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Background: Mounting evidence suggests a connection between inflammatory

cytokines and adhesive capsulitis (AC). However, the specific systemic

inflammatory cytokines contributing to AC have not been clearly identified.

This study employed Mendelian randomization (MR) to explore the causal

relationships between 41 inflammatory cytokines and AC.

Methods: In this bidirectional, two-sample MR analysis, genetic variations

associated with AC were derived from a comprehensive genome-wide

association study (GWAS). The inflammatory cytokines data were sourced from

a GWAS summary involving 8,293 healthy participants. The primary MR method

employed was inverse variance weighting, supplemented by MR-Egger,

weighted median, and MR-pleiotropy residual sum and outlier for sensitivity

analysis. Heterogeneity was assessed using Cochran’s Q test, and the MR results

were validated using the leave-one-out method.

Results: Elevated levels of interferon gamma-induced protein 10 (IP-10) (odds

ratio (OR) = 1.086, 95% confidence interval (CI) = 1.002–1.178) and regulated

on activation, normal T cell expressed and secreted (RANTES) (OR = 1.107, 95% CI

= 1.026–1.195) were linked to an increased risk of AC. Increased levels of stromal

cell-derived factor-1 alpha (SDF-1a) (OR = 0.879, 95% CI = 0.793–0.974) and

tumor necrosis factor-alpha (TNF-a) (OR = 0.911, 95% CI = 0.831–0.999) were

associated with a reduced AC risk. Moreover, genetically predicted AC exhibited

associations with elevated cutaneous T cell attracting (CTACK) levels (OR = 1.202,

95% CI = 1.007–1.435) and diminished levels of interleukin-17 (IL-17) (OR = 0.678,

95% CI = 0.518–0.888) and interleukin-5 (IL-5) (OR = 0.786, 95% CI = 0.654–

0.944), as confirmed through inverse-variance weighted (IVW) methods.

Conclusion: The present study successfully establishes a causal association

between genetically proxied circulating levels of IP-10, RANTES, SDF-1a, and
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TNF-a and the risk of AC. Additionally, AC contributes to an increase in CTACK

and a decrease in IL-17 and IL-5. This significant finding not only enhances the

understanding of the pathogenesis of AC but also holds promise for the

development of effective clinical management strategies.
KEYWORDS
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1 Introduction

Adhesive capsulitis (AC), commonly referred to as “frozen

shoulder,” is a prevalent ailment, impacting an estimated 2–5% of

the general population (1). The actual incidence may be higher due

to the condition being typically mild and self-limited, resulting in

numerous cases going unreported and untreated (1). Characterized

by a pathological progression involving gradual fibrosis of the

glenohumeral joint, AC manifests with constrained active and

passive range of motion, joint capsule contracture, and shoulder

discomfort (2). Codman’s work in 1934 marked a seminal depiction

of AC as a painful constriction of shoulder mobility. Subsequently,

the subject area was refined by Neviaser in 1945, who delineated AC

as a pain-constrained restriction in glenohumeral range of motion

(ROM) lacking structural deficits, thereby coining the term

“adhesive capsulitis” (3). Primarily afflicting women aged 40 to

60, initial patient complaints regarding AC include pain during

extreme ROM, persisting for at least a month, followed by the onset

of joint limitation, notably in flexion, abduction (both at average

and extreme angles), and external rotation (particularly between 45

and 90 degrees of abduction), significantly impeding daily activities

(4). Though AC is conventionally perceived as self-resolving within

1 to 3 years, lingering symptoms persist in 20–50% of patients (5, 6).

The pathophysiological underpinnings of AC remain unclear,

with proposed mechanisms encompassing inflammatory changes,

fibrosis, and capsular contracture (7). Associations with diabetes

mellitus, hypothyroidism, Dupuytren’s contracture, and breast

cancer treatment underscore its correlation with immune system

perturbation and heightened inflammatory response (8). Notably,

elevated levels of pro-inflammatory cytokines, including interleukin

(IL)-1a, IL-1b, IL-6, IL-8, IL-17, and tumor necrosis factor-alpha

(TNF-a), is a feature prominent in individuals with AC that fosters

a pro-inflammatory milieu (9–11). Nevertheless, there exists debate

regarding whether inflammatory cytokines are causative agents or

consequential to disease progression and medication use following

AC onset. Observational studies addressing this conundrummay be

confounded by unforeseen variables or reverse causation,

precluding definitive causal correlations.

Mendelian randomization (MR) is an analytical paradigm for

discerning causal relationships between exposure and outcome

through genetic variations in non-experimental data (12).
02
Accounting for the random allele assignment during meiosis, MR

effectively mitigates conventional confounding variables and reverse

causation, thereby bolstering the evidentiary basis for causal inference

(13). Leveraging two-sample MR analysis, researchers can scrutinize

instrument–exposure and instrument–outcome relationships across

distinct population samples, augmenting the versatility and efficacy of

the analytical approach (14). This study utilized valid genetic variants

from published genome-wide association study (GWAS) summary

data encompassing 41 inflammatory cytokines to scrutinize their

associations with AC, subsequently probing the direction of causation

through the inversion of exposure and outcome variables.
2 Materials and methods

2.1 Study design

The bidirectional MR analysis, depicted in Figure 1, forms the

crux of this study’s investigative framework. This analytical

approach relies on three pivotal assumptions: 1) the instrumental

variable (IV), chosen as the genetic variation, must genuinely

correlate with the targeted exposure; 2) the selected genetic

variation should remain unrelated to any confounding factors;

and 3) the genetic variation must solely influence the outcome

through the designated exposure (15).

The study utilized two distinct sets of GWAS databases

encompassing 41 systemic inflammatory cytokines and AC and

unfolds in two phases. Firstly, the causal interplay between

inflammatory cytokines and AC was ascertained by employing

genetic variations associated with each inflammatory factor.

Subsequently, the genetic variations linked to AC were explored to

delineate the reciprocal causal relationship with inflammatory cytokines.

Notably, the exclusive derivation of all GWAS data from individuals of

European ancestry constituted a secondary analysis of previously

published data, eliminating the need for additional ethical approvals.
2.2 Data sources

This study utilized the extensive GWAS meta-analysis of

circulating concentrations of 41 cytokines, comprising data from
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8,293 Finnish individuals across three independent population

cohorts: the Cardiovascular Risk in Young Finns Study,

FINRISK1997, and FINRISK2002 (16). AC data, sourced from a

combined GWAS analysis of FinnGen and the UK Biobank,

integrates information from 10,104 cases identified through

inpatient, surgical, and primary care codes, thereby constituting

the most comprehensive GWAS data on AC involving individuals

of European ancestry (Supplementary Table S1) (17).
2.3 Selection of IVs

To align with the stringent MR assumptions illustrated in

Figure 1, the study considered all single nucleotide polymorphisms

(SNPs) predicting exposures at genome-wide significance (P < 5 × 10-

8) to exhibit strong and independent prediction (r2 < 0.001 within 10

Mb). As only eight systemic inflammatory cytokines had three or

more independent SNPs reaching genome-wide significance, the

study adopted a less stringent threshold of 5 × 10-6 to enhance

SNP availability for inflammatory cytokines. The thresholds were

used to select genetic independent variables, as described before (18).

Following these steps, a total of 41 distinct types of inflammatory

cytokines were identified. SNPs with F-statistics less than 10,

indicating weak IVs, were excluded. In adherence to MR principles,

target SNPs were screened to eliminate those associated with the

results. The effect alleles of the genetic variants were meticulously

coordinated in both the exposure and outcome GWAS,

Supplementary Tables S2 and S3.
2.4 Data analysis

The inverse-variance weighted (IVW) method was employed as

the primary approach to estimate the causal effect of exposure on the

outcome, adhering to the fundamental principles of an MR study for

precise causal estimation. Additional complementary methods, such

as the weighted median (WM) method and MR-Egger regression,

were also utilized in diverse scenarios (19). The WM method, which

utilizes the median MR estimate as the causal estimate, offers benefits

over MR-Egger regression by reducing type I error and enhancing the
Frontiers in Immunology 03
power of causal estimation. MR-Egger regression incorporates

the reciprocal of resultant variances as weights for the analysis and

differs from the IVW method by considering the presence of an

intercept term in the regression analysis. The intercept in the MR-

Egger regression model enables detecting horizontal pleiotropy,

whereby a P-value < 0.05 is considered statistically significant (20).

Horizontal pleiotropy indicates that genetic IVs independently

influence outcomes, which contradicts the definition of IVs.

Sensitivity analyses, as presented in Table 1, further ensured the

robustness of the findings. The Cochran’s Q test, also detailed in

Table 1, was employed to assess heterogeneity between SNPs.

In instances where heterogeneity was present (P < 0.05), certain

SNPs with small P-values were omitted, or a random-effects model

was directly utilized to evaluate the MR effect. Finally, a leave-one-out

analysis, depicted in Supplementary Figures S1-S7, was conducted to

assess the stability of the results. The TwoSample package (21) and

MR-PRESSO (22) in R (version 4.3.1) were employed for the analysis.
3 Results

The study selected 362 SNPs as IVs for 41 systemic

inflammatory regulators, adhering to predefined guidelines to

guarantee the suitability of the chosen SNPs. Notably, the F-

statistics for each SNP utilized in the analysis surpassed 10,

underscoring the robust nature of the IVs. As a result, no weak

biases were observed in the outcomes, solidifying the reliability of

the conclusions drawn from this study.

The primary outcomes from the principal MR analyses of the 41

cytokines are visually depicted in Figure 2, with detailed findings

available in Supplementary Table S2. The genetically predicted

systemic inflammatory cytokines exhibited evident associations

with AC, as corroborated by the subsequent outcomes. Elevated

levels of interferon gamma-induced protein 10 (IP-10) (odds ratio

(OR) = 1.086, 95% confidence interval (CI) = 1.002–1.178,

P = 0.045) and regulated on activation, normal T cell expressed

and secreted (RANTES) (OR = 1.107, 95% CI = 1.026–1.195, P =

0.009) were linked to an increased risk of AC, as ascertained

through the IVW methods (Table 2). The MR-Egger intercept

failed to identify potential horizontal pleiotropy (P-value > 0.05).
FIGURE 1

Flowchart of the study. The three assumptions of the MR study. Assumption 1: The instrumental variable, chosen as the genetic variation, must
genuinely correlate with the targeted exposure. Assumption 2: The selected genetic variation should remain unrelated to any confounding factors.
Assumption 3: The genetic variation must solely influence the outcome through the designated exposure.
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Additionally, MR-Egger and IVW heterogeneity tests revealed an

absence of conspicuous heterogeneity (P-value > 0.05). Sensitivity

analyses via leave-one-out investigations revealed negligible

influence (Supplementary Figures S1, S2). Notably, the inverse

relationship, where higher levels of stromal cell-derived factor-1

alpha (SDF-1a) (OR = 0.879, 95% CI = 0.793–0.974, P = 0.014) and

TNF-a (OR = 0.911, 95% CI = 0.831–0.999, P = 0.048) were

associated with a reduced AC risk, as determined via IVW

methods, with no indications of heterogeneity or horizontal

pleiotropy in the results (P-value > 0.05). Comprehensive details

are tabulated in Tables 1 and 2 and Supplementary Figures S3

and S4.

This study observed an inherent association between genetically

predicted AC and cytokine levels. Significant results from the main

MR analyses for AC are depicted in Figure 3, with detailed findings

in Supplementary Table S3. Genetically predicted AC has been

found to exhibit associations with elevated levels of cutaneous T cell

attracting (CTACK) (OR = 1.202, 95% CI = 1.007–1.435, P = 0.042)

and diminished levels of IL-17 (OR = 0.678, 95% CI = 0.518–0.888,

P = 0.005) and IL-5 (OR = 0.786, 95% CI = 0.654–0.944, P = 0.010),

as confirmed through IVW methods. These outcomes exhibit no

evidence of pleiotropy or heterogeneity. Comprehensive details are

presented in Tables 1 and 2 and Supplementary Figures S5-S7.

Diagrammatic representations, including leave-one-out analysis,

scatter plot, funnel plot, and forest plot, are available in

Supplementary Figures S1-S7.
Frontiers in Immunology 04
4 Discussion

The present study is a pioneering and expansive MR inquiry,

representing the foremost exploration into the genetic causal

interplay between systemic inflammatory cytokines and AC, and

vice versa. Previous studies predominantly delved into localized

inflammation within the capsule or synovium tissues, neglecting the

systemic inflammatory response of the shoulder. Observational

studies in clinical settings, often marred by confounding factors

and reverse causation bias, inherently lead to distorted causal

relationships. This study’s findings revealed a positive association

between genetically predicted levels of IP-10 and RANTES and the

risk of AC, whereas the levels of SDF-1a and TNF-a exhibited a

negative association. Additionally, genetic predisposition to AC

suggests an increase in CTACK levels and a decrease in IL-17 and

IL-5 levels. These robust findings have been validated by sensitivity

analyses, underscoring the genetic regulatory nexus between

systemic inflammatory cytokines and AC.

Systemic inflammatory cytokines constitute a group of

molecules orchestrating diverse roles in inflammation regulation

throughout the body. Maintaining equilibrium between pro-

inflammatory and anti-inflammatory processes, these regulators

ensure effective immune system functioning during infections,

injuries, or diseases while preventing excessive tissue damage.

Systemic inflammatory cytokines, including cytokines,

chemokines, and various growth factors, collectively coordinate
TABLE 1 Heterogeneity test of the IVW and MR egger analyses and pleiotropy test (egger intercept).

Exposure Outcome Methods Cochran’s Q Q-value P-value (Pleiotropy
test)

interferon gamma-induced
protein 10 (IP10)

adhesive capsulitis MR egger 4.386 0.495

0.683Inverse
variance weighted

4.574 0.600

regulated on activation,
normal T cell expressed
and secreted (RANTES)

adhesive capsulitis MR egger 1.781 0.939

0.474Inverse
variance weighted

2.363 0.937

stromal cell-derived
factor-1 alpha (SDF1a)

adhesive capsulitis MR egger 1.775 0.777

0.729Inverse
variance weighted

1.913 0.861

tumor necrosis factor-
alpha (TNF-a)

adhesive capsulitis MR egger 1.394 0.498

0.474Inverse
variance weighted

2.159 0.540

adhesive capsulitis Cutaneous T-cell
attracting (CTACK)

MR egger 15.014 0.594

0.783Inverse
variance weighted

15.092 0.656

adhesive capsulitis interleukin-17 (IL-17) MR egger 0.060 0.970

0.338Inverse
variance weighted

1.617 0.656

adhesive capsulitis IL-5 MR egger 13.480 0.704

0.880Inverse
variance weighted

13.503 0.761
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immune response processes (23). AC, an intricate and multifactor

disorder linked to inflammatory changes, fibrosis, and capsular

contracture, involves systemic inflammatory cytokines in its onset

and development.

IP-10, also known as chemokine (C-X-C motif) ligand (CXCL)

10, is a 10 kDa secreted polypeptide categorized within the CXC

chemokine family (24). This chemokine can activate integrin and

orchestrate directed migration in various cell types, including

activated T cells, monocytes, and natural killer cells. As a result,
Frontiers in Immunology 05
IP-10 plays a pivotal role in regulating inflammation at multiple

levels (25). Beyond its fundamental functions, IP-10 exhibits

additional pro-inflammatory properties, such as inducing

molecules like IL-8 and CXCL-5, as well as the up-regulating

costimulatory cell surface molecules (CD54, CD80, CD86, etc.) on

monocytes (26). Notably, elevated levels of IP-10 have been

observed in knee diseases such as osteoarthritis (OA) and

rheumatoid arthritis (RA), suggesting a potential association with

the influx of inflammatory cells in synovial tissue (27–29). This
FIGURE 2

Causal correlations of 41 inflammatory cytokines on adhesive capsulitis (AC). The change in the odds ratio (OR) of AC per one standard deviation
(SD) rise in the cytokine level is shown by OR and 95% confidence interval. The results from the inverse variance weighted method are shown for all
cytokines. bNGF, beta nerve growth factor; CTACK, cutaneous T cell-attracting chemokine; FGFBasic, basic fibroblast growth factor; GCSF,
granulocyte colony-stimulating factor; GROa, growth-regulated oncogene-a; HGF, hepatocyte growth factor; IFNg, interferon gamma; IL,
interleukin; IP-10, interferon gamma-induced protein 10; MCP1, monocyte chemotactic protein 1; MCP3, monocyte-specific chemokine 3; MCSF,
macrophage colony-stimulating factor; MIF, macrophage migration inhibitory factor; MIG, monokine induced by interferon gamma; MIP1a,
macrophage inflammatory protein-1a; MIP1b, macrophage inflammatory protein-1b; PDGFbb, platelet-derived growth factor bb; RANTES, regulated
upon activation normal T cell expressed and secreted factor; SCF, stem cell factor; SCGFb, stem cell growth factor beta; SDF-1a, stromal cell-
derived factor-1 alpha; SNPs, single-nucleotide polymorphisms; TNF-a, tumor necrosis factor alpha; TNF-b, tumor necrosis factor beta; TRAIL, TNF-
related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor.
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raises the intriguing possibility that IP-10 may contribute to the

onset of AC, an inflammatory shoulder condition related to

synovial tissues. However, despite these possible associations, a

paucity of relevant studies persists, highlighting the need for further

research to explore this potential relationship comprehensively.

RANTES, a member of the cysteine-cysteine (CC) chemokine

family that is also referred to as CC ligand 5 (CCL5), exhibits

chemotactic properties on inflammatory cells and various other cell

types by activating chemokine receptors (30). Similar to IP-10, the

levels of RANTES increase in knee diseases like OA and RA,

contributing to a pro-inflammatory milieu in these conditions

(29, 31, 32). Notably, Norman et al. investigated the relationship

between inflammation biomarkers and musculoskeletal pain,

revealing no significant association between RANTES and

shoulder pain (33). Despite this, direct studies on the relationship

between RANTES and AC are limited, warranting further

investigation. Additional research is imperative to delineate the

precise role of RANTES in the pathophysiology of AC, exploring its
Frontiers in Immunology 06
potential as an early predictive indicator, preventive target, and

therapeutic focus.

SDF-1, also identified as CXCL12, belongs to the CXC

chemokine family (34). The upregulated expression of SDF-1 in

OA and RA positions it as a potential therapeutic target for

degenerative joint diseases (35). Kim et al. reported an elevation

of SDF-1 levels in subacromial bursitis, a component of the

pathological process in AC, sharing similar histological features

and cell types with AC (36, 37). Contrary to prior studies, this study

revealed a negative association between SDF-1a levels and the risk

of AC. Interestingly, Wang et al. demonstrated that SDF-1 mitigates

the nucleotide-binding oligomerization domain, leucine-rich

repeat-containing pyrin domain 3 (NLRP3) inflammasome and

pyroptosis in OA synoviocytes by activating the adenosine

monophosphate-activated protein kinase (AMPK) signaling

pathway, suggesting a potential anti-inflammatory role in OA

(38). The intricate role of SDF-1 in joint inflammation

necessitates further exploration in the context of AC.
TABLE 2 Bidirectional Mendelian randomization estimates of cytokines and meningiomas (IVW, MR-egger, weighted median, MR-PRESSO).

Exposure Outcome Number
of SNPs

Methods OR (95% CI) P-value

interferon gamma-induced protein
10 (IP10)

adhesive capsulitis 7

MR egger 1.058 (0.915, 1.223) 0.482

Weighted median 1.077 (0.969, 1.198) 0.169

Inverse
variance weighted

1.086 (1.002, 1.178) 0.045

regulated on activation, normal T cell
expressed and secreted (RANTES)

adhesive capsulitis 8

MR egger 1.188 (0.976, 1.447) 0.137

Weighted median 1.154 (1.043, 1.277) 0.006

Inverse
variance weighted

1.107 (1.026, 1.195) 0.009

stromal cell-derived factor-1
alpha (SDF1a)

adhesive capsulitis 6

MR egger 0.858 (0.729, 1.010) 0.139

Weighted median 0.860 (0.755, 0.979) 0.023

Inverse
variance weighted

0.879 (0.793, 0.974) 0.014

tumor necrosis factor-alpha (TNF-a) adhesive capsulitis 4

MR egger 0.848 (0.704, 1.021) 0.224

Weighted median 0.896 (0.802, 1.000) 0.050

Inverse
variance weighted

0.911 (0.831, 0.999) 0.048

adhesive capsulitis
Cutaneous T-cell
attracting (CTACK)

19

MR egger 1.298 (0.735, 2.295) 0.381

Weighted median 1.162 (0.912, 1.480) 0.223

Inverse
variance weighted

1.202 (1.007, 1.435) 0.042

adhesive capsulitis interleukin-17 (IL-17) 4

MR egger 4.935 (0.216, 112.719) 0.423

Weighted median 0.719 (0.514, 1.006) 0.054

Inverse
variance weighted

0.678 (0.518, 0.888) 0.005

adhesive capsulitis IL-5 19

MR egger 0.752 (0.417, 1.356) 0.356

Weighted median 0.898 (0.699, 1.154) 0.401

Inverse
variance weighted

0.786 (0.654, 0.944) 0.010
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TNF-a is a well-recognized pro-inflammatory cytokine and

plays a major role in the pathogenesis of immune-mediated

inflammation of the joint (9). Lho et al. observed significantly

elevated levels of TNF-a in the joint capsules and subacromial

bursae of patients with AC (9). However, Nishimoto et al. noted

higher TNF-a expression only in the subacromial bursa of patients

with AC compared to those with shoulder instability, with no

significant differences in the rotator interval and axillary recess

(39). Bunker et al. reported only a slight elevation in TNF-a
messenger ribonucleic acid (mRNA) expression in patients with

AC, lacking statistical significance (40). The study by Schydlowsky
Frontiers in Immunology 07
et al. demonstrated no effect of subcutaneous TNF-a blockade

injections on AC symptoms (41). Despite these disparate findings,

this study revealed a negative association between TNF-a levels and

AC risk, emphasizing the need for further exploration into the

precise role of TNF-a in AC.

CTACK, also called CC chemokine ligand 27, is the cutaneous T

cell attracting chemokine, consistently expressed by epidermal

keratinocytes. This chemokine binds to chemokine receptor 10 on

skin-homing T cells, suggesting a pivotal role in T cell-mediated

inflammation. Despite its well-established presence in the skin,

limited research has explored the implications of CTACK in joint
FIGURE 3

Causal correlations of adhesive capsulitis (AC) on 41 inflammatory cytokines. The change in the standard deviation (SD) of inflammatory cytokines
per log odds increase in AC is represented by beta and the 95% confidence interval. The results from the inverse variance weighted method are
shown for all cytokines. bNGF, beta nerve growth factor; CTACK, cutaneous T cell-attracting chemokine; FGFBasic, basic fibroblast growth factor;
GCSF, granulocyte colony-stimulating factor; GROa; growth-regulated oncogene-a; HGF, hepatocyte growth factor; IFNg, interferon gamma; IL,
interleukin; IP-10; interferon gamma-induced protein 10; MCP1, monocyte chemotactic protein 1; MCP3, monocyte-specific chemokine 3; MCSF,
macrophage colony-stimulating factor; MIF, macrophage migration inhibitory factor; MIG, monokine induced by interferon gamma; MIP1a,
macrophage inflammatory protein-1a; MIP1b, macrophage inflammatory protein-1b; PDGFbb, platelet-derived growth factor bb; RANTES, regulated
upon activation normal T cell expressed and secreted factor; SCF, stem cell factor; SCGFb, stem cell growth factor beta; SDF-1a, stromal cell-
derived factor-1 alpha; SNPs, single-nucleotide polymorphisms; TNF-a, tumor necrosis factor alpha; TNF-b, tumor necrosis factor beta; TRAIL, TNF-
related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1380889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ouyang and Dai 10.3389/fimmu.2024.1380889
biology (42). Endres et al. proposed that CTACK expression is elevated

in the synovial fluid of patients with RA compared to normal donors.

This heightened expression significantly inhibited the migration of

progenitors, indicating a potential regulatory role in the inflammatory

processes associated with RA (43). Given the sharedmicroenvironment

between AC and RA (36), this study revealed an increase in CTACK

levels in the context of AC. This novel finding contributes to the

ongoing characterization of CTACK’s potential role in AC and

underscores the need for further investigation to elucidate its specific

involvement in joint-related inflammation.

The IL family represents a group of lymphatic factors pivotal in

activating and differentiating immune cells, as well as influencing

processes such as proliferation, maturation, migration, and

adhesion. These cytokines exhibit both pro-inflammatory and

anti-inflammatory properties, with their primary role being the

modulation of growth, differentiation, and activation during

inflammatory and immune responses (44). Earlier studies have

reported elevated expressions of IL-1a, IL-1b, IL-6, and IL-8 in

patients with AC (9, 10, 45). However, the present study did not

establish a causal relationship between these ILs and AC. IL-5, a

homodimer cytokine, is involved in eosinophil differentiation,

recruitment, maturation, activation, and degranulation. Its

involvement in allergic and inflammatory immune responses is

established in various diseases such as asthma, atopic dermatitis,

chronic obstructive pulmonary disease, and eosinophilic

gastrointestinal diseases (46). Although previous studies have

reported higher IL-5 expression in OA and RA (47, 48),

conflicting reports have indicated its absence in some patients

with OA and RA (49, 50). Interestingly, this study identified a

lower level of IL-5 associated with AC, emphasizing the need for

further exploration into the role of IL-5 in the context of AC.

IL-17, a cytokine known for mediating inflammation, fibrosis,

and pain signaling, serves as the signature cytokine of the Th17 T-

helper cell population (51–54). Akbar et al. demonstrated that IL-17A

exhibited significantly greater expression in AC tissue compared to

control (11). However, this study found an association between AC

and a lower level of IL-17. The limited literature on the role of IL-17

in AC underscores the necessity for additional studies to

comprehensively understand its involvement in this condition.

The present study exhibits several strengths. Firstly, it marks the

pioneering application of MR to assess the causal relationship

between systemic inflammatory cytokines and AC using the latest

summary-level data. Many previous investigations into the

association between systemic inflammatory cytokines and AC

relied on cross-sectional studies and animal models, limiting the

ability to establish causality. This bidirectional MR study

successfully circumvented reverse causality and mitigated residual

confounding. Secondly, this analysis leveraged summary data from

the most extensive GWAS meta-analysis on systemic inflammatory

cytokines, combined with phenome-wide association study

summary data from FinnGen, ensuring the robustness of the

instruments for the MR analysis. MR-PRESSO and MR-Egger

tests were employed to detect and address horizontal pleiotropy.

Thirdly, from a clinical perspective, the study focused on serum, one

of the most accessible and easily obtained biofluids, allowing for

straightforward sample collection from both patients with AC and
Frontiers in Immunology 08
healthy controls. This offers an alternative to the highly invasive

procedures required for collecting capsule and synovium samples

from patients with AC. Furthermore, this study differs from

previous research by examining both upstream and downstream

circulating biomarkers, offering insights into prediction or

treatment strategies for AC.

Nevertheless, it is crucial to acknowledge certain limitations in

this study. Firstly, the genetic data predominantly originated from

individuals of European descent, potentially limiting the

applicability of the findings to other ethnic groups. Caution

should be exercised when generalizing the results to diverse

populations. Secondly, despite rigorous efforts to exclude SNPs

associated with potential confounders and conducting various

sensitivity analyses under different assumptions, there still exists a

possibility of complex and multidirectional effects not being fully

captured. Lastly, though MR analysis is a robust method for

estimating causality, it should not replace randomized controlled

trials (RCTs). Therefore, the causality inferred from this study may

not necessarily align with the results observed in RCTs. It is

imperative to conduct individual-based genetic observations and

potentially incorporate RCTs in future research to further validate

the causal relationships identified here.
5 Conclusion

The present study successfully establishes a causal association

between genetically proxied circulating levels of IP-10, RANTES,

SDF-1a, and TNF-a and the risk of AC. Additionally, AC was found

to increase the levels of CTACK and decrease the levels of IL-17 and

IL-5. This significant finding not only enhances the understanding of

the pathogenesis of AC but also holds promise for developing

effective clinical management strategies. Consequently, IP-10,

RANTES, SDF-1a, and TNF-a emerge as potential therapeutic

targets for the prevention and treatment of AC.
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