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Introduction: B cells play a pivotal role in adaptive immunity which has been

extensively characterised primarily via flow cytometry-based gating strategies.

This study addresses the discrepancies between flow cytometry-defined B cell

subsets and their high-confidence molecular signatures using single-cell multi-

omics approaches.

Methods: By analysing multi-omics single-cell data from healthy individuals and

patients across diseases, we characterised the level and nature of cellular

contamination within standard flow cytometric-based gating, resolved some of

the ambiguities in the literature surrounding unconventional B cell subsets, and

demonstrated the variable effects of flow cytometric-based gating cellular

heterogeneity across diseases.

Results: We showed that flow cytometric-defined B cell populations are

heterogenous, and the composition varies significantly between disease states

thus affecting the implications of functional studies performed on these

populations. Importantly, this paper draws caution on findings about B cell

selection and function of flow cytometric-sorted populations, and their roles in

disease. As a solution, we developed a simple tool to identify additional markers

that can be used to increase the purity of flow-cytometric gated immune cell

populations based on multi-omics data (AlliGateR). Here, we demonstrate that

additional non-linear CD20, CD21 and CD24 gating can increase the purity of

both naïve and memory populations.

Discussion: These findings underscore the need to reconsider B cell subset

definitions within the literature and propose leveraging single-cell multi-omics

data for refined characterisation. We show that single-cell multi-omics

technologies represent a powerful tool to bridge the gap between surface

marker-based annotations and the intricate molecular characteristics of B

cell subsets.
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Introduction

B cells are key components of the adaptive immune system,

playing pivotal roles in antibody production, immune cell activation

and regulation. Flow cytometry has long served as the standard for

characterising and gating B cell populations, offering a broad overview

of their phenotypic and functional attributes. However, the overly

simplistic gating strategies based on a constrained set of surface

markers have proven inadequate in capturing the full spectrum of B

cell diversity. Single-cell multi-omics, encompassing genomics,

transcriptomics, and proteomics, now provides the resolution

required to dissect the intricacies and illuminate the functions of B

cell populations with an unprecedented level of precision (1, 2), raising

questions about the conventional categorisation of B cell populations.

Recent research highlights the limitations of classical flow

cytometric-based B cell classifications, emphasising the necessity for

a more nuanced understanding of B cell diversity and functionality.

This is particularly highlighted in the inconsistencies in flow

cytometric gating of specific B cell populations. A key example of

ambiguous flow-cytometric gating is with anergic naïve B cells,

atypical memory B cells, age-associated B cells, and double-negative

B cells. Anergic naïve B cells are a subset of naïve B cells that are

associated with autoreactive B cell receptors (BCRs) and have a state

of unresponsiveness to antigen stimulation, thus maintaining

immune tolerance and preventing autoimmunity (3). These are

typically often dysregulated in immune diseases (4), however, are

defined differently between studies using different marker

combinations, including autoreactive IgMlo naïve B cells and CD19

+ IgD+ IgM− CD27- B cells (3–6). Atypical memory B cells represent

a heterogeneous population, called as such due to their lack of CD27

or CD21 expression, but with potential features of B cell memory or

antigen experience (7). However, the markers defining these

populations are not specific for memory B cells and likely to

overlap with other B cell populations (7). Studies suggest that

alterations in atypical memory B cell subsets may contribute to the

dysregulation of immune responses in a range of diseases (8, 9). Age-

associated B cells are a population of B cells that increase in frequency

with age and exhibit phenotypic and functional alterations, thought to

contribute to immunosenescence and increased susceptibility to

infections, autoimmune diseases, and decreased vaccine responses

in older individuals (10–12). Autoreactive anergic naive B cells (IgM-

IgD+), termed BND cells, have been shown to make up ~2.5% of total

B cells and are enriched in autoreactive BCR specificities (3). Double

negative B cells (DNB), marked by their CD27 and IgD negativity,

have been shown to be elevated in systemic autoimmune diseases

such as systemic lupus erythematosus (SLE) and antiphospholipid

syndrome (APS), and associated with renal impairment, suggesting a

pathogenic role in autoimmunity (13–15). Despite comprising a

substantial proportion of B cells, the contribution of DNBs in

human health and disease is less well-defined (13–15).

Understanding the roles of these B cell subsets in health and

disease is crucial for deciphering their contributions to immune

regulation, responses to infections, autoimmune disorders, and age-

related changes in the immune system. However, although there are

obvious overlaps in the flow-cytometric gating of many of these

populations, a systematic understanding of this has not been assessed.
Frontiers in Immunology 02
Establishing robust gating strategies for these B cell subsets and

determining their heterogeneities and relationships is pivotal not only

for unravelling their specific functions and interactions within the

immune system, but also for their potential roles as biomarkers

or therapeutic targets in various pathological conditions.

Misclassification or inadequate isolation of these populations could

lead to incorrect interpretations of their functional roles, dynamics in

disease progression, or responses to therapeutic interventions.

Here, we sought to address the disparities between the conventional

flow cytometric-style based annotations of B cell populations and the

molecular signatures of individual B cells identified through single-cell

multi-omics approaches. By analysingmulti-omics single-cell data from

healthy individuals and patients across diseases, we characterised the

level and nature of cellular contamination within standard flow

cytometric-based gating, resolved the ambiguities in the literature

surrounding atypical memory cells, and demonstrated the variable

effects of flow cytometric-based gating cellular heterogeneity across

diseases. Importantly, we showed that flow cytometric-defined B cell

populations are heterogenous, and the composition of true naïve,

memory and plasmablast B cells from cytometric-defined B cell

populations significantly varies between disease states. We

characterised the heterogeneity of anergic B cells, age-associated B

cells, autoreactive IgMlo naïve B cells, BND cells, CD21- atypical B cells,

and double negative B cells (DNB) and quantified the overlap in gating

between multiple studies. Finally, we assessed the variation in cellular

impurities in flow cytometric-based gating between disease states.

Together, this has implications on functional experiments performed

using B cell populations via Fluorescence-Activated Cell Sorting

(FACS), where effects between disease states may be driven by

differential B cell composition and level of contamination, rather than

cell-intrinsic effects. Importantly, this paper draws caution on findings

about B cell selection and function of flow cytometric-sorted

populations, and their roles in disease. Finally, we offer solutions for

identifying improved gating for sorting purer B cell populations

through the interrogation of single-cell multi-omics data, and suggest

this as a future strategy for functional experiments on immune cell

populations. We show that single-cell multi-omics technologies

represent a powerful tool to bridge the gap between surface marker-

based annotations and the intricate molecular characteristics of B cell

subsets, shedding light on the roles of these cells in health and disease

and potentially redefining our understanding of immune

system function.
Results

Direct comparison of classical
FACS-style defined B cells with
multi-omics-defined annotations

The advent of CITE-Seq technology allows for capturing single

cell RNA sequencing along with cell surface protein levels with

antibodies conjugated a DNA-barcode, analogous to the

fluorophore of flow cytometry antibodies. This allows for the

quantitative and qualitative information on surface proteins with

available antibodies on a single cell level, with matched RNA-seq, and
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B cell receptor (BCR) and T cell receptor (TCR) VDJ information

(16). This allows us to perform a flow cytometric-style gating of the B

cell populations (using CITE-seq) and compare this to the gene

expression (GEX) and BCR sequencing (BCR-seq) information. We

used data from the COMBAT study (17), which represents a

comprehensive single cell multi-omic blood atlas encompassing

acute patients with varying COVID-19 severity (18 critical, 20

severe, 12 mild and 12 convalescent), 10 influenza patients, 15

hospitalised sepsis and 10 healthy controls (sampled pre-

pandemic). Integrative multi-omics analysis of scRNA-seq, CITE-

seq and BCR/TCR-seq allowed for high confidence and quality

annotations of B cell, T cell and myeloid populations, as outlined

in (17) and characterised in Supplementary Figure S1. Briefly, we first

performed separate clustering of gene expression, clustering of

surface protein expression, and analyses of T and B cell receptor V

(D)J sequences [described fully in (17)]. Cell types and subsets were

further refined using information from the BCR-seq, CITE-seq and

GEX layers for each GEX cluster phenotype led by expert

understanding of each immune cell subset, considering a

combination of marker genes and transcription factors.

Information from all three modalities was used to identify and

exclude doublets from downstream analysis. In agreement with the

literature, activation markers [CD69, CD80, CD86, CD70, and CD24

(18–20)], cytokines and cytokine receptors [IL-2R, IL-21R, and

CXCR3 (21–25)] are elevated in memory and plasmablast

populations compared to naïve (20), and IgD, CD21 and CD23 are

downregulated (26–29) (Supplementary Figures S1A–C).

Furthermore, plasmablast/plasma cell-specific transcription factors

[IRF4, PRDM1 (BLIMP1), BCL2L1 and XBP1] are observed only in

plasmablast populations, whereas early B cell stage TFs [BACH2,

PAX5, MCL1 and BCL6 (30, 31)] are down-regulated in plasmablast

populations. The GC-stage-specific TF, MYC, is seen highest in

memory B cells as expected and decreases upon plasma cell

differentiation (32). The transitional and naïve B cells contained no

SHM and only unswitched BCRs (IgD/M), whereas the memory and

plasmablast populations contained SHM and/or class-switched

sequences (Supplementary Figures S1D, E). Finally, the level of

expression of the heavy chain sequence (nUMIs) and expression of

the J-chain was significantly elevated in the plasmablast population

compared to the other B cell subsets (Supplementary Figures S1B, D)

in agreement with elevated production of immunoglobulins (33).

Finally, a classical flow cytometric-style gating strategy was

performed using multi-omics CITE-seq levels to define naïve,

CD27+ IgM- (switched) memory, CD27+ IgM+ (unswitched)

memory, IgD- CD27- B cell, CD27+ plasmablast, CD27+ IgM+

plasmablast, and IgD- CD27- plasmablast populations (Figure 1A;

Supplementary Table S1, see methods). These FACS-style gated B

cell populations roughly overlaid the high-confidence multi-omics

annotations (Figures 1B, C).

Classical FACS-style defined naïve,
memory and atypical B cell populations are
heterogeneous populations

Using both the multi-omics and flow cytometric-style gating

approaches for annotating the B cells, we were able to determine the
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concordance between labelling strategies, and thus characterise the

level and nature of cellular contamination within standard flow

cytometry gating (Figure 2A, cells from all diseases stats and

health). While the >99% of flow cytometric-style gated

plasmablasts exhibited a plasmablast profile when using all the

multi-omic information (multi-omic-annotation), only 69% of flow

cytometric-style gated naïve B cells exhibited a multi-omics naïve

cell profile. Similarly, only 5.13% of the unswitched memory B cells,

as defined by the multi-omics annotation, were captured within the

unswitched memory flow cytometric-style gate. Overall, we show

the accuracy of flow cytometric-style gating ranged drastically

between 77% to >99% depending on the populations of interest

(Figure 2B). The same trend was observed when considering only

cells from healthy individuals (Supplementary Figure S2).

We next explored the cellular heterogeneity within the naïve

and memory flow cytometric-style defined populations. 29.5% of

flow cytometric-style gated naïve cells were defined as memory B

cells via multi-omics information. These different phenotypes had

distinct isotype distributions based on immunoglobulin RNA

sequence expression (Figure 3A) that were significantly different

between multi-omics labelled populations (p-values<0.05) and

CD27 expression (Figure 3B, p-value=2.2e-16)), albeit with low

CD27 protein expression (Figure 1A). Likewise, 3.0% of the flow

cytometric-style gated memory B cells were defined as plasmablasts

via multi-omics information. These different phenotypes in the flow

cytometric-style gated memory B cells also had distinct isotype

distributions based on immunoglobulin RNA sequence expression

(Figure 3C) that were significantly different between multi-omics

labelled populations (p-values<0.05) and CD27 expression

(Figure 3D, p-value=1.7e-5). Indeed, we show that, while CD27

protein and gene expression is significantly correlated, the

correlation is poor across B cell subsets (Supplementary Figure

S2C). Finally, the flow cytometric-style gating of the switched

memory B cells had 90% accuracy, however the gating of

unswitched memory B cells was lower (77.3%), with the majority

of impurities in this gate consisting of switched memory B cells.

Together this demonstrates that flow cytometric-style gating is

successful at enriching particular cell groups such as plasmablasts,

however classical naïve and memory B cell gates result in

heterogenous B cell populations that can be clearly elucidated

considering gene expression and VDJ information. These

populations are functionally distinct, with different isotype usages,

CD27 expression, and B cell repertoire features.
Classically-gated anergic, age-associated,
autoreactive IgMlo naïve, BND, CD21-
atypical, and double negative B cells are
highly heterogenous populations

We next explored the phenotypic heterogeneity of BND cells

(CD19+ IgD+ IgM− CD27- CD10- CD24mid/low CD38mid/low)

(4), CD21- Atypical B cells (CD19+ CD20+ CD10- CD21- CD27-)

(7), double negative B cells (DNB) (CD19+ CD27- IgD-) (1, 13–15),

age-associated B cells (CD19+ CD21− CD11c+) (34), anergic B cells

(CD19+ CD21−/low CD38-) (5), autoreactive IgMlo naïve B cells
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(CD27- IgD+ IgMlo) (6) based on FACS gating strategies used in the

literature (Figure 4A). Using the same gating strategies used in these

studies on the CITE-seq values (Supplementary Figure S3), we were

able to capture each of these populations in the single-cell multi-

omics data across health and disease states. Comparison of these
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populations with the multi-omics annotations revealed significant

heterogeneity between these populations (Figure 4B). Indeed, age-

associated, anergic B cells and CD21- atypical B cells were slightly

enriched for unswitched and switched memory B cells, the double

negative (DNB) B cells were enriched for switched memory and
B

C

A

FIGURE 1

Blood cell atlas single cell multi-omics (RNA-seq, VDJ-seq, CITE-seq) across 97 individuals. (A) Classical flow cytometry-style gating strategy using
multi-omics CITE-seq levels to define naïve, switched and unswitched memory, IgD- CD27+ B cells, CD27+ plasmablast, CD27+ IgM+ plasmablast,
and IgD- CD27+ plasmablast populations. (B) UMAP representation of the flow cytometry-style gated B cell populations and (C) the multi-omics-
informed B cell annotations. The blue dots in panel (B) denote the indicated B cells as identified via flow cytometry-style gating, and the grey dots
represent the remainder of cells.
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B

A

FIGURE 2

Purity of flow cytometric-style gating. (A) Heatmap of the heterogeneity of B cells captured within each standard B cell flow cytometric-style gating
for all disease states and health combined. The number represents the number of cells captured with in the corresponding flow-cytometric gate
with the corresponding multi-omics label, including memory subtypes. (B) Table of the accuracy, sensitivity and specificity of the flow cytometric-
style gating to capture target B cell populations, where the true annotations were defined using the multi-omics labelling.
B

C D

A

FIGURE 3

Characteristics of flow cytometric-style gating impurities. (A) The isotype distribution of B cells and (B) CD27 gene expression within the flow-
cytometric-style gated naïve B cells, split by multi-omics annotation. (C) The isotype distribution of B cells and (D) CD27 gene expression within the
flow-cytometric-style gated memory B cells, split by multi-omics annotation. P-values were calculated using ANOVA. This analysis was performed
on cells from all disease states and health.
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plasmablasts, whilst IgMlo naïve B cells were enriched for naïve B

cells. The BND cells were not enriched for any specific multi-omics-

phenotype, suggesting that CD19+ IgD+ IgM− CD27- is not a

specific gating strategy. Overall, classically-gated anergic, age-

associated, autoreactive IgMlo naïve, BND, CD21- atypical, and

DNB B cells capture highly heterogenous populations

representing diverse gene expression and protein expression patters.
Significant overlap between anergic, age-
associated, autoreactive IgMlo naïve, BND,
CD21- atypical, and double negative B cells

To explore this further, we quantified the overlap between

classically-gated anergic, age-associated, autoreactive IgMlo naïve,

BND, CD21- atypical, and DNB B cells using the Jaccard Index,

where a higher value indicates higher levels of overlap between two

populations (Figure 4C). Whilst some populations were highly

distinct with low Jaccard Indices, such as between autoreactive

IgMlo naïve B cells and age-associated B cells, we show that there is

high overlap between many of the other populations. This is most

notable between CD21- atypical B cells (CD19+ CD21− CD11c+)

and anergic B cells (CD19+ CD21−/low CD38-) in which the

overlap was 0.98 and with the DNB cells (CD19+ CD27- IgD-) in

which the overlap was 0.8. Likewise, BND B cells (CD19+ IgD+ IgM

− CD27-) overlap highly with autoreactive IgMlo naïve B cells

(overlap = 0.98). Together, this exemplified that these B cell

populations are not mutually exclusive, and that functional

studies on these populations are often measuring partially

overlapping groups of B cells.
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Compositions of classical FACS-style
defined B cell populations differs between
disease states

Next, we considered whether the cellular composition of flow

cytometric-style gated B cell populations differed between disease

states (Supplementary Table S2). Using the flow cytometric-style

gating of naïve, memory and atypical B cells, we observed significant

differences in the proportions of some multi-omics defined

populations between disease states (Figure 5; Supplementary

Figure S4, p-values<0.05). Indeed, we show that the proportion of

flow cytometric-style gated naïve B cells that have multi-omics

profiles of memory unswitched B cells are significantly variable

between patient groups, with COVID-19 mild patients with the

lowest level of contamination, and influenza patients with the

highest level of contamination from unswitched memory switched

B cells (Figures 5A, B, p-values<0.05). The proportion of flow

cytometric-style gated IgD-CD27- B cells comprising multi-omics

defined switched memory were significantly associated with disease

status (p-values<0.05). Together this demonstrates that the

compositions of classical flow cytometric-style defined B cell

populations significantly differ between disease state.
Identification of additional FACS-style
markers for homogeneous B cell sorting

To overcome the heterogeneity of flow cytometric-style gating

of B cell populations, we performed a data-driven analysis of which

markers would most appropriately enrich for purer populations of
B C

A

FIGURE 4

Comparison of atypical B cells from the literature. (A) Table of the phenotypic markers used for classifying anergic, age-associated, autoreactive
IgMlo naïve, BND, CD21- atypical, and DNB B cells across a subset of studies. (B) Heatmap of the heterogeneity of B cells captured within each flow
cytometric-style gating from these studies, performed on cells from all disease states and health. The size and colour of each circle represents the
number of B cells within each gate that corresponds to the single cell multi-omics label. (C) Heatmap of the overlap of B cells captured within
gating strategies for the different populations. The values provided represent Jaccard overlap, where a value closer to 1 represents higher overlap
between populations.
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naïve, unswitched memory, switched memory, and IgD- CD27- B

cells, that provide a lower level of transcriptional heterogeneity.

Here, we considered only the addition of up to 2 additional markers

to reflect the constraints of standard FACS sorting or flow-

cytometric experiments. It is expected that increasing the number

of cell markers will improve the separation of B cell subsets, as

compared to gating with a lower number of markers. To achieve

this, we performed an unbiased marker selection using a machine

learning approach, named AlliGateR (All marker enrichment for

additional flow-cytometric GATEs for purer populations)

(Figure 6A). The Maximum Mean Discrepancy (MMD), which is

a measure of dissimilarity between two probability distributions,

was used to identify markers that are more adept at discriminating

the true populations from impurities identified from the multi-

omics data. Finally, the choice of markers needs to be biologically

relevant and reflecting lineage definitions, rather than

activation status.

For each flow-cytometric gated population, we identified true

positive (TP) cells (those that were correctly identified as defined by

multi-omics annotations), and false positive (FP) cells (those that

were incorrectly identified by flow-cytometric gating but annotated

differently by multi-omics analysis), and for each cell surface
Frontiers in Immunology 07
protein marker, we trained a sigmoidal support vector machine

(SVM), and used its predicted annotation (TP or FP) to determine

the sensitivity, specificity and accuracy for additional marker

selection (Supplementary Table S3). From this analysis, a

combination of CD20, CD21, and CD24 were found to be the

best markers for discriminating TP naïve, unswitched memory, and

switched memory B cells from impurities (of which CD24 was

already included in the classical gating strategy) (Supplementary

Figure S5A). However, the multi-omics comparison demonstrated

the need for non-linear gates through assessing the highest density

of purer B cell populations. These markers were supported by the

highly significant differences in protein levels between TP and FP

populations (Supplementary Table S4). Therefore, additional gating

was performed using these markers (Figures 6B, C). These

additional gates did increase the overall purity of naïve and

unswitched and switched memory populations when compared to

the original standard gating, but only by between 7.62%, 4.70% and

2.92% respectively. The additional gates for the naïve population

(CD20lo/mid CD24lo/mid CD21mid) predominantly reduced the

unswitched and switched memory B cell impurities and the

plasmablast impurities (by 39.4%, 31.1% and 54.3% respectively,

Supplementary Figure S3B), which would likely significantly impact
B

A

FIGURE 5

Boxplots of the variation of the proportion of multi-omics-defined B cell populations within flow-cytometric style gating between diseases for (A)
naïve B cells and IgD- CD27- B cells (showing only those with statistical significance), and (B) the corresponding table of significance for all
comparisons. Overall p-values of frequencies associating with disease status is provided only for combinations with >3 individuals with non-zero
frequencies across each disease state, given at the top of each figure (by ANOVA) and p-values between disease states are provided (by Wilcoxon
test using Holm multiple testing correction). Significant values (p-values<0.05) are highlighted in red. CC, Hospitalised COVID-19 (critical); CComm,
Healthcare workers COVID-19 (convalescent); CM, COVID-19 (mild); CS, Hospitalised COVID-19 (severe); Flu, Influenza patients; HV, Healthy
volunteers; Sepsis, Hospitalised sepsis.
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the functional readouts of any downstream experiments. The

majority of the residual impurities were from transitional B cells.

The additional gates for the switched memory (CD24+ CD20lo/

mid CD21hi) removed plasmablast impurities. The unswitched

memory B cells were divided into three populations, of which two

improved the impurity rate (CD24+ CD20hi and CD24+ CD20lo).

The additional CD24- gate for the unswitched and switched
Frontiers in Immunology 08
memory effectively captured the CD27+ plasmablast impurities

(Supplementary Figure S3B). We note that additional gating did,

however, significantly reduce the number of cells captured within

each gate, albeit with lower levels of impurities.

We also investigated whether the IgD- CD27- B cells (also

termed double negative B cells, DNB, in the literature, Figure 3A)

could be subsetted into more homogeneous groups using these
B

C D

E

A

F

FIGURE 6

Identification of additional FACS-style markers for homogeneous B cell sorting. (A) Strategy for additional marker selection for naïve, unswitched
memory, and switched memory B cells, performed on B cells from all disease states and healthy individuals combined. (B) Additional gates for (top)
naïve B cells, (middle) unswitched memory B cells and (bottom) switched memory B cells. (C) Additional gates for IgD- CD27- B cells. (D) Heatmap
of the heterogeneity of B cells captured using the additional gates. The number represents the number of cells captured with in the corresponding
flow-cytometric gate with the corresponding multi-omics label. (E) Table of the accuracy, sensitivity, specificity, purity and percentage increase in
purity of the flow cytometric-style gating to capture target B cell populations using the additional gates compared to the corresponding multi-omics
labels. (F) Table of the purity of the flow cytometric-style gating to capture target IgD- CD27- B cell subpopulations using the additional gates
compared to the multi-omics label of memory switched.
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markers. Indeed, separating the IgD- CD27- B cells into (a) CD24-

CD20hi CD21-, (b) CD24- CD20lo, and (c) CD24+ CD20lo/mid

CD21hi, we were able to enrich for specific multi-omics

phenotypes. Indeed, 92.19% of the IgD- CD27- [CD24- CD20lo]

gated B cells consisted of switched memory B cells as annotated by

multi-omics, whereas 41.12%, 56.57%, and 2.14% of the IgD-

CD27- [CD24+ CD20lo/mid CD21hi] gated B cells consisted of

unswitched memory, switched memory and naïve B cells,

respectively, as annotated by multi-omics. Finally, the IgD-

CD27- [CD24- CD20hi CD21-] gated B cells inhibited the highest

proportion of plasmablasts (5.20%), as annotated by multi-omics,

however, the majority of these cells were switched memory B cells

(61.05%). Together, we provide a tool to identify additional protein

markers that may be used to provide purer populations by flow

cytometry, and may be used more generally for other cell types.

Finally, we assessed whether flow-cytometric gated B cell

populations with increased purity would reduce the association

with disease status. Interestingly, we show that, although the

purities of the naïve and memory populations are increased with

the additional gates, we showed that there were more associations

between disease status and impurity levels of the flow-cytometric

gating (Supplementary Figure S5C), particularly naïve and switched

memory B cells. Overall, we demonstrate a data-driven multi-omics

approach to improving experimental purity of B cell populations,

and quantify the increased purity of these extra gating approaches.

However, this also provides caution on the implications of

enumeration and functional readouts of gating strategies when

comparing between diseases.
Discussion

Despite being a long-standing method, conventional gating based

on surface markers inadequately captures the extensive diversity and

functional roles of B cells. This study focused on elucidating

discrepancies between flow cytometry-defined B cell populations

and their molecular profiles obtained through single-cell multi-

omics analyses. We show that classical flow cytometry-defined

populations, particularly naïve, memory and IgD- CD27- B cells,

exhibit substantial heterogeneity and inconsistent correlations with

their expected phenotypes, as per multi-omics profiles. The

discrepancies reveal that conventional gating strategies might

inadequately isolate and categorise these subsets, leading to

potential misunderstandings of their roles in immune function and

disease states. Indeed, we showed that the heterogeneity of these

populations is significantly associated with COVID-19 disease status,

and this observed variability implies that the cellular composition of

flow cytometry-defined B cell populations is disease-specific,

potentially influencing functional studies and disease-related

investigations. Thus, functional analyses performed on these gating

populations would be measuring both intrinsic cellular differences as

well as cell-subtype proportion differences (4, 12, 35, 36).

Secondly, this study delineated the complexity and ambiguity in

unconventional B cell subsets including anergic, age-associated,

autoreactive IgMlo naïve, BND, CD21- atypical, and double negative

B cells. We resolved these ambiguities by characterising these subsets
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using a single-cell multi-omics approach, thereby rectifying

misclassifications. Through taking the same gating approach as

those used in the original publications, we demonstrated

considerable heterogeneity within these populations, each spanning

naïve B cells through to memory and plasmablast populations. This

inconsistency was best demonstrated by the low overlap between cells

gated as anergic within two studies. Instead, the CD21- atypical B

cells (CD19+ CD21− CD11c+) from one study overlapped by 98%

with anergic B cells (CD19+ CD21−/low CD38-) B cells, whereas the

BND B cells (CD19+ IgD+ IgM− CD27-) from the other study

overlapped by 98% with autoreactive IgMlo naïve B cells. This

finding highlights the need for a globally agreed consensus on the

naming and gating of these populations to build a more consistent

understanding of their functional roles in health and disease,

reducing the redundancy of cell subtype labelling, and enabling the

comparison between independent studies.

Finally, we aimed to address the limitations of conventional

flow cytometry gating strategies in defining B cell subsets accurately

through using a data-driven approach to suggesting improved

gating strategies that improve the purity of the B cell populations

sorted. Here, we employed a ML approach (AlliGateR) to identify

additional gates that may increase purity of any flow-cytometric

gates. We have developed this into a generalisable tool that is

available of researchers to use on any cell population with the

appropriate multi-omics data. With this, we identified three

additional non-linear gates using CD20, CD21 and CD24 that

were able to increase the subsequent purity of naïve, switched and

unswitched memory populations, most significantly for the naïve

population (7.62% increase purity). Whilst these additional gates

increase the purity of the populations, we finally showed that

increases in purity do not translate into reduced association with

disease status. Therefore this is a cautionary study showing the

implications of enumeration and functional readouts of gating

strategies when comparing between diseases.

Overall, we underscore the limitations of conventional flow

cytometry-based gating strategies in characterising B cell subsets

accurately and disease-associated differences in cellular

heterogeneity, which highlight the necessity for refined gating

approaches. Ultimately, this work provides a framework for

improved B cell characterisation in a data-driven manner,

proposing the integration of additional markers for homogeneous

sorting to facilitate more precise classification of these subsets and

reduced the effect of artefact. This study emphasises the integration

single-cell multi-omics technologies as a powerful tool to bridge the

gap between surface marker-based annotations and the molecular

characteristics of B cell subsets, and immune cells more broadly.

Improved characterisation of immune cells may potentially redefine

our understanding of immune system function.
Materials and methods

Data source

Data was taken from the COMBAT study (17), which included

a multi-omic blood atlas encompassing acute patients with varying
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COVID-19 severity. This data included single cell gene expression,

CITE-seq, BCR and TCR VDJ information on matched cells, in

which we performed high-confidence annotations of all immune

cells with considering all modalities. The full list of CITE-seq

markers used are included in Supplementary Table S1. This was

used as the foundation of this study.

Data pre-processing and annotation using the multi-omics

information was performed as described in (17). Briefly, following

inspection of the QC metrics, the dataset was filtered to retain cells

with ngenes > 300 and pct_mitochondrial < 10%. For the

annotation of the immune cell subsets, we used expert

immunological knowledge to guide a curated integration of the

data from the different modalities (GEX, ADT and VDJ) to identify

and label the cell sub-populations present. We first performed

separate clustering of gene expression, clustering of surface

protein expression, and analyses of T and B cell receptor V(D)J

sequences [described fully in (17)]. Cell types and subsets were

further refined using information from the repertoire and GEX

layers, or in the absence of definitive ADT information were

identified by GEX cluster phenotype led by expert understanding

of each immune cell subset. Finally, the identified cell types and

subsets were further divided by inferred functional state based on

targeted assessment of information from all three modalities. For

example, cell cycle phase was determined by GEX phenotype, while

assignment of B cell maturation status involved use of information

from all three modalities (including BCR mutational status).

Information from all three modalities was used to identify and

exclude doublets from downstream analysis.
Flow cytometry-style gating

To gate cell population in a flow cytometry-like style, we first

identified the most commonly used markers (cell surface markers)

to identify each targeted population. CITEViz (version 0.1) in R was

used to visualise, set thresholds, and gate cells from the original

multi-omics dataset based on ADT information. The negative

thresholds were based on ADT level densities within populations

of cells that are known not to express each marker.

The same methodology was applied to identify and validate

markers from the literature. Here we gated BND cells (CD19+ IgD+

IgM− CD27- CD10- CD24mid/low CD38mid/low) (4), CD21-

Atypical B cells (CD19+ CD20+ CD10- CD21- CD27-) (7), double

negative B cells (DNB) (CD19+ CD27- IgD-) (1, 13–15), age-

associated B cells (CD19+ CD21− CD11c+) (34), anergic B cells

(CD19+ CD21−/low CD38-) (5), autoreactive IgMlo naïve B cells

(CD27- IgD+ IgMlo) (6) based on FACS gating strategies used in the

literature (Figure 4A; Supplementary Figure S3).
Additional marker prediction

Three methods were used to prioritise additional antibody

markers for separating B cell populations. Firstly, we used

FindAllMarkers function from Seurat (version 5.0.1) in R to find

differentially expressed markers for each FACS-like cluster.
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Subsequently, we filtered out any markers with an average log2FC

< 2 and adjusted p-value > 0.05. Secondly, we used support vector

machine model (svm model) to find the precision, accuracy,

sensitivity, recall score, F1 score, false positive and false negative

values for each marker in each cluster. Finally, the Maximum Mean

Discrepancy (MMD), which is a measure of dissimilarity between

two probability distributions, was used. The plasmablast

populations (CD27+IgM+ PB, CD27+ PBs, IgD-CD27- PBs) were

grouped together for the classification, as they showed a strong

overlap with multi-omics plasmablast population. The selected

markers were then examined for their effectiveness in distinctly

distinguishing their respective cluster from other populations using

density map. Population gating with new additional markers was

performed as described in the above section, shown in Figure 6.
Statistics

All analysis were conducted using R version (4.2.3). Jensen-

Shannon divergence was calculated to measure the similarity

between literature-based gating. ANOVA or t-tests was used to

find the significance between two groups or more. NS, not

significant; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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SUPPLEMENTARY FIGURE 1

Gene expression and VDJ signatures for the single cell multi-omics B cell

annotations. (A) Gene expression profiles of B cell subpopulations of the top

differentially expressed andmarker genes. (B) The per cell subpopulation (left)
somatic hypermutation levels (SHM) and (right) IGHV expression level

(nUMIs). Naïve and transitional B cells are marked by low/zero SHM and
plasmablasts have the highest IGHV expression. (C) The isotype usage

percentages across cell types within each cell population. Naïve,
transitional B cells and unswitched activated and memory B cells are

marked by IGHD/IGHM expression, with only class-switched B cells within
the other populations.

SUPPLEMENTARY FIGURE 2

(A) Heatmap of the heterogeneity of B cells captured within each standard B

cell flow cytometric-style gating for only healthy individuals. The number
represents the number of cells captured with in the corresponding flow-

cytometric gate with the corresponding multi-omics label. (B) Table of the
accuracy, sensitivity and specificity of the flow cytometric-style gating to

capture target B cell populations for only healthy individuals, where the true

annotations were defined using the multi-omics labelling. (C) The correlation
between CD27 protein and gene expression within cell subsets. Correlations

were performed using Spearman Rank with the corresponding p-values.

SUPPLEMENTARY FIGURE 3

Gating for the anergic, age-associated, BND, CD21- atypical, and DNB B cells,

and autoreactive IgMlo naïve B cells based on flow cytometric gating

strategies used in the literature from ().

SUPPLEMENTARY FIGURE 4

Boxplots of the variation of the proportion of multi-omics-defined B cell

populations within flow-cytometric style gating between diseases for naïve B
cells, unswitched and switched memory B cells, IgD- CD27- B cells, CD27+

IgM+ plasmablasts, CD27+ plasmablasts and IgD- CD27- plasmablasts.

Overall p-values of frequencies associating with disease status is provided
at the top of each figure (by ANOVA) and p-values between disease states are

provided (by Wilcoxon test using Holm multiple testing correction).

SUPPLEMENTARY FIGURE 5

(A) The distribution of CD20, CD21 and CD24 expression across cells defined

by multi-omics. (B) Relative change in frequency with additional gates from

compared to the gating in (without the additional CD20, CD21 and CD24
gates). The relative change value is between -1 to 0 where -1 represents a

complete reduction of a population after the additional gating, and zero
represents identical frequencies after the additional gating. (C) Table of the

variation of the significance (p-value) of association of the percentage of cells
labelled via multi-omics-definitions within flow-cytometric style gating

between diseases. Overall p-values (calculated by ANOVA) of frequencies

associating with disease status is provided only for combinations with >3
individuals with non-zero frequencies across each disease state. Significant

values (p-values<0.05) are highlighted in red.
References
1. Stewart A, Ng JC, Wallis G, Tsioligka V, Fraternali F, Dunn-Walters DK. Single-
cell transcriptomic analyses define distinct peripheral B cell subsets and discrete
development pathways. Front Immunol. (2021) 12:602539. doi: 10.3389/
fimmu.2021.602539

2. Glass DR, Tsai AG, Oliveria JP, Hartmann FJ, Kimmey SC, Calderon AA, et al. An
integrated multi-omic single-cell atlas of human B cell identity. Immunity. (2020)
53:217–232 e215. doi: 10.1016/j.immuni.2020.06.013

3. Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, et al.
Functional anergy in a subpopulation of naive B cells from healthy humans that express
autoreactive immunoglobulin receptors. J Exp Med. (2009) 206:139–51. doi: 10.1084/
jem.20080611

4. Castleman MJ, Stumpf MM, Therrien NR, Smith MJ, Lesteberg KE, Palmer BE,
et al. SARS-CoV-2 infection relaxes peripheral B cell tolerance. J Exp Med. (2022) 219:
e20212553. doi: 10.1084/jem.20212553

5. Rijal S, Kok J, Coombes C, Smyth L, Hourigan J, Jain S, et al. High proportion of
anergic B cells in the bone marrow defined phenotypically by CD21(-/low)/CD38-
expression predicts poor survival in diffuse large B cell lymphoma. BMC Cancer. (2020)
20:1061. doi: 10.1186/s12885-020-07525-6
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1380386/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1380386/full#supplementary-material
https://doi.org/10.3389/fimmu.2021.602539
https://doi.org/10.3389/fimmu.2021.602539
https://doi.org/10.1016/j.immuni.2020.06.013
https://doi.org/10.1084/jem.20080611
https://doi.org/10.1084/jem.20080611
https://doi.org/10.1084/jem.20212553
https://doi.org/10.1186/s12885-020-07525-6
https://doi.org/10.3389/fimmu.2024.1380386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pernes et al. 10.3389/fimmu.2024.1380386
6. Quach TD, Manjarrez-Orduno N, Adlowitz DG, Silver L, Yang H, Wei C, et al.
Anergic responses characterize a large fraction of human autoreactive naive B cells
expressing low levels of surface IgM. J Immunol. (2011) 186:4640–8. doi: 10.4049/
jimmunol.1001946

7. Holla P, Dizon B, Ambegaonkar AA, Rogel N, Goldschmidt E, Boddapati AK,
et al. Shared transcriptional profiles of atypical B cells suggest common drivers of
expansion and function in malaria, HIV, and autoimmunity. Sci Adv. (2021) 7:27.
doi: 10.1126/sciadv.abg8384

8. Sutton HJ, Aye R, Idris AH, Vistein R, Nduati E, Kai O, et al. Atypical B cells are
part of an alternative lineage of B cells that participates in responses to vaccination and
infection in humans. Cell Rep. (2021) 34:108684. doi: 10.1016/j.celrep.2020.108684

9. Portugal S, Obeng-Adjei N, Moir S, Crompton PD, Pierce SK. Atypical memory B
cells in human chronic infectious diseases: An interim report. Cell Immunol. (2017)
321:18–25. doi: 10.1016/j.cellimm.2017.07.003

10. Wang L, Rondaan C, de Joode AAE, Raveling-Eelsing E, Bos NA, Westra J.
Changes in T and B cell subsets in end stage renal disease patients before and after
kidney transplantation. Immun Ageing. (2021) 18:43. doi: 10.1186/s12979-021-00254-9

11. Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune
diseases. Cell Mol Life Sci. (2022) 79:402. doi: 10.1007/s00018-022-04433-9

12. Yam-Puc JC, Hosseini Z, Horner EC, Gerber PP, Beristain-Covarrubias N,
Hughes R, et al. Age-associated B cells predict impaired humoral immunity after
COVID-19 vaccination in patients receiving immune checkpoint blockade. Nat
Commun. (2023) 14:3292. doi: 10.1038/s41467-023-38810-0

13. You X, Zhang R, Shao M, He J, Chen J, Liu J, et al. Double negative B cell is
associated with renal impairment in systemic lupus erythematosus and acts as a marker
for nephritis remission. Front Med (Lausanne). (2020) 7:85. doi: 10.3389/
fmed.2020.00085

14. Wangriatisak K, Thanadetsuntorn C, Krittayapoositpot T, Leepiyasakulchai C,
Suangtamai T, Ngamjanyaporn P, et al. The expansion of activated naive DNA
autoreactive B cells and its association with disease activity in systemic lupus
erythematosus patients. Arthritis Res Ther. (2021) 23:179. doi: 10.1186/s13075-021-
02557-0

15. Alvarez-Rodriguez L, Riancho-Zarrabeitia L, Calvo-Alen J, Lopez-Hoyos M,
Martinez-Taboada V. Peripheral B-cell subset distribution in primary antiphospholipid
syndrome. Int J Mol Sci. (2018) 19:589. doi: 10.3390/ijms19020589

16. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay
PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single
cells. Nat Methods. (2017) 14:865–8. doi: 10.1038/nmeth.4380

17. COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium. Electronic
address: julian.knight@well.ox.ac.uk and COvid-19 Multi-omics Blood ATlas
(COMBAT) Consortium. Consortium, A blood atlas of COVID-19 defines hallmarks
of disease severity and specificity. Cell. (2022) 185:916–938 e958. doi: 10.1016/
j.cell.2022.01.012

18. Mensah FFK, Armstrong CW, Reddy V, Bansal AS, Berkovitz S, Leandro MJ, et al.
CD24 expression and B cell maturation shows a novel link with energy metabolism:
potential implications for patients with myalgic encephalomyelitis/chronic fatigue
syndrome. Front Immunol. (2018) 9:2421. doi: 10.3389/fimmu.2018.02421

19. Oleinika K, Mauri C, Salama AD. Effector and regulatory B cells in immune-
mediated kidney disease.Nat Rev Nephrol. (2019) 15:11–26. doi: 10.1038/s41581-018-0074-7

20. Van Belle K, Herman J, Boon L, Waer M, Sprangers B, Louat T. Comparative in
vitro immune stimulation analysis of primary human B cells and B cell lines. J Immunol
Res. (2016) 2016:5281823. doi: 10.1155/2016/5281823
Frontiers in Immunology 12
21. Recher M, Berglund LJ, Avery DT, Cowan MJ, Gennery AR, Smart J, et al. IL-21
is the primary common gamma chain-binding cytokine required for human B-cell
differentiation in vivo. Blood. (2011) 118:6824–35. doi: 10.1182/blood-2011-06-362533

22. Miyawaki T, Suzuki T, Butler JL, Cooper MD. Interleukin-2 effects on human B
cells activated in vivo. J Clin Immunol. (1987) 7:277–87. doi: 10.1007/BF00915548

23. Yanagihara Y, Ikizawa K, Kajiwara K, Koshio T, Basaki Y, Akiyama K.
Functional significance of IL-4 receptor on B cells in IL-4-induced human IgE
production. J Allergy Clin Immunol. (1995) 96:1145–51. doi: 10.1016/S0091-6749(95)
70199-0

24. Muehlinghaus G, Cigliano L, Huehn S, Peddinghaus A, Leyendeckers H, Hauser
AE, et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation
of memory B cells into plasma cells. Blood. (2005) 105:3965–71. doi: 10.1182/blood-
2004-08-2992

25. McHeik S, Van Eeckhout N, De Poorter C, Gales C, Parmentier M, Springael JY,
et al. Coexpression of CCR7 and CXCR4 during B cell development controls CXCR4
responsiveness and bone marrow homing. Front Immunol. (2019) 10:2970.
doi: 10.3389/fimmu.2019.02970

26. Liu C, Richard K, Wiggins M, Zhu X, Conrad DH, Song W. CD23 can negatively
regulate B-cell receptor signaling. Sci Rep. (2016) 6:25629. doi: 10.1038/srep25629

27. Masilamani M, Kassahn D, Mikkat S, Glocker MO, Illges H. B cell activation
leads to shedding of complement receptor type II (CR2/CD21). Eur J Immunol. (2003)
33:2391–7. doi: 10.1002/eji.200323843

28. Noviski M, Mueller JL, Satterthwaite A, Garrett-Sinha LA, Brombacher F,
Zikherman J. IgM and IgD B cell receptors differentially respond to endogenous
antigens and control B cell fate. Elife. (2018) 735071–29. doi: 10.7554/eLife.35074

29. Dirks J, Andres O, Paul L, Manukjan G, Schulze H, Morbach H. IgD shapes the
pre-immune naive B cell compartment in humans. Front Immunol. (2023) 14:1096019.
doi: 10.3389/fimmu.2023.1096019

30. Tokuhisa T, Hatano M, Okada S, Fukuda T, Kunimasa I. Transcriptional
regulation of memory B cell development. Mod Rheumatol. (2001) 11:1–5.
doi: 10.3109/s101650170035

31. Nutt SL, Taubenheim N, Hasbold J, Corcoran LM, Hodgkin PD. The genetic
network controlling plasma cell differentiation. Semin Immunol. (2011) 23:341–9.
doi: 10.1016/j.smim.2011.08.010

32. Robaina MC, Mazzoccoli L, Klumb CE. Germinal centre B cell functions and
lymphomagenesis: circuits involving MYC and micrornas. Cells. (2019) 8:1365.
doi: 10.3390/cells8111365

33. Castro CD, Flajnik MF. Putting J chain back on the map: how might its
expression define plasma cell development? J Immunol. (2014) 193:3248–55.
doi: 10.4049/jimmunol.1400531

34. Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW, et al.
Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c(+) B-cell
population is important for the development of autoimmunity. Blood. (2011)
118:1305–15. doi: 10.1182/blood-2011-01-331462

35. Woodruff MC, Ramonell RP, Haddad NS, Anam FA, Rudolph ME, Walker TA,
et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19.
Nature. (2022) 611:139–47. doi: 10.1038/s41586-022-05273-0

36. Castleman MJ, Stumpf MM, Therrien NR, Smith MJ, Lesteberg KE, Palmer BE,
et al. Autoantibodies elicited with SARS-CoV-2 infection are linked to alterations in
double negative B cells. Front Immunol. (2022) 13:988125. doi: 10.3389/
fimmu.2022.988125
frontiersin.org

https://doi.org/10.4049/jimmunol.1001946
https://doi.org/10.4049/jimmunol.1001946
https://doi.org/10.1126/sciadv.abg8384
https://doi.org/10.1016/j.celrep.2020.108684
https://doi.org/10.1016/j.cellimm.2017.07.003
https://doi.org/10.1186/s12979-021-00254-9
https://doi.org/10.1007/s00018-022-04433-9
https://doi.org/10.1038/s41467-023-38810-0
https://doi.org/10.3389/fmed.2020.00085
https://doi.org/10.3389/fmed.2020.00085
https://doi.org/10.1186/s13075-021-02557-0
https://doi.org/10.1186/s13075-021-02557-0
https://doi.org/10.3390/ijms19020589
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1016/j.cell.2022.01.012
https://doi.org/10.1016/j.cell.2022.01.012
https://doi.org/10.3389/fimmu.2018.02421
https://doi.org/10.1038/s41581-018-0074-7
https://doi.org/10.1155/2016/5281823
https://doi.org/10.1182/blood-2011-06-362533
https://doi.org/10.1007/BF00915548
https://doi.org/10.1016/S0091-6749(95)70199-0
https://doi.org/10.1016/S0091-6749(95)70199-0
https://doi.org/10.1182/blood-2004-08-2992
https://doi.org/10.1182/blood-2004-08-2992
https://doi.org/10.3389/fimmu.2019.02970
https://doi.org/10.1038/srep25629
https://doi.org/10.1002/eji.200323843
https://doi.org/10.7554/eLife.35074
https://doi.org/10.3389/fimmu.2023.1096019
https://doi.org/10.3109/s101650170035
https://doi.org/10.1016/j.smim.2011.08.010
https://doi.org/10.3390/cells8111365
https://doi.org/10.4049/jimmunol.1400531
https://doi.org/10.1182/blood-2011-01-331462
https://doi.org/10.1038/s41586-022-05273-0
https://doi.org/10.3389/fimmu.2022.988125
https://doi.org/10.3389/fimmu.2022.988125
https://doi.org/10.3389/fimmu.2024.1380386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Unravelling B cell heterogeneity: insights into flow cytometry-gated B cells from single-cell multi-omics data
	Introduction
	Results
	Direct comparison of classical FACS-style defined B cells with multi-omics-defined annotations
	Classical FACS-style defined na&iuml;ve, memory and atypical B cell populations are heterogeneous populations
	Classically-gated anergic, age-associated, autoreactive IgMlo na&iuml;ve, BND, CD21- atypical, and double negative B cells are highly heterogenous populations
	Significant overlap between anergic, age-associated, autoreactive IgMlo na&iuml;ve, BND, CD21- atypical, and double negative B cells
	Compositions of classical FACS-style defined B cell populations differs between disease states
	Identification of additional FACS-style markers for homogeneous B cell sorting

	Discussion
	Materials and methods
	Data source
	Flow cytometry-style gating
	Additional marker prediction
	Statistics

	Code availability
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


