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retinopathy: a Mendelian
randomization study
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and Zhiguo Li1

1Department of Ophthalmology, Li Huili Hospital Affiliated with Ningbo University, Ningbo, China,
2Department of Hepato-Pancreato-Biliary Surgery, Li Huili Hospital Affiliated with Ningbo University,
Ningbo, China
Purpose: This article explored the causal relationship between immune cells and

diabetic retinopathy (DR) using single nucleotide polymorphisms (SNPs) as an

instrumental variable and Mendelian randomization (MR).

Methods: Statistical data were collected from a publicly available genome-wide

association study (GWAS), and SNPs that were significantly associated with

immune cells were used as instrumental variables (IVs). Inverse variance

weighted (IVW) and MR−Egger regression were used for MR analysis. A

sensitivity analysis was used to test the heterogeneity, horizontal pleiotropy,

and stability of the results.

Results: We investigated the causal relationship between 731 immune cells and

DR risk. All the GWAS data were obtained from European populations and from

men and women. The IVW analysis revealed that HLA DR on CD14+ CD16-

monocytes, HLA DR on CD14+ monocytes, HLA DR on CD33-HLA DR+, HLA DR

on CD33+ HLA DR+ CD14- on CD33+ HLA DR+ CD14dim, and HLA DR on

myeloid dendritic cells may increase the risk of DR (P<0.05). HLA DR to CD14-

CD16- cells, the monocytic myeloid-derived suppressor cell absolute count, the

SSC-A count of CD4+ T cells, and terminally differentiated CD4+ T cells may be

protective factors against DR (P<0.05). The sensitivity analysis indicated no

heterogeneity or pleiotropy among the selected SNPs. Furthermore, gene

annotation of the SNPs revealed significant associations with 10 genes related

to the risk of developing PDR and potential connections with 12 other genes

related to PDR.
Abbreviations: DR, diabetic retinopathy; SNPs, single nucleotide polymorphisms; MR, Mendelian

randomization; GWAS, genome-wide association study; IVSs, instrumental variables; IVW, Inverse

variance weighted; PDR, proliferative diabetic retinopathy; LOO. leave one-out; MDSCs, myeloid-derived

suppressor cells; T1D, type 1 diabetes mellitus; DN, diabetic nephropathy; DRGen, Diabetic

Retinopathy Genomics.
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Conclusion: Monocytes and T cells may serve as new biomarkers or therapeutic

targets, leading to the development of new treatment options for managing DR.
KEYWORDS

Mendelian randomization, immune cells, diabetic retinopathy, proliferative diabetic
retinopathy, causal effect
1 Background

Diabetic retinopathy (DR) is one of the most common

microvascular complications of diabetes and affects 30% to 50%

of diabetic patients. DR can progress to proliferative diabetic

retinopathy (PDR) when the severity of ischemia increases,

leading to neovascularization, fibroplasia, and retinal detachment,

which are the leading causes of blindness and visual impairment in

diabetic individuals. Diabetes is expected to affect 415 million

people worldwide by 2024, more than one-third of whom suffer

from DR, making it a serious global health issue (1, 2). Current DR

treatment mostly focuses on regulating blood sugar, blood pressure,

and lipid levels to slow down the disease and lower the risk of DR;

however, there is still a high number of diabetes patients who

develop PDR (3, 4). Early detection and diagnosis of DR, as well as

systematic therapy, can prevent persistent vision loss; however,

diagnosis and treatment of DR are often delayed due to a lack of

resources for early DR screening (5). As a result, identifying more

precise and sensitive biomarkers is critical for facilitating early

detection of DR and understanding its pathophysiology (6).

Immune cells play a crucial role in the onset and progression of

DR. In DR, there is frequent and persistent white blood cell

adhesion to the vascular wall, which may result in capillary

occlusion and retinal ischemia (7). They also play an important

role in the pathogenesis of late PDR and can contribute to

neovascularization, vitreous hemorrhage, and traction retinal

detachment (8). A recent prospective study demonstrated that the

number of circulating neutrophils increases while the number of T

cells decreases during the initial stages and progression of DR (9).

However, previous research on the pathophysiology of DR

mostly relies on association analysis of observational cohorts,

which cannot achieve causal association inference. Furthermore,

the causal relationships between various immune cells and DR have

not been investigated; therefore, there is limited existing

evidence regarding immune cell types related to DR and their

causal associations.

Mendelian randomization (MR) is a popular causal inference

method in which the genetic variation associated with exposure is

employed as an instrumental variable (IV) for assessing the causal

effect of exposure on outcomes. It remains unaffected by common

complicating variables such as acquired environment, life behavior,

and habits, allowing it to minimize the reverse causal effect while

maintaining maximum validity (10). Compared to traditional
02
randomized controlled trials and observational research, MR can

significantly reduce expenses and shorten study periods. It is widely

employed in studies investigating the causal association of complex

disorders, and the genome-wide association study (GWAS) dataset

is expanding rapidly. These findings also provide a solid foundation

for further MR research. With the advent of big data, the growth of

epidemiological methodologies, and the demand for precision

medicine, the application of MR for etiology mining will emerge

as a new area of future research (11).

At present, no studies have been conducted to properly

investigate the causal relationship between immune cells and DR

using MR. Further investigation and study are required for diabetes.

In this study, MR analysis was performed to investigate the causal

relationship between immune cells and DR.
2 Methods

2.1 Study design

We used MR analysis to evaluate the causal relationship

between 731 immune cells and DR. In this study, immune cells

were used as exposure factors and represented by X, whereas

single nucleotide polymorphisms (SNPs) that were strongly

linked with X were used as instrumental variables (IVs). The

outcome variable was diabetic retinopathy. Figure 1 depicts a

schematic view of the study design, as well as the three essential

MR assumptions (12).
2.2 Data source

The analysis was conducted using published summary statistics

from the International Working Unit (IEU) Open GWAS project

(https://gwas.mrcieu.ac.uk/), and it included 731 immune cells, two

DR datasets (Finn-b-DM_RETINOPATHY and finn-b-

H7_RETINOPATHYDIAB), and two PDR datasets (finn-b-

DM_RETINA_PROLIF and finn-b-H7_RETINOPATHYDIAB_

PROLIF). Validation was performed using the datasets finn-b-

H7_RETINOPATHYDIAB and finn-b-H7_RETINOPA

THYDIAB_PROLIF. The study was conducted on European

individuals, including both men and women, and the summary

data are provided in Table 1. The current analysis did not require
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ethics approval because all of the included GWASs received ethical

review board approval and informed consent, as indicated in their

individual original manuscripts.
2.3 Selection and validation of SNPs

The selected SNPs were related to immune cells at a genome-

wide significance threshold of p < 1×10-5. Second, pairwise linkage

disequilibrium was used to assess the independence of the selected

SNPs. When r2 > 0.001 (clumping window of 10,000 kb) was

reached, the SNP that correlated with more SNPs or had a higher

P-value was removed (Figure 1, ①). Phenoscanner was used to

minimize the impact of improper SNPs (Figures 1, ②③). The F-

statistic was subsequently used to validate the strength of each SNP.

When the F-statistic exceeded 10, SNPs were deemed powerful

enough to minimize the effects of potential bias. Furthermore, the

SNPs listed above were retrieved from the GWAS summary data of
Frontiers in Immunology 03
DR and PDR, with a minimum r2 > 0.8. The information from the

datasets listed above was summarized (12).
2.4 Mendelian randomization analysis

The causal association study was conducted using inverse

variance weighting (IVW) and MR−Egger regression. The

discrepancy in intercept terms, as indicated by the intercept of

the MR-Egger analysis, revealed horizontal pleiotropy in the study.

Cochrane’s Q value and accompanying P-values were used to assess

heterogeneity among the selected IVs, with P > 0.05 indicating no

heterogeneity. In addition, a leave-one-out (LOO) analysis was

performed to observe whether a particular SNP had a

disproportionate effect on the overall estimations. Forest plots

were used to visualize the MR analysis results, while scatter plots

and funnel plots were utilized to assess the stability of the MR data

(13, 14).
FIGURE 1

Mendelian randomization diagram of the association of immune cells with diabetic retinopathy. ① The genotype must be associated with the
exposure to be studied. ② Genotypes must be independent of confounding factors. ③ Genotype is only associated with outcome by influencing the
exposure factors to be studied.
TABLE 1 Detailed information of datasets.

Data source Phenotype
Sample
size

Cases Population Adjustment

IEU Open GWAS project Immune cells - - European -

finn-b-DM_RETINOPATHY Diabetic retinopathy (DM_RETINOPATHY) - 14584 European
Males

and Females

finn-b-H7_RETINOPATHYDIAB Diabetic retinopathy (H7_RETINOPATHYDIAB) - 3646 European
Males

and Females

finn-b-DM_RETINA_PROLIF Proliferative diabetic retinopathy (DM_RETINA_PROLIF) - 8681 European
Males

and Females

finn-b-
H7_RETINOPATHYDIAB_PROLIF

Proliferative diabetic
retinopathy (H7_RETINOPATHYDIAB_PROLIF)

- 1382 European
Males

and Females
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The statistical power was calculated using an online tool at:

http://cnsgenomics.com/shiny/mRnd/ (15). We used the following

formula to calculate R2: (2×EAF×(1−EAF)×beta2)/[(2×EAF×(1

−EAF)×beta2)+(2×EAF×(1−EAF)×N×SE(beta)2) (16).
2.5 SNP annotation

The SNPs were annotated using online tools (https://

biit.cs.ut.ee/gprofiler/snpense). g: SNPense maps a collection of

human SNP rs-codes to gene names, along with chromosome

positions and expected variant effects. Mapping was allowed only

for variations that coincided with at least one protein coding

Ensembl gene. All underlying data were extracted from Ensembl

variation data.
2.6 Statistical methods

All the statistical analyses were conducted using R 4.1.0 software

and R packages. IVW and MR−Egger analyses were performed using

the TwoSample MR package (a= 0.05), meta-analysis using the meta

package, and a statistically significant difference was indicated by P <

0.05. If the null hypothesis was rejected, random effects IVW was

utilized rather than fixed effects IVW (17). Additionally, the Forest

Plats package was used to generate forest plots.
3 Results

3.1 Selected SNPs

A total of 6,196 SNPs in the DR and 6,186 in the PDR MR

analyses were used, respectively (Supplementary Table 2). We

obtained the degree of phenotype overlap from the FinnGen

database. Among diabetic retinopathy phenotypes, there is a

57.47% sample overlap between the DM_RETINOPATHY cohort

and the H7_retinydiab cohort. In terms of the proliferative diabetic

retinopathy phenotype, there is a 25.82% sample overlap between

the DM_RETINA_PROLIF cohort and the H7_retinyDIAB_prolif

cohort (Supplementary Table Overlap).
3.2 MR analysis results

MR analysis was performed to explore the causal effects of

immune cells on DR, and the IVWmethod was used as the primary

analysis. According to MR analysis using the finn-b-

DM_RETINOPATHY dataset, IVW analysis revealed that 30

immune cells were significantly associated with DR. In total, 18

immune cells were found to increase the risk of DR; for example,

HLA DR was found in CD33+ HLA DR+ CD14- (OR=1.229, 95%

CI=1.178-1.283, P<0.001), and HLA DR was found in CD33+ HLA

DR+ CD14dim (OR=1.323, 95% CI=1.239-1.413, P<0.001).

Furthermore, 12 immune cells, such as HLA-DR on CD14-CD16

+ cells (odds ratio (OR)=0.798, 95% CI=0.748-0.852, P<0.001) and
Frontiers in Immunology 04
on CD4+ T cells (OR=0.477, 95% CI=0.403-0.565, P<0.001), may

decrease the risk of DR (Figure 2).

The IVW analysis based on the FinN-B-H7_RETINO

PATHYDIAB dataset revealed that 36 immune cells were

significantly associated with DR. Among these, HLA-DR among

CD33+ HLA DR+ CD14- (OR=1.716, 95% CI=1.531-1.924,

P<0.001) and HLA-DR among CD33+ HLA DR+ CD14dim

(OR=2.240, 95% CI=1.968-2.550, P<0.001) were identified as two

of the 15 immune cells that may increase the risk of DR.

Additionally, HLA-DR among CD14- CD16- (OR=0.686, 95%

CI=0.605-0.778, P<0.001) and SSC-A among CD4+ T cells

(OR=0.196, 95% CI=0.136-0.282, P<0.001) were identified as two

of the 21 immune cells that may decrease the risk of DR (Figure 3).

Merged MR ana ly s i s r e su l t s f rom the FINN-B-

H7_RETINYDIAB and FINN-b-DM_RETINOPATHY datasets

revealed 10 immune cells. HLA-DR on myeloid dendritic cells,

HLA-DR on CD14+ CD16- monocytes, HLA-DR on CD33+ HLA-

DR+ CD14-, HLA-DR on CD14+ monocytes, HLA-DR on CD33-

HLA-DR+, and HLA-DR on CD33+ HLA-DR+ CD14dim are six

immune cells that may be risk factors for DR. Additionally, the

following four immune cells may serve as protective factors for DR:

monocytic myeloid-derived suppressor cell absolute count,

terminally differentiated CD4+ T cell, HLA-DR on CD14- CD16-,

and SSC-A on CD4+ T cells (Table 2A).

After merging the MR analysis results from the finn-b-

DM_RETINA_PROLIF and finn-b-H7_RETINOPATHYDIAB_

PROLIF datasets, 10 immune cell types were obtained. These

include HLA DR on dendritic cells, HLA DR on myeloid

dendritic cells, HLA DR on CD14+ CD16- monocytes, HLA DR

on CD33+ HLA DR+ CD14- cells, CD4 on CD39+ activated CD4

regulatory T cells, HLA DR on CD14+ monocytes, HLA DR on

CD33+ HLA DR+ CD14dim, and HLA DR on CD33- HLA DR+.

These eight immune cell types may be risk factors for DR. The other

two immune cell types may act as protective factors for PDR: HLA

DR on CD14- CD16- and SSC-A on CD4+ T cells (Table 2B).
3.3 Sensitivity analysis

According to the merging of the two DR datasets, Cochran’s Q

P-value revealed no heterogeneity among SNPs in DR and immune

cell HLA DR on CD14-CD16- or HLA DR on CD33+ HLA DR+

CD14- or DR (P > 0.05, Table 3A). Furthermore, the MR−Egger

intercept ruled out the possibility of horizontal pleiotropy for these

associations. The LOO sensitivity analysis revealed that no

individual SNP disproportionately affected the overall estimates

(Figure 4). Additionally, scatter plots and funnel plots also indicated

the stability of the results (Figure 4).

After merging the two PDR datasets, we detected no

heterogeneity in the Cochran’s Q P- value among the SNPs of

PDR and immune CD4+ T cells among the CD39+ activated CD4+

regulatory T cells or HLA DR among the CD33+ HLA DR+ CD14-

cells (P > 0.05, Table 3B). Furthermore, the MR−Egger intercept

ruled out the possibility of horizontal pleiotropy for these

associations. The LOO sensitivity analysis revealed that no

individual SNP disproportionately affected the overall estimates
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(Figure 5). In addition, the scatter plots and funnel plots also

indicated the stability of the results (Figure 5).

In this study, we obtained seven immune cell features that were

causally related to DR and PDR from two datasets. In the power

calculations, the power of all the above immune cell features was >0.99,

indicating that this study has sufficient statistical power (Table 3;

Supplementary Power-1; Supplementary Power-2).
3.4 Meta-analysis

TheMR data for immune cells from two DR patient datasets were

merged through meta-analysis. If Cochran’s Q P value was <0.05, the

random effects model was adopted. We identified six immune cells

that have a risk effect on DR, namely, HLA DR on CD14+ CD16-

monocytes, HLA DR on CD14+ monocytes, HLA DR on CD33-

HLA DR+, HLA DR on CD33+ HLA DR+ CD14-, HLA DR on

CD33+ HLA DR+ CD14dim, and HLA DR on myeloid dendritic

cells. Additionally, we found four immune cells that have a protective

effect against DR including HLA-DR on CD14- CD16-, monocytic

myeloid-derived suppressor cell absolute count, and SSC-A on CD4+

T cells and terminally differentiated CD4+ T cells (Supplementary

DR-meta).

The MR data for immune cells from two PDR patient datasets

were merged through meta-analysis. We identified a risk effect of
Frontiers in Immunology 05
eight immune cells on PDR, including CD4+ on CD39+ activated

CD4 regulatory T cells, HLA DR on CD14+ CD16- monocytes, HLA

DR on CD14+ monocytes, HLA DR on CD33- HLA DR+, HLA DR

on CD33+ HLA DR+ CD14-, HLA DR on CD33+ HLA DR+

CD14dim, HLA DR on dendritic cells, and HLA DR on myeloid

dendritic cells. Additionally, we discovered the protective effects of

two immune cell types on DR, namely, HLA DR on CD14- CD16- T

cells and SSC-A on CD4+ T cells (Supplementary PDR-meta).

The risk factors associated with the two phenotypes identified

from the four datasets included six immune cell types: HLA-DR on

CD14+ CD16 monocytes, HLA-DR on CD14+ monocytes, HLA-

DR on CD33-HLA-DR+, HLA-DR on CD33+ HLA-DR+ CD14-,

HLA-DR on CD33+ HLA-DR+ CD14dim, and HLA-DR on

myeloid dendritic cells. Among the two phenotypes identified

from the four datasets, HLA-DR to CD14-CD16- and SSC-A to

CD4+ T cells were protective factors. Figure 6 shows the HLA-DR

on CD33+ cells, HLA-DR+CD14- cells, and HLA-DR on CD14-

CD16- cells.
3.5 SNP annotation

Immune cell SNPs strongly associated with DR were annotated,

and 10 genes potentially connected with PDR were identified. HLA-

DPA1, CD33, HLA-DOB, and NEK7 may serve as protective factors
FIGURE 2

Forest map of MR causal effect between immune cells and DR (finn-b-DM_RETINOPATHY).
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for DR, while TSBP1-AS1, LYZ, ENSG00000233183, MICB,

GABBR1, and FCGR3A may act as risk factors for DR (Table 4A).

Immune cell SNPs strongly associated with PDR were

annotated, revealing 12 genes potentially related to PDR. CD4,

RPL3P2, LYZ, TSBP1-AS1, ENSG00000233183, MICB, TVP23A,

GABBR1, FCGR3A, and CIITA may be risk factors for PDR,

however, HLA-DPA1 and TSBP1-AS1 might provide protection

against it (Table 4B).
4 Discussion

A previous study revealed that immune system disorders and

inflammation play important roles in the pathogenesis of DR.

Further research into the specific role of immune mechanisms in

DR, as well as the identification of more specific and sensitive

biomarkers, will provide a new foundation and strategies for the

early clinical diagnosis and treatment of DR (18). This MR study
Frontiers in Immunology 06
adds to the evidence supporting a causal connection between

immune cells and DR. In DR, immune cells HLA DR on CD33+

HLA DR+ CD14- and HLA DR on CD33+ HLA DR+ CD14dim

may be risk factors, while immune cells HLA DR on CD14-CD16-

may be protective. In PDR, CD4+ T cells on CD39+ active CD4

regulatory T cells, HLA DR cells on CD14+ monocytes, and HLA

DR cells on CD33+ HLA DR+ CD14dim may be risk factors.

Immune cells, specifically those harboring SSC-A on CD4+ T cells,

may provide protection. The findings of this study indicate that

immune cells HLA DR on CD33+ HLA DR+ CD14- and HLA DR+

CD14- have a causative influence in both the datasets of DR and

PDR, which may increase the risk of developing DR. Both types

express molecules known as human leukocyte antigen (HLA)

-driven receptors that are important markers for antigen-

presenting cells (APCs). However, CD33+ cells are primarily

present in monocytes or macrophages where they play a role in

innate immunity and inflammation by exhibiting phagocytic

activity along with cytokine production at sites experiencing
FIGURE 3

Forest map of MR causal effect between immune cells and DR (finn-b-H7_RETINOPATHYDIAB).
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TABLE 2A MR results of causal links.

Data source Classification Trait type Panel Nsnp Methods
OR

(95%CI)
P-

value
FDR Power

finn-
b-DM_RETINOPATHY

HLA DR on myeloid
Dendritic Cell

MFI cDC 7
Inverse
variance
weighted

1.426
(1.206-
1.686)

3.32E-
05

2.45E-
03

1.000

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4
Inverse
variance
weighted

1.219
(1.165-
1.274)

4.41E-
18

1.14E-
15

1.000

HLA DR on CD14- CD16- MFI Monocyte 4
Inverse
variance
weighted

0.798
(0.748-
0.852)

1.19E-
11

1.02E-
09

1.000

HLA DR on CD14
+ monocyte

MFI Monocyte 3
Inverse
variance
weighted

1.224
(1.168-
1.282)

2.38E-
17

3.07E-
15

1.000

SSC-A on CD4+ T cell
Morphological
parameter

TBNK 3
Inverse
variance
weighted

0.477
(0.403-
0.565)

1.04E-
17

1.78E-
15

1.000

HLA DR on CD33+ HLA
DR+ CD14-

MFI
Myeloid
cell

3
Inverse
variance
weighted

1.229
(1.178-
1.283)

1.91E-
21

9.86E-
19

1.000

HLA DR on CD33+ HLA
DR+ CD14dim

MFI
Myeloid
cell

2
Inverse
variance
weighted

1.323
(1.239-
1.413)

8.11E-
17

8.37E-
15

1.000

finn-b-
H7_RETINOPATHYDIAB

HLA DR on myeloid
Dendritic Cell

MFI cDC 7
Inverse
variance
weighted

2.226
(1.547-
3.201)

1.60E-
05

1.18E-
03

1.000

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4
Inverse
variance
weighted

1.694
(1.405-
2.043)

3.50E-
08

3.61E-
06

1.000

HLA DR on CD14- CD16- MFI Monocyte 4
Inverse
variance
weighted

0.686
(0.605-
0.778)

4.49E-
09

5.79E-
07

1.000

HLA DR on CD14
+ monocyte

MFI Monocyte 3
Inverse
variance
weighted

1.721
(1.346-
2.200)

1.47E-
05

1.18E-
03

1.000

SSC-A on CD4+ T cell
Morphological
parameter

TBNK 3
Inverse
variance
weighted

0.196
(0.136-
0.282)

1.63E-
18

2.81E-
16

1.000

HLA DR on CD33+ HLA
DR+ CD14-

MFI
Myeloid
cell

3
Inverse
variance
weighted

1.716
(1.531-
1.924)

1.89E-
20

4.86E-
18

1.000

HLA DR on CD33+ HLA
DR+ CD14dim

MFI
Myeloid
cell

2
Inverse
variance
weighted

2.240
(1.968-
2.550)

2.99E-
34

1.54E-
31

1.000
F
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TABLE 2B MR results of causal links.

Data source Classification Trait type Panel Nsnp Methods
OR
(95%
CI)

P-
value

FDR Power

finn-b-DM_RETINA_PROLIF
HLA DR on myeloid

Dendritic Cell
MFI cDC 7

Inverse
variance
weighted

1.690
(1.327-
2.153)

2.15E-
05

1.59E-
03

1.000

(Continued)
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inflammation. However, lymphocytes more widely express another

type called CD14-, which has stronger associations with adaptive

immune responses potentially contributing to diseases or immune

response regulation.

Numerous studies have demonstrated that regulatory T cells

and monocytes play a significant role in the pathogenesis of DR.

The activation of immunoinflammatory cells and proinflammatory

substances in the retinal tissue of DR patients contributes to the

occurrence and progression of DR (19–22). Leukocyte adhesion

stasis; neutrophil increase; abnormal expression of T cells, B
Frontiers in Immunology 08
lymphocytes, mononuclear/macrophages, and other immune cells;

elevated concentrations of inflammatory and proangiogenic factors;

and increased levels of anti-pericytes and anti-endothelial cell

antibodies were found in the serum, vitreous, and retinal tissues

of DR animal models and patients (23–25). YUAN et al. used a gene

expression microarray for immunoinfiltration analysis. They found

that in DR samples, there was significant overexpression (P<0.05) of

seven types of immune cells: original B cells, plasma cells, memory

CD4+ T cells, regulatory T cells (Tregs), MO macrophages, M1

macrophages, and neutrophils (P<0.05). The activated memory
TABLE 2B Continued

Data source Classification Trait type Panel Nsnp Methods
OR
(95%
CI)

P-
value

FDR Power

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4
Inverse
variance
weighted

1.369
(1.245-
1.505)

8.20E-
11

1.06E-
08

1.000

HLA DR on CD14
+ monocyte

MFI Monocyte 3
Inverse
variance
weighted

1.380
(1.218-
1.565)

4.59E-
07

3.94E-
05

1.000

CD4 on CD39+
activated CD4 regulatory

T cell
MFI Treg 3

Inverse
variance
weighted

1.224
(1.107-
1.354)

8.53E-
05

5.50E-
03

0.994

SSC-A on CD4+ T cell
Morphological
parameter

TBNK 3
Inverse
variance
weighted

0.348
(0.270-
0.449)

3.78E-
16

6.50E-
14

1.000

HLA DR on CD33+
HLA DR+ CD14-

MFI
Myeloid
cell

3
Inverse
variance
weighted

1.383
(1.305-
1.466)

9.65E-
28

3.62E-
25

1.000

HLA DR on CD33+
HLA DR+ CD14dim

MFI
Myeloid
cell

2
Inverse
variance
weighted

1.599
(1.469-
1.740)

1.40E-
27

3.62E-
25

1.000

finn-
b-

H7_RETINOPATHYDIAB_PROLIF

HLA DR on myeloid
Dendritic Cell

MFI cDC 7
Inverse
variance
weighted

2.603
(1.645-
4.121)

4.46E-
05

3.83E-
03

1.000

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4
Inverse
variance
weighted

1.900
(1.536-
2.350)

3.27E-
09

4.22E-
07

1.000

HLA DR on CD14
+ monocyte

MFI Monocyte 3
Inverse
variance
weighted

1.943
(1.474-
2.560)

2.40E-
06

2.48E-
04

1.000

CD4 on CD39+
activated CD4 regulatory

T cell
MFI Treg 3

Inverse
variance
weighted

1.532
(1.202-
1.954)

5.73E-
04

4.23E-
02

0.992

SSC-A on CD4+ T cell
Morphological
parameter

TBNK 3
Inverse
variance
weighted

0.142
(0.100-
0.202)

8.73E-
28

4.50E-
25

1.000

HLA DR on CD33+
HLA DR+ CD14-

MFI
Myeloid
cell

3
Inverse
variance
weighted

1.879
(1.525-
2.315)

3.15E-
09

4.22E-
07

1.000

HLA DR on CD33+
HLA DR+ CD14dim

MFI
Myeloid
cell

2
Inverse
variance
weighted

2.654
(2.162-
3.257)

1.06E-
20

2.73E-
18

1.000
fron
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TABLE 3A Evaluation of heterogeneity and pleiotropy.

Data source Classification Trait type Panel Nsnp

Heterogeneity Horizontal pleiotropy

I2

(%)
Cochran’s

Q
P-

value
Egger

intercept
SE

P-
value

finn-
b-DM_RETINOPATHY

HLA DR on myeloid
Dendritic Cell

MFI cDC 7 97 178.303 <0.001 -0.137 0.075 0.127

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4 0 1.611 0.657 -0.018 0.050 0.751

HLA DR on
CD14- CD16-

MFI Monocyte 4 1 3.016 0.389 -0.035 0.046 0.521

HLA DR on CD14
+ monocyte

MFI Monocyte 3 0 1.634 0.442 -0.052 0.066 0.574

SSC-A on CD4+ T cell
Morphological
parameter

TBNK 3 69 6.544 0.038 0.401 0.720 0.677

HLA DR on CD33+ HLA
DR+ CD14-

MFI
Myeloid
cell

3 0 1.089 0.580 0.018 0.031 0.662

HLA DR on CD33+ HLA
DR+ CD14dim

MFI
Myeloid
cell

2 0 0.164 0.685 - - -

finn-b-
H7_RETINOPATHYDIAB

HLA DR on myeloid
Dendritic Cell

MFI cDC 7 97 218.238 <0.001 -0.288 0.166 0.144

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4 78 13.641 0.003 -0.297 0.145 0.177

HLA DR on
CD14- CD16-

MFI Monocyte 4 0 2.821 0.420 -0.098 0.082 0.355

HLA DR on CD14
+ monocyte

MFI Monocyte 3 86 14.335 <0.001 -0.476 0.128 0.168

SSC-A on CD4+ T cell
Morphological
parameter

TBNK 3 74 7.610 0.022 1.531 0.874 0.330

HLA DR on CD33+ HLA
DR+ CD14-

MFI
Myeloid
cell

3 46 3.732 0.155 -0.109 0.061 0.325

HLA DR on CD33+ HLA
DR+ CD14dim

MFI
Myeloid
cell

2 0 0.042 0.837 - - -
F
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TABLE 3B Evaluation of heterogeneity and pleiotropy.

Data source Classification Trait type Panel Nsnp

Heterogeneity Horizontal pleiotropy

I2

(%)
Cochran’s

Q
P-

value
Egger

intercept
SE

P-
value

finn-b-DM_RETINA_PROLIF
HLA DR on
myeloid
Dendritic Cell

MFI cDC 7 97 228.471 <0.001 -0.198 0.109 0.128

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4 63 8.183 0.042 -0.143 0.080 0.217

HLA DR on CD14
+ monocyte

MFI Monocyte 3 77 8.758 0.013 -0.241 0.084 0.213

CD4 on CD39+
activated CD4
regulatory T cell

MFI Treg 3 0 1.522 0.467 -0.223 0.289 0.583

SSC-A on CD4+
T cell

Morphological
parameter

TBNK 3 77 8.869 0.012 1.134 0.480 0.255

HLA DR on CD33+
HLA DR+ CD14-

MFI
Myeloid
cell

3 12 2.284 0.319 -0.032 0.051 0.647
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TABLE 3B Continued

Data source Classification Trait type Panel Nsnp

Heterogeneity Horizontal pleiotropy

I2

(%)
Cochran’s

Q
P-

value
Egger

intercept
SE

P-
value

HLA DR on CD33+
HLA DR
+ CD14dim

MFI
Myeloid
cell

2 0 0.359 0.549 - - -

finn-b-
H7_RETINOPATHYDIAB_PROLIF

HLA DR on
myeloid
Dendritic Cell

MFI cDC 7 96 136.103 <0.001 -0.371 0.207 0.133

HLA DR on CD14+
CD16- monocyte

MFI Monocyte 4 57 7.015 0.071 -0.350 0.154 0.152

HLA DR on CD14
+ monocyte

MFI Monocyte 3 72 7.234 0.027 -0.523 0.202 0.235

CD4 on CD39+
activated CD4
regulatory T cell

MFI Treg 3 0 0.174 0.917 0.265 0.696 0.769

SSC-A on CD4+
T cell

Morphological
parameter

TBNK 3 29 2.798 0.247 1.644 1.009 0.350

HLA DR on CD33+
HLA DR+ CD14-

MFI
Myeloid
cell

3 60 4.980 0.083 -0.204 0.096 0.281

HLA DR on CD33+
HLA DR
+ CD14dim

MFI
Myeloid
cell

2 0 0.510 0.475 - - -
F
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FIGURE 4

Sensitivity analysis for DR datasets.
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CD4+ T-cell module had the highest correlation and differential

expression (P< 0.001). Activated NK cells showed low expression

among immune cells (P<0.05) (26). Our study also revealed an

increased risk for DR associated with HLA DR on CD14+ CD16-

monocytes, HLA DR on CD33+ HLA DR+ CD14- cells, HLA DR

on CD14+ monocytes, and HLA DR on CD33+ HLA DR+

CD14dim (all belonging to the monocyte population).

Additionally, PDR patients showed a significant increase in CD4+

T cells on CD39+ activated CD4+ regulatory T cells. Two immune-

associated target genes in DR, DLGAP5 and AURKB, were found to

be enriched in pathways relevant to memory CD4+ cells. These

findings suggest that DR is closely related to the activation of

regulatory T cells and monocytes.

Our research revealed a significant increase in HLA-DR on CD33

+HLA-DR+CD14- cells in both DR and PDR, indicating a strong

correlation between microangiopathy in DR and the activation of

myeloid-derived suppressor cells (MDSCs). MDSCs are diverse cell

types that can effectively suppress T cell responses. Under normal

conditions, these cells develop into dendritic cells, macrophages, and

granulocytes. However, in pathological conditions such as infection,

inflammation, or cancer, the differentiation of these cells stops

resulting in their accumulation (27–29). Initially classified as HLA-

DR-CD33+ or CD14-CD11b+ cells, both of which are populations of
Frontiers in Immunology 11
cells with T cell inhibitory activity (30, 31), human MDSCs can be

further subdivided into granulocytic CD14− and monocytic CD14+

MDSCs (32, 33). One study found that patients with type 1 diabetes

mellitus (T1D) have significantly greater numbers of MDSCs in their

peripheral blood with M-MDSCs (CD14+ CD33+ HLA-DR−) being

the most prevalent subset of MDSCs. Compared to diabetic patients

without kidney disease, diabetic patients with kidney disease had a

substantial increase in the number of total MDSCs and a rise in the

percentage of CD14- cells (34). An imbalance of immune active cells

is directly linked to the development of DR, as evidenced by the

aberrant activation and expression of immune cells in the ocular

tissue of DR patients and the association with DR. There are many

similarities between diabetic nephropathy (DN) and DR. DN and DR

are both microvascular complications resulting from diabetes, which

are complex illnesses with diverse manifestations (35). If immune cell

activation is effectively inhibited, delays in the onset of DR disease can

be expected.

Our study indicates that CD33 is implicated in DR. Additionally,

these findings reveal a set of genetic variants associated with

proangiogenic and inflammatory pathways that may contribute to

the pathogenesis of DR. Further investigation into these variants is

necessary and may lead to the development of novel biomarkers and

new therapeutic targets for DR. Previous research has shown that
FIGURE 5

Sensitivity analysis for PDR datasets.
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genes associated with angiogenesis and inflammatory pathways play a

crucial role in the onset of DR (36–39). The Diabetic Retinopathy

Genomics (DRGen) study revealed the involvement of Kruppel Like

Factor 17 (KLF17), Zinc Finger Protein 395 (ZNF395), Myeloid cell

surface antigen (CD33), Pleckstrin Homology Domain-Containing

Family G Member 5 (PLEKHG5), NK2 Homeobox 3 (NKX2.3), and

Collagen Type XVIII Alpha 1 Chain (COL18A1) in the progression

of DR. These genes have been shown to be involved in angiogenesis

and inflammatory pathways (40).

In MR studies, genetic variations that are substantially

associated with an exposure are used as IVs to investigate the

potential causal relationship between an exposure and a specific

outcome of interest. Since genetic variants are randomly assigned at
Frontiers in Immunology 12
conception, MR estimates are not influenced by confounding

factors, reverse causality, or measurement error (41). Inference

typically relies on SNPs identified as IVs in GWASs. The current

study was conducted in a rather conservative manner and

supported by a comprehensive sensitivity analysis due to the

strong assumptions underlying MR research (42). To ensure the

robustness of the results, several measures were taken. Firstly, to

minimize any bias resulting from demographic variability, only

European populations were included in the analysis. Secondly,

considering that both disease risk factors and immune cells are

complex polygenic phenotypes that can be influenced by various

genetic and environmental factors simultaneously (pleiotropy), we

assessed potential pleiotropic effects through LOO and examined
FIGURE 6

Results of meta-analysis.
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TABLE 4A SNP annotation.

Classification Trait type Panel SNP Chr Start End Strand Gene_ids Gene_names

HLA DR on
CD14- CD16-

MFI Monocyte rs116683794 6 33066337 33066337 + ENSG00000231389 HLA-DPA1

HLA DR on
CD14- CD16-

MFI Monocyte rs2734573 -1 -1

HLA DR on
CD14- CD16-

MFI Monocyte rs72502555 -1 -1

HLA DR on
CD14- CD16-

MFI Monocyte rs9268430 6 32377652 32377652 + ENSG00000225914 TSBP1-AS1

HLA DR on CD14
+ CD16- monocyte

MFI Monocyte rs150649461 -1 -1

HLA DR on CD14
+ CD16- monocyte

MFI Monocyte rs1800973 12 69350234 69350234 + ENSG00000090382 LYZ

HLA DR on CD14
+ CD16- monocyte

MFI Monocyte rs80032720 -1 -1

HLA DR on CD14
+ CD16- monocyte

MFI Monocyte rs9270585 -1 -1

HLA DR on CD14
+ monocyte

MFI Monocyte rs1800973 12 69350234 69350234 + ENSG00000090382 LYZ

HLA DR on CD14
+ monocyte

MFI Monocyte rs80032720 -1 -1

HLA DR on CD14
+ monocyte

MFI Monocyte rs9270585 -1 -1

HLA DR on CD33
+ HLA DR
+ CD14-

MFI
Myeloid
cell

rs116007826 -1 -1

HLA DR on CD33
+ HLA DR
+ CD14-

MFI
Myeloid
cell

rs6925683 6 33926515 33926515 + ENSG00000233183 ENSG00000233183

HLA DR on CD33
+ HLA DR
+ CD14-

MFI
Myeloid
cell

rs9270588 -1 -1

HLA DR on CD33
+ HLA DR
+ CD14dim

MFI
Myeloid
cell

rs142186496 6 31505930 31505930 + ENSG00000204516 MICB

HLA DR on CD33
+ HLA DR
+ CD14dim

MFI
Myeloid
cell

rs9270588 -1 -1

HLA DR on
myeloid

dendritic cell
MFI cDC rs116007826 -1 -1

HLA DR on
myeloid

dendritic cell
MFI cDC rs2858885 -1 -1

HLA DR on
myeloid

dendritic cell
MFI cDC rs29221 6 29621347 29621347 + ENSG00000204681 GABBR1

HLA DR on
myeloid

dendritic cell
MFI cDC rs35525122 -1 -1

(Continued)
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TABLE 4A Continued

Classification Trait type Panel SNP Chr Start End Strand Gene_ids Gene_names

HLA DR on
myeloid

dendritic cell
MFI cDC rs55971447 1 1.62E+08 1.62E+08 +

ENSG00000203747,
ENSG00000273112,
ENSG00000289768

FCGR3A,
ENSG00000273112,
ENSG00000289768

HLA DR on
myeloid

dendritic cell
MFI cDC rs6925683 6 33926515 33926515 + ENSG00000233183 ENSG00000233183

HLA DR on
myeloid

dendritic cell
MFI cDC rs9267650 -1 -1

SSC-A on CD4+
T cell

Morphological
parameter

TBNK rs113243185 -1 -1

SSC-A on CD4+
T cell

Morphological
parameter

TBNK rs148031710 -1 -1

SSC-A on CD4+
T cell

Morphological
parameter

TBNK rs9271536 -1 -1
F
rontiers in Immunolo
gy
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“+” strand: sense strand, or coding strand.
“-” strand: antisense strand or template strand.
TABLE 4B SNP annotation.

Classification Trait type Panel SNP Chr Start End Strand Gene_ids Gene_names

CD4 on CD39+
activated CD4
regulatory T cell

MFI Treg rs11615628 12 6794465 6794465 + ENSG00000010610 CD4

CD4 on CD39+
activated CD4
regulatory T cell

MFI Treg rs2253487 6 31281350 31281350 + ENSG00000227939 RPL3P2

CD4 on CD39+
activated CD4
regulatory T cell

MFI Treg rs9263475 -1 -1

HLA DR on CD14+
CD16- monocyte

MFI Monocyte rs150649461 -1 -1

HLA DR on CD14+
CD16- monocyte

MFI Monocyte rs1800973 12 69350234 69350234 + ENSG00000090382 LYZ

HLA DR on CD14+
CD16- monocyte

MFI Monocyte rs80032720 -1 -1

HLA DR on CD14+
CD16- monocyte

MFI Monocyte rs9270585 -1 -1

HLA DR on CD14
+ monocyte

MFI Monocyte rs1800973 12 69350234 69350234 + ENSG00000090382 LYZ

HLA DR on CD14
+ monocyte

MFI Monocyte rs80032720 -1 -1

HLA DR on CD14
+ monocyte

MFI Monocyte rs9270585 -1 -1

HLA DR on CD33+
HLA DR+ CD14-

MFI
Myeloid
cell

rs116007826 -1 -1

HLA DR on CD33+
HLA DR+ CD14-

MFI
Myeloid
cell

rs6925683 6 33926515 33926515 + ENSG00000233183 ENSG00000233183

(Continued)
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the intercept of MR-Egger regression. These approaches

consistently yielded results suggesting reliable causal estimations.

Data from European populations were utilized in this study to select

a representative sample. By using MR methodology, it is possible to

minimize the impact of reverse causation and confounding

variables on estimation accuracy while producing trustworthy

causal effect estimates based on observational research findings.

Furthermore, GWAS data with large sample sizes were employed

for these studies which significantly enhanced test efficiency

compared to small-sample models relying on individual data points.

This study has certain limitations. First, there will inevitably be

batch differences across the various datasets analyzed in this study

due to its use of a public database. There are issues with the

cohesiveness of integrating multiple databases in this study, and

further efforts are needed to improve the accuracy of causal

inference. Second, the research was limited to individuals with

European ancestry, making it challenging to generalize the findings

to other demographic groups. Third, residual and unmeasured
Frontiers in Immunology 15
confounders may still exist as the study was unable to determine

whether demographic stratification and other potential

confounders had an impact on its findings.
5 Conclusion

This study’s findings emphasized the complex network of

connections between the immune system and DR, as it

demonstrated causal relationships between various immune cells and

DR through MR analysis. HLA-DR on CD14+ CD16 monocytes,

HLA-DR on CD14+ monocytes, HLA-DR on CD33-HLA-DR+,

HLA-DR on CD33+ HLA-DR+ CD14-, HLA-DR on CD33+ HLA-

DR+ CD14dim, and HLA-DR on myeloid dendritic cells may increase

the risk of DR. Additionally, HLA-DR to CD14-CD16- and SSC-A to

CD4+ T cells may be protective factors against DR. These findings

could open new avenues for investigating the biological causes of DR

and pave the way for research into earlier intervention and treatment.
TABLE 4B Continued

Classification Trait type Panel SNP Chr Start End Strand Gene_ids Gene_names

HLA DR on CD33+
HLA DR+ CD14-

MFI
Myeloid
cell

rs9270588 -1 -1

HLA DR on CD33+
HLA DR+ CD14dim

MFI
Myeloid
cell

rs142186496 6 31505930 31505930 + ENSG00000204516 MICB

HLA DR on CD33+
HLA DR+ CD14dim

MFI
Myeloid
cell

rs9270588 -1 -1

HLA DR on myeloid
dendritic cell

MFI cDC rs116007826 -1 -1

HLA DR on myeloid
dendritic cell

MFI cDC rs2858885 -1 -1

HLA DR on myeloid
dendritic cell

MFI cDC rs29221 6 29621347 29621347 + ENSG00000204681 GABBR1

HLA DR on myeloid
dendritic cell

MFI cDC rs35525122 -1 -1

HLA DR on myeloid
dendritic cell

MFI cDC rs55971447 1 1.62E+08 1.62E+08 +
ENSG00000203747,
ENSG00000273112,
ENSG00000289768

FCGR3A,
ENSG00000273112,
ENSG00000289768

HLA DR on myeloid
dendritic cell

MFI cDC rs6925683 6 33926515 33926515 + ENSG00000233183 ENSG00000233183

HLA DR on myeloid
dendritic cell

MFI cDC rs9267650 -1 -1

SSC-A on CD4+
T cell

Morphological
parameter

TBNK rs113243185 -1 -1

SSC-A on CD4+
T cell

Morphological
parameter

TBNK rs148031710 -1 -1

SSC-A on CD4+
T cell

Morphological
parameter

TBNK rs9271536 -1 -1
“+” strand: sense strand, or coding strand.
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