profiles in NORA and
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CRA compared to control groups. The comparative study between

NORA and the control group revealed significant enrichment of nine

gene sets in the control group, covering key biological processes such as

glycerophospholipid metabolism, calcium signaling pathway, and

neuroactive ligand-receptor interaction. Meanwhile, in the CRA

versus control group study, 16 gene sets were found to be enriched

in CRA patients (such as the citric acid cycle), compared to only three

in the control group. KEGG enrichment analysis of differentially

expressed genes between CRA and NORA revealed three

significantly dysregulated metabolic pathways: glycerophospholipid

metabolism, glycerophospholipid biosynthesis - glycerol series, and

proximal tubule bicarbonate reclamation, providing new insights into

the complex metabolic network of RA (50).

Furthermore, most transcriptomic studies in rheumatology

have utilized T-cell receptor (TCR) sequencing. Exploring TCR

diversity in RA using RNA-seq technology for the TCR b-chain,
researchers have found significant overlaps of dominant TCR

clones within affected joints and synovial regions, suggesting the

presence of targetable lymphocytes with therapeutic implications in

RA (66). The interactions between lymphocytes (T cells, B cells,

etc.), inflammatory cells, synovial cells, and cytokines are part of the

RA metabolic mechanism, involving immune responses and

inflammatory regulation.
3.4 Proteomics

The essence of proteomics lies in the comprehensive analysis of

proteins in tissue samples or biological fluids, including their

expression, function, structure, chemical modifications, and

interactions. Research methods are diverse and efficient, covering
Frontiers in Immunology 05
microarray-based technologies as well as the latest single-cell and

high-sensitivity protein analysis methods (67, 68). Proteomics in

RA is utilized to identify peptide mediators and key proteins (69),

and also demonstrates unique value in the detection and

quantification of cytokines. These technologies not only facilitate

early diagnosis of RA but also provide potential biomarkers for

monitoring disease progression and treatment response (70).

Proteomic-protein interaction network analysis in RA has

identified three core genes: Fibronectin 1 (FN1), Acetylcholinesterase

(ACHE), and Aquaporin 1 (AQP1) (50). ACHE is associated with

AQP1, Lysophospholipase I (LYPLA1), and FN1, while tyrosine

aminotransferase interacts with glucokinase regulatory protein, and

LYPLA1 is linked with lecithin-cholesterol acyltransferase (LCAT).

Additionally, an upregulation of ACHE in the glycerophospholipid

metabolism pathway and different downstreammetabolites of LYPLA1

protein and LCAT (such as glycerophosphocholine) were observed.

Studies indicate that interactions between ACHE and LYPLA1, LCAT

proteins lead to changes in the metabolic products of the

glycerophospholipid pathway in RA. In another study, using

proteomic and transcriptomic data, a genome-scale metabolic model

based on T-cell phenotypes was established, and specific metabolic

genes that could serve as therapeutic targets in autoimmune diseases

like RA were identified through FBA (54). The study suggests that the

absence of target genes would lead to positive or negative changes in

metabolic reactions controlled by genes that are downregulated or

upregulated in the disease, highlighting the importance of Th1 and Th2

phenotypes in the metabolic network. Th1 cells exhibit a stronger

glycolytic flux compared to Th2 cells, suggesting that glycolysis in Th1

cells could be a predictive target for RA. Researchers believe that

metabolic dysregulation driving the transition of T-cell phenotypes

may induce the development of autoimmune diseases. Furthermore,
TABLE 1 Metabolic pathways of RA revealed by different omics technologies.

Omics
technologies

Category Metabolic pathways Reference

Genomics Genome-wide association study Identification of novel genomic variations potentially impacting RA metabolism. (39)

Next-generation sequencing

Metabolomics Untargeted metabolomics analysis Reduction in ornithine, branched-chain amino acids, and aromatic amino acids synthesis. (52)

Ultra-high performance liquid
chromatography quadrupole time-
of-flight mass spectrometry

Enhanced b-oxidation pathways of cholesterol esters, taurine, linolenic acid, arachidonic
acid, and sphingolipids.

(48)

Significant alterations in amino acid metabolism and lipid metabolism. (49)

– Significant disruption in phenylalanine metabolic pathways. (50)

Mass spectrometry Tryptophan metabolite levels are associated with rheumatoid factors, inflammatory
markers, and anti-cyclic citrullinated peptide antibody levels.

(48)

Transcriptomics RNA sequencing The key determinant of Th phenotype differentiation is polyamine metabolism. (53)

Dysregulation of glycerophospholipid metabolism. (50)

Proteomics Protein-protein interaction
network analysis

Interaction between ACHE and LYPLA1, LCAT proteins leading to alterations in
metabolic products of glycerophospholipid metabolism pathway in RA.

(50)

– Deletion of target genes can lead to positive or negative changes in metabolic reactions
controlled by upregulated or downregulated genes in the disease, emphasizing the
importance of Th1 and Th2 phenotypes in the metabolic network.

(54)
ACHE, Acetylcholinesterase, LYPLA1, Phospholipase A1 Member 1; LCAT, Lecithin-Cholesterol Acyltransferase.
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IL-6 inhibits Transforming Growth Factor b, impairing Treg

phenotype and thus reducing the inhibition of adaptive T-cell

responses, promoting the formation of Th17 cells, which are

associated with the incidence and severity of RA (71, 72).

Protein microarray technology is capable of detecting up to 10

cell equivalents. Combined with the high quality accuracy of mass

spectrometry (<10 ppm), it is capable of identifying any protein in

the sample (73). 2D gel electrophoresis combined with mass

spectrometry allows for the efficient separation and identification

of specific proteins in a sample (74). Despite the high resolution, the

number of proteins that can be identified by current techniques is

typically less than 10,000, whereas the number of known proteins is

approximately one million. Proteomics techniques are poorly

reproducible across experiments and lack reliable methods for

quantitative analysis.
4 Discussion

This study delves into the metabolic pathways of RA, highlighting

the significant contributions of omics technologies in this domain.

Studies of RA metabolic pathways not only reveal pathological

mechanisms, but are also critical for identifying new diagnostic

markers and therapeutic targets. RA treatment strategies necessitate

the integration of multifaceted data to enhance treatment precision.

Omics data provide molecular level insights, while the integration with

imaging and clinical data can provide biological relevance for these

molecular findings. Specific metabolic changes may be associated with

the degree of joint inflammation or bone destruction observed on

imaging. Furthermore, a significant challenge in employing omics

technologies in RA research lies in managing and interpreting

complex biological information within large-scale datasets.

Therefore, it is imperative to incorporate systems biology strategies

and leverage advanced modeling tools to address the variability,

complexity, and non-linear features of biological interactions (75).

Modelling RA biology is also challenging and requires careful analysis
Frontiers in Immunology 06
based on the type of experimental data available using a variety of

mathematical and computational tools (76).
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