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Heme degradation by the heme oxygenase (HMOX) family of enzymes is critical

for maintaining homeostasis and limiting heme-induced tissue damage.

Macrophages express HMOX1 and 2 and are critical sites of heme degradation

in healthy and diseased states. Here we review the functions of the macrophage

heme oxygenase system and its clinical relevance in discrete groups of

pathologies where heme has been demonstrated to play a driving role. HMOX1

function in macrophages is essential for limiting oxidative tissue damage in both

acute and chronic hemolytic disorders. By degrading pro-inflammatory heme

and releasing anti-inflammatory molecules such as carbon monoxide, HMOX1

fine-tunes the acute inflammatory response with consequences for disorders of

hyperinflammation such as sepsis. We then discuss divergent beneficial and

pathological roles for HMOX1 in disorders such as atherosclerosis and metabolic

syndrome, where activation of the HMOX system sits at the crossroads of chronic

low-grade inflammation and oxidative stress. Finally, we highlight the emerging

role for HMOX1 in regulating macrophage cell death via the iron- and oxidation-

dependent form of cell death, ferroptosis. In summary, the importance of heme

clearance by macrophages is an active area of investigation with relevance for

therapeutic intervention in a diverse array of human diseases.
KEYWORDS

heme, oxidative stress, inflammation, ferroptosis, cardiometabolic disease, hemoglobin,
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Macrophages: master regulators of systemic
heme homeostasis

Heme is widely distributed throughout the cell as an essential component of globins

(including hemoglobin, myoglobin, and neuroglobin), numerous enzymes (including

oxidases, catalases, and reductases), and electron carriers such as cytochrome proteins

(1). In all these cases the iron coordinated in the porphyrin core of the heme molecule
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allows for oxygen binding and/or electron transfer via oxidation-

reduction reactions that facilitates the function of these heme-

containing proteins. The redox reactivity of heme is a double-

edged sword, and when present in high enough amounts leads to

cellular damage via oxidation of intracellular proteins, lipids, and

other molecules. As such, the concentration and localization of

heme in cells is tightly controlled. Accumulation of heme is tightly

regulated though binding to their associated proteins such as

hemoglobin, but heme moieties can be released upon oxidation of

the iron complexed within the heme molecule, generating pro-

oxidant iron in the Fe3+ or Fe4+ state (2). The critical role for

oxidation in releasing free heme from hemoglobin has been

demonstrated in vitro as well as cell culture conditions, where it

has been demonstrated that exposure of endothelial cells to

previously oxidized hemoglobin induces a greater level of

oxidative damage compared with fully reduced hemoglobin (3).

The heme oxygenase system is critical for the regulation of the

intracellular heme pool, degrading heme into its breakdown

product biliverdin and in the process releasing iron, which can be

sequestered via binding to ferritin, and carbon monoxide (CO),

which acts as an intracellular signaling molecule (4, 5). Two

isoforms of the heme oxygenase enzyme are found in mammals,

which share a common catalytic mechanism requiring the cofactor

NADPH. Heme oxygenase 2 (HMOX2) is constitutively expressed

in a majority of cell types throughout the body to provide a basal

level of heme degradation needed to regulate the local intracellular

heme pool. Conversely, heme oxygenase 1 (HMOX1) is induced in

response to increased intracellular levels of heme or other oxidative

stresses, primarily via the activation of the redox-sensitive

transcription factor nuclear factor erythroid 2-related factor 2

(NRF2), although other transcription factors have been shown to

play a role in its expression in a variety of cell types (6–11). This

two-isoform system allows for both maintenance of intracellular

heme homeostasis throughout the organism as well as an increased

capacity for heme degradation on-demand in response to higher

levels of heme, either acutely or chronically (The activation of the

HMOX system in response to heme via NRF2 is summarized

in Figure 1).

In addition to activation by NRF2, the expression of HMOX1 is

controlled by the transcriptional repressor BTB and CNC homology

1 (BACH1), which under normal conditions binds as a heterodimer

with MafK to enhancer regions of the HMOX1 locus at Maf

recognition elements (MAREs), where it acts to limit expression

when heme levels are low (12). Heme present in the cell can directly

bind to BACH1, resulting in detachment of BACH1 from DNA and

nuclear export (13), where it is then polyubiquitinated and

degraded by the proteasome (14). Knockout of Bach1 in mice

results in increased basal expression of HMOX1 (15),

demonstrating that heme-dependent control of BACH1 activity is

sufficient to activate the heme detoxification system. Although most

work has focused on the role of BACH1 in control of HMOX1

expression, more recent work has demonstrated that it can also act

as a repressor of other redox-responsive genes, particularly those

involved in glutathione synthesis (16). Together, this demonstrates

the nuanced role of multiple transcription factors in regulating

HMOX1 expression.
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Macrophages play a central role in heme oxygenase-mediated

maintenance of systemic heme homeostasis. Macrophages of the

reticuloendothelial system are responsible for the phagocytic uptake

and degradation of aged or damaged erythrocytes, which contain

large amounts of heme bound to hemoglobin (17). This process,

known as erythrophagocytosis, is largely performed by red pulp

macrophages in the spleen, which are characterized by a

transcriptional program notable for high levels HMOX1

expression as well as the cell-surface hemoglobin-haptoglobin

scavenger CD163 (18). Heme drives the development and

maintenance of red pulp macrophages through inducing the

expression of the transcription factor Spi-C, which is required

both for initial development of red pulp macrophages from the

embryologic yolk sac, as well as differentiation of monocytes into

iron-recycling macrophages that can replenish the red pulp

macrophage population during pathologic increases in systemic

heme levels (19, 20). The liver is also a site of erythrocyte clearance,

particularly in response to acute hemolysis (21), where liver-

resident Kupffer cells are supported by monocyte-derived

macrophages expressing high levels of ferroportin to facilitate iron

transfer to hepatocytes (22).

The critical importance of macrophages in maintenance of

heme and iron homeostasis has been demonstrated through a

combination of mouse-based genetic approaches and analysis of

the consequences of human HMOX1 mutations. Global deletion of

Hmox1 in mice leads to a phenotype characterized by iron overload,

chronic inflammation, and increased markers of oxidative stress

(23). Notably, mice lacking HMOX1 globally had significantly

reduced numbers of splenic and hepatic macrophages, which was

hypothesized to be a result of chronic heme exposure leading to

heme-induced death in these cells (24). Further studies

demonstrated the essential role of myeloid HMOX1 in systemic

protection against heme-induced damage, as transplantation of

wild-type bone marrow or infusion of wild-type macrophages

rescued both reticuloendothelial macrophage populations as well

as reduced inflammation and iron overload in Hmox1-/- mice (25,

26). In addition, multiple cases of human HMOX1 deficiency have

been reported with pathological findings including chronic

hemolytic anemia, developmental delay, asplenia, renal tubular

injury, and early mortality (27–30). In one case, low-density

lipoprotein (LDL) isolated from a patient with HMOX1

deficiency induced cytotoxicity in endothelial cells in vitro,

supporting a role for increased free heme in driving oxidation of

LDL and furthering inflammatory and oxidative damage (31).

These observations underscore the importance of the heme

oxygenase system in maintaining whole-body redox homeostasis

and highlight macrophages as central regulators of heme

degradation by HMOX1.
Macrophage heme oxygenase in
hemolytic disorders

Hemolysis, whether acute or chronic, places increased demand

on the heme oxygenase system, as massive amounts of hemoglobin

are released from damaged erythrocytes into the circulation.
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Efficient degradation of heme by macrophages is critical to prevent

oxidative tissue damage, which can lead to chronic inflammation

and exacerbate the underlying disorders. As such, a significant

amount of work has been done to elucidate the critical role of the

heme oxygenase system in acute and chronic hemolytic disorders

such as sickle cell disease, thalassemias, enzymopathies including

pyruvate kinase and glucose-6-phosphate dehydrogenase (G6PD)

deficiency, autoimmune hemolytic anemias, and trauma-

induced hemolysis.

Sickle Cell Disease (SCD) is an inherited hemoglobinopathy

where a point mutation in the beta-globin gene produces a defective

form of hemoglobin that form insoluble aggregates when

deoxygenated, which results in the prototypical “sickle” shape of

affected erythrocytes and significantly decreases erythrocyte

longevity (32). Sickle erythrocytes are prone to hemolysis and

consequently patients with SCD suffer oxidative tissue damage

from chronically high heme levels, as well as vaso-occlusive

exacerbations that lead to acute inflammation, tissue infarction,
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and ultimately organ fibrosis (33). Work in animal models of SCD

have demonstrated that extracellular heme is sufficient to drive

vaso-occlusion, intravascular hemolysis, and lung pathology that

mimics acute chest syndrome (34–36). Chronic inflammation

driven by heme leads to an overall pro-inflammatory polarization

of macrophages in patients with SCD, as well as SCD mouse models

(37). At the same time, both tissue macrophages and circulating

monocytes from SCD patients have higher levels of HMOX1

compared to control subjects (38, 39). HMOX1-expressing

monocytes have been shown to scavenge damaged erythrocytes

from the endothelium, and an increase in this specific population in

SCD patients is associated with a decreased rate of vaso-occlusive

crisis (38). However, the polarization of monocytes by heme not

only promotes an antioxidant patrolling phenotype via NRF2, but

can also promote di fferent ia t ion of monocytes into

proinflammatory monocyte-derived macrophages via type I

interferon-dependent upregulation of Chemokine (C-C motif)

Ligand-2 (CCL2) (40). These activated monocyte-derived
A B
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FIGURE 1

Heme detoxification via NRF2-dependent HMOX1 protects against oxidative stress and releases byproducts with beneficial effects. (A) At rest, NRF2
is sequestered in the cytoplasm bound to KEAP1, which polyubiquitinates NRF2 to promote its proteasomal degradation. The base level of NRF2 is
maintained by low-level expression of the Nfe2l2 gene. (B) In response to heme, the oxidation of key cysteine residues on KEAP1 release NRF2,
which travels to the nucleus and interacts with small MAF proteins to promote the transcription of antioxidant genes including HMOX1. The
enzymatic activity of HMOX1 converts heme into biliverdin, releasing iron and carbon monoxide (CO) as byproducts; biliverdin is then converted to
bilirubin by biliverdin reductase. Both enzymes depend on the availability of NADPH as a cofactor. (C) Genetic deletion or pharmacologic inhibition
of HMOX1 activity results in heme accumulation, which leads to increased reactive oxygen species (ROS) production, driving mitochondrial
dysfunction, oxidative damage, and in some cases cell death. (D) Although non-heme oxidative stress or pharmacologic activation of NRF2 can lead
to HMOX1 upregulation, the beneficial effects of heme degradation require heme to be broken down into CO, biliverdin, and bilirubin. Figure created
with BioRender (http://biorender.com).
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macrophages are recruited to the liver, where they upregulate Fc

receptors and have increased capacity for antibody-mediated

erythrophagocytosis (41).

In addition to circulating monocytes responding to hemolysis

within the vasculature, tissue-resident macrophages have also been

shown to drive pathology through maladaptive responses to heme.

A hemoglobin-polarized population of perivascular macrophages

with a mixed antioxidant/vasoactive/inflammatory phenotype and

significant intracellular iron accumulation was identified in the

lungs of SCD patients with concomitant pulmonary hypertension

(PH), and a similar population of macrophages was identified in a

rat model of PH induced by a combination of free hemoglobin

administration and hypoxic stress (39). Tissue macrophages in

mouse models of SCD also have an impaired ability to engulf and

clear apoptotic cells, which is driven by heme-induced suppression

of PPAR-gamma-PGC1-alpha signaling and a reduced capacity to

switch their metabolism to beta oxidation (42). Moreover,

reactivation of these metabolic pathways improved efferocytotic

capacity, which could serve as a therapeutic strategy to promote

resolution of inflammation in SCD (42). Additionally, macrophages

in the liver of SCD mice have a proinflammatory transcriptional

profile that is driven in part by reactive oxygen species formation,

and administration of exogenous hemopexin reduces expression of

inflammatory markers (37). Indeed, multiple studies have

demonstrated the ability of hemopexin or haptoglobin treatment

to reduce inflammation and tissue damage in preclinical models of

SCD (34, 37, 43, 44).

The breakdown of heme via heme oxygenase not only

sequesters pro-oxidant iron and reduces the pro-inflammatory

impact of free heme, but also releases biliverdin and carbon

monoxide (CO), molecules which have been shown to have

significant antioxidant and anti-inflammatory effects (4, 5). As

such, the use of either NRF2 activators to promote HMOX1

activity or direct administration of CO have been employed to

treat inflammation and promote redox homeostasis in SCD (45,

46). Administration of inhaled CO reduces leukocytosis, attenuated

inflammation and decreases vaso-occlusion in SCD mice (47, 48),

while daily oral administration of a saturated liquid formulation of

CO enhanced NRF2 and HMOX1 expression and decreased NF-kB
activation (49). This oral form of CO also increased hemoglobin

levels and protected against hypoxia reoxygenation-induced vaso-

occlusion (49). In addition, strategies that take advantage of the

ability of hemoglobin to bind CO have been used for therapeutic

delivery of CO in SCD mice, with similar activation of HMOX1,

decreased inflammatory signaling, and protection against vaso-

occlusion (50). These benefits could be blocked by administration

of the HMOX1 inhibitor tin protoporphyrin, underlying the

importance of HMOX1 activity for the beneficial effects of CO in

this model. These studies have highlighted the importance of

continuous heme oxygenase activity in both breaking down the

elevated levels of heme as well as promoting redox homeostasis and

reducing chronic inflammation in sickle cell disease.

The importance of heme clearance by macrophages has also

been examined in a variety of other hemolytic disorders, including

inherited metabolic enzymopathies, erythrocyte structural defects,

and acquired hemolytic diseases. Deficiency of glucose-6-phosphate
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dehydrogenase (G6PD), which catalyzes the first step of the pentose

phosphate pathway (PPP), is the most common inherited enzyme

defect worldwide (51). In response to infection, inflammation, or

increased oxidative stress from certain medications, patients with

G6PD deficiency experience acute intravascular hemolysis (51), a

finding that has also been recapitulated in mouse models of the

disorder (52–55). As the first step of the oxidative branch of the

PPP, the enzymatic activity of G6PD is a major source of NADPH

within cells, and therefore is critical for maintenance of redox

homeostasis (56). This is particularly important in erythrocytes,

which are under a constant high level of oxidative stress. In

macrophages, exposure to heme induces the PPP at the

transcriptional and functional level, which provides the NADPH

needed to fuel HMOX1 activity; as a result, inhibition of G6PD

impairs heme degradation (57). The importance of PPP activity for

heme clearance by macrophages suggests a multifaceted impact of

G6PD deficiency – not only are patients at increased risk of

hemolysis, but they may also be unable to degrade the free heme

effectively. Increased free heme has also been shown to polarize

myeloid cells toward heme-clearing phenotypes: In a genetic model

of hereditary spherocytosis, chronic heme stress shifted the

transcriptional profile of dendritic cells toward that of splenic red

pulp macrophages through activation of NRF2 signaling (58), while

in the same model liver macrophages had an anti-inflammatory,

erythrophagocytic phenotype (21).
Heme degradation modulates
infection, sepsis,
and hyperinflammation

Heme sensing by cells has been demonstrated to activate

inflammatory intracellular signaling pathways. Heme directly

agonizes Toll-like receptor (TLR) 4 in macrophages, which leads

to activation of the NF-kB signaling cascade, increased

inflammatory gene expression, and release of cytokines including

TNFa (59). This work also suggested that heme does not directly

compete for binding with lipopolysaccharide (LPS), a canonical

TLR4 ligand, and further studies have identified heme binding sites

on the myeloid differentiation factor 2 (MD-2) protein, which

facilitate the activation of TLR4 signaling (60, 61). The clinical

relevance of heme-induced TLR4 activation has been demonstrated

in murine SCD, where genetic deletion or pharmacological

inhibition of TLR4 prevented heme-induced vaso-occlusion,

mainly through activation of endothelial cells (35). Moreover, in

an ex vivo model of thrombo-inflammation in human blood,

inhibition of the TLR4 coreceptor CD14 attenuated heme-

induced complement activation and cytokine release (62). These

and multiple other studies have demonstrated the role of TLR

activation in heme-driven inflammation in both mice and

humans (63).

In addition to activation of inflammatory gene expression via

TLR-NF-kB signaling, heme can also trigger cytokine release via

activation of caspase-dependent inflammasomes (64). Heme has

been shown to induce the processing of interleukin-1b (IL-1b) by
frontiersin.org
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caspase 1 in LPS-primed macrophages by the NLRP3

inflammasome via a mechanism that is dependent on intracellular

ROS production and spleen tyrosine kinase (65). As a result, mice

with genetic deletion of key inflammasome components were

protected from lethality in a model of chemically-induced sterile

hemolysis. In addition, heme can induce activation of caspase-4 and

caspase-5, leading to IL-1b release, a process that was independent

of the canonical inflammasomes (66). Furthermore, recent work

demonstrated a role for heme in driving a novel form of

programmed inflammatory cell death coined panoptosis, which

was dependent on the NLRP12 inflammasome (67). These data

support a role for heme modulating the response to other pro-

inflammatory signals, with implications in a broad range on

inflammatory pathologies.

The role of heme as a driver of oxidative tissue damage and

inflammation and the critical importance of heme clearance has

also been demonstrated in models of acute bacterial infection.

Hmox1 knockout mice succumbed to a low-grade polymicrobial

infection that was not lethal in wild-type mice (68). Infection

increased circulating heme levels, and administration of heme

exacerbated damage in severe sepsis independent of bacterial

burden, and an analysis of patients who died of septic shock also

showed increased circulating heme levels (68). The activity of heme

oxygenase in macrophages is also critical for controlling infection in

sepsis, as mice with a myeloid-specific deletion of Hmox1 had

higher bacterial burden and decreased survival in a model of E. coli

peritonitis (69). Mechanistically, heme impairs bacterial engulfment

by macrophages through disruption of cytoskeletal rearrangement

required for phagocytosis, and blocking this disruption attenuated

heme-induced pathology in this model. In a combined trauma-

infection model, increased circulating heme induced by traumatic

liver crush injury impaired clearance of Staphylococcus aureus

bacteria from the lung by polymorphonuclear leukocytes (70).

Moreover, clearance of heme is critical to control bacterial

infection since free heme is taken up by bacteria as a source of

iron, which is critical for bacterial growth and division (71).

Multiple pathogenic bacterial species including S. aureus, E. coli,

and Streptococcus pyogenes have heme-binding and/or heme-uptake

proteins that have been shown to contribute to virulence (72–74).

Accordingly, heme oxygenase activity in macrophages is critical for

control of intracellular infection with Mycobacterium, as Hmox1

deficient mice have higher pathogen burdens and fail to mount a

granulomatous response to control M. avium. Hmox1 deficient

mice die at a low dose of M. tuberculosis that is tolerated in mice

which express Hmox1, through a mechanism that seemed to be

driven by heme-induced cellular death of infected macrophages

(75). Conversely, M. tuberculosis infection has been shown to

induce HMOX1 expression in mouse and human macrophages,

and chemical inhibition of HMOX1 restricted mycobacterial

growth and cytokine production (76). This detrimental role for

HMOX1 activity in either promoting pathogen replication or

impairing the immune response to infection has also been seen in

several other bacterial and protozoan pathogens, including

Salmonella typhimurium (77), Brucella (78), Burkholderia

pseuodmallei (79), and Leishmania chagasi (80, 81). In many of

these cases, the activity of HMOX1 and downstream products
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including CO suppress production of reactive oxygen species that

are needed for the oxidative respiratory burst and augment the

activation of pattern recognition receptor-dependent innate

immune signaling. These studies highlight that the context and

timing of heme degradation by heme oxygenase are critical for

determining whether this process positively or negatively impacts

the host response to infection.

Although heme promotes inflammation either via direct

activation of innate immune signaling pathways or impairing

phagocytic functions, there is also growing evidence that, in

certain contexts, heme can have anti-inflammatory effects, mainly

as a result of heme-dependent activation of the heme oxygenase

system, particularly increased HMOX1 activity (82). Hmox1

deficient mice had increased levels of pro-inflammatory cytokines

and a hyperinflammatory response to LPS exposure (83), and

conditional deletion of Hmox1 in myeloid cells resulted in an

exacerbated inflammatory phenotype in the experimental

autoimmune encephalomyelitis (EAE) model of multiple sclerosis,

which is dependent on activation of interferon beta signaling (84).

In mouse alveolar macrophages, heme treatment induced an anti-

inflammatory phenotype in the context of acute lung injury,

through a mechanism involving increased phagocytic clearance

and decreased iNOS activity, and this could be blocked by

treatment with zinc protoporphyrin, suggesting that HMOX1

activity was critical for this effect (85). Further evidence that the

anti-inflammatory effect of heme depends on enzymatic breakdown

by HMOX1 has come from studies demonstrating that heme

breakdown products, namely carbon monoxide and biliverdin/

bilirubin, have anti-inflammatory effects (86–88). Indeed, a

patient with a mutant form of HMOX1 that resulted in decreased

biliverdin (and therefore) bilirubin production, had a

hyperinflammatory phenotype resembling hemophagocytic

lymphohistiocytosis (89). Furthermore, uptake of hemoglobin-

haptoglobin complexes by CD163 resulted in polarization of

macrophages toward an anti-inflammatory phenotype with a

distinct antioxidant component (90). These and other studies

have demonstrated the critical requirement for HMOX1

enzymatic activity in mediating the anti-inflammatory effects of

heme under specific conditions.

The COVID-19 pandemic, caused by infection with the novel

coronavirus SARS-CoV-2, has reignited interest in understanding

how dysregulation of the immune response can impact the clinical

course of acute viral infections. In a single-center study of patients

with COVID-19, higher circulating heme and heme oxygenase

protein levels were observed in patients who developed sepsis

(91), and an increase heme levels over time was also observed in

patients with more severe oxygen desaturation (92). Interestingly, in

a recent multi-center, longitudinal study of patients who went on to

develop persistent symptoms months after acute COVID-19,

termed “long COVID”, circulating heme levels were increased,

raising the intriguing possibility that heme-driven inflammation

might be one of a multitude of factors contributing to chronic

thrombo-inflammation in this disease (93). Continuing work in this

area may identify a mechanistic role for heme in driving the severity

of acute infection or persistence of inflammation that could provide

opportunities for therapeutic intervention. In summary, heme
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clearance by macrophages modulates hyperinflammation and the

response to infection, with implications for sterile inflammatory

insults, bacterial, parasitic, and viral infections.
Metaflammation and
cardiometabolic disease

Beyond hemolytic disorders and acute inflammatory insults, the

heme oxygenase system has been implicated in development and

progression of chronic cardiometabolic diseases, including

atherosclerosis and obesity-induced insulin resistance, diseases in

which macrophages have been shown to play a central pathological

role. Macrophages in the core of the atherosclerotic plaque are

responsible for the uptake and clearance of pro-inflammatory

materials including oxidized LDL and associated lipid oxidation

products, oxidatively-modified proteins, and damaged erythrocytes.

Free heme is sufficient to oxidize LDL (oxLDL), which contributes

to endothelial injury during the pathogenesis of atheroma

development (94). Minimally-modified LDL was shown to induce

HMOX1 expression in both endothelial cells and macrophages, and

augmenting HMOX1 expression with heme attenuated oxLDL-

induced monocyte chemotaxis (95). Once in the lesion,

macrophage heme oxygenase activity modulates the progression

of inflammation and the maintenance of lesion stability.

Particularly in the necrotic core of the lesion, where microscopic

hemorrhage is associated with decreased plaque stability and

increased likelihood of rupture (96, 97). The interaction of

accumula ted l ip ids wi th ery throcytes in reg ions of

microhemorrhage in the core of the lesion also drives hemolysis

and oxidation of heme iron which facilitates liberation of heme and

contributes to overall oxidative stress in atherosclerotic lesions (98).

Release of heme from intraplaque hemorrhage induces an

atheroprotective macrophage phenotype, which is dependent on a

positive feedback loop driven by interleukin-10 (99). This adaptive

macrophage phenotypic polarization is driven by heme-dependent

activation of NRF2, which results in decreased markers of oxidative

stress (100). Moreover, heme activates ATF1 signaling to induce

HMOX1 expression, and activation of this signaling pathway in

intraplaque macrophages attenuates foam cell formation (9, 101). A

similar pathway is also critical for hematoma clearance by

macrophages, which has implications for traumatic injury as well

as microscopic hemorrhage (102). On the other hand, oxidized

ferri-hemoglobin in atherosclerotic lesions has been shown to drive

pro-inflammatory and pro-atherogenic polarization of

macrophages (103). Oxidized hemoglobin also inhibits the

upregulation of genes associated with an osteoclast-like

macrophage phenotype in the necrotic core, which may modulate

plaque calcification (104, 105). In addition, macrophages polarized

by exposure to oxidized phospholipids upregulate HMOX1 and

other key antioxidant enzymes via an NRF2-dependent process,

and these redox-responsive macrophages are highly abundant in

advanced atherosclerotic lesions in Ldlr-deficient mice (106). As a

result, genetic deletion of HMOX1 exacerbates atherosclerosis in

the Ldlr-knockout model (107), and the critical role for
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macrophages in this process was further demonstrated using

myeloid-ablation/reconstitution experiments with bone marrow

from control or Hmox1-knockout mice (108). The importance of

HMOX1 expression in cardiovascular disease extends to human

patients, as polymorphisms in the HMOX1 promotor correlate with

clinical outcomes in cardiovascular pathologies including

abdominal aortic aneurysm formation (109), cerebrovascular

ischemia (110), and restenosis after balloon angioplasty (111–114).

Macrophages also control the inflammatory state of the adipose

tissue in obesity, which in turn impacts local tissue and systemic

insulin resistance and development of other metabolic syndrome-

associated disorders including hypertension, diabetes, and metabolic-

associated steatotic liver disease (MASLD) (115–118). HMOX1-

expressing macrophages comprise a large fraction of the tissue-

resident macrophages in white adipose tissue in lean mice, and

they have a bioenergetic and transcriptional profile that is

dominated by activation of antioxidant pathways (119). In response

to high-fat feeding, these HMOX1-expressing macrophages remain

in the adipose tissue, but are outnumbered by infiltrating monocyte-

derived macrophages which have increased reliance on glycolytic

metabolism and a proinflammatory phenotype. Induction of

HMOX1 expression in adipose macrophages by hemin treatment

decreased adipose tissue inflammation in a high-fat diet model, and

this protective effect could be blocked by inhibition of HMOX1 (120).

Conversely, irradiated mice that were reconstituted with HMOX1-

haploinsufficient bone marrow had decreased macrophage

infiltration into the adipose tissue in response to high-fat feeding,

resulting in improved peripheral insulin sensitivity, revealing a

nuanced role for HMOX1 in control of inflammation in obese

adipose tissue (121). In spontaneously hypertensive rats, induction

of HMOX1 activity by hemin reduced inflammation and improved

insulin sensitivity via polarization of macrophages toward a more

anti-inflammatory state, an effect that was blocked by inhibition of

HMOX1 by chromium-mesoporphyrin (122). Conversely, genetic

deletion of HMOX1 in macrophages or hepatocytes protected mice

from development of insulin resistance and inflammation in a model

of diet-induced obesity (123). Importantly, this study also

demonstrated that increased HMOX1 expression was predictive of

insulin resistance in a cohort of obese patients (123), suggesting that

the presence of HMOX1 expression is not necessarily indicative of a

protective antioxidant state, and is context- and cell type-specific.

These studies demonstrate the importance for HMOX1 activity in

modulating the inflammatory state of macrophages in adipose tissue,

which in turn has identified novel therapeutic strategies to reduce

visceral inflammation in diet-induced metabolic syndrome.
Beyond heme clearance: HMOX1 and
regulation of ferroptosis and iron-
induced damage

The canonical role of HMOX1 is to convert free heme to

biliverdin, resulting in the release of carbon monoxide and iron,

which have disparate effects on the cell. On the one hand, CO is

viewed as anti-inflammatory and contributes to “silent” resolution
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1379967
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yeudall et al. 10.3389/fimmu.2024.1379967
of oxidative and inflammatory damage that results from elevated

levels of free heme (4, 124). On the other hand, free iron can

contribute to oxidative damage if not sequestered by ferritin. As a

result, the protective effect of heme breakdown by HMOX can prove

detrimental in instances where secondary protective mechanisms,

which are required to minimize oxidative damage from the released,

are compromised (125–127). In these cases, HMOX1-dependent

release of iron may serve as pro-oxidant stimulus and drive the

oxidative form of cell death, ferroptosis. Emerging literature

supports the idea of a Janus-faced role for HMOX1 in regulating

ferroptosis, with evidence that it not only can protect from oxidative

cell death, but also induce ferroptosis in specific contexts, including

endotoxin- induced inflammation, s ter i le in jury , and

metabolic syndrome.

In models of inflammation, activity of HMOX1 has been shown

to both promote and attenuate pathological ferroptosis depending

on the context. Hmox1 expression is increased in microglia in

response to systemic LPS treatment, and this is exacerbated in aged

mice (128). Myeloid-specific deletion of Hmox1 resulted in restored

iron metabolism and reduced markers of oxidative stress in

microglia from aged mice challenged with LPS. As a result,

myeloid-specific Hmox1 knockout mice were protected from

neurobehavioral deficits induced by systemic inflammation (128).

Conversely, in a model of LPS-induced acute lung injury,

pharmacological suppression of the ferroptosis-promoting

enzyme Acsl4 protected against injury; in this model the

expression of canonical ferroptosis genes Gpx4 and Slc7a11 as

well as Hmox1 were increased (129). In a cohort of patients with

M. tuberculosis infection, HMOX1 levels were increased (130). In

vitro, macrophages infected with Mycobacterium exhibited

significantly upregulated Hmox1 levels, coincident with an

increase in intracellular iron and lipid peroxide levels. However,

siRNA-mediated knockdown of Hmox1 during infection increased

bacterial release and ferroptotic cell death. These conflicting

findings may be accounted for by the role of iron metabolism in

replication of M. tuberculosis in vivo (130).

Heme oxygenase-dependent ferroptosis also drives pathology in

multiple sterile injury models. Hmox1 expression is regulated by

FoxO3a-mediated autophagy in vitro in BV2 microglia, and in

response to hemin treatment microglia upregulated Hmox1, which

resulted in iron accumulation, lipid peroxidation, and ferroptosis

(131). Virus-mediated knockdown of FoxO3a in the brain resulted

in decreased expression of Hmox1 in the striatum and cortex of

mice in a model of intracerebral hemorrhage. Concomitantly, these

mice also exhibited improved recovery post-hemorrhage (131). In

vitro, alternatively-activated macrophages were more susceptible to

cigarette smoke extract-induced ferroptotic cell death compared to

classically activated macrophages. Inhibition of HMOX1 using zinc

protoporphyrin protected alternatively activated macrophages from

ferroptotic cell death suggesting that oxidative injury may drive

ferroptotic injury in response to smoke inhalation (132). In a mouse

model of endometriosis, which is characterized by chronic sterile

inflammation and oxidative stress, levels of HMOX1 in peritoneal

macrophages were upregulated and correlated with an increase iron
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content in endometriosis tissue (133). Additionally, THP-1 cells, a

human monocytic cell line polarized in vitro by stimulation with

PMA and cyst fluid from mice with endometriosis were more likely

to die by ferroptosis. This suggests a correlative role between

Hmox1 levels and macrophage ferroptosis in this disease (133).

The role for ferroptosis in modulating macrophage function in

cardiovascular disease is less clear. In one study, Hmox1 expression

was reduced in macrophage foam cells leading to increased

oxidative stress (134). In another study, metformin treatment

lowered macrophage HMOX1 expression in vitro after co-

stimulation with oxLDL. Concomitantly, metformin-treated

macrophages had lower levels of malondialdehyde and higher

levels of GPX4 compared to controls. Similarly, metformin

protected THP-1 cells from erastin-induced ferroptosis by

lowering HMOX1 levels. This suggests that lowering HMOX1

protects THP-1 cells from ferroptotic cell death (135).

Additionally, erythrophagocytosis-induced ferroptosis in

phagocytes exacerbates plaque progression in late-stage

atherosclerosis. Decreasing intraplaque ferritin heavy chain and

HMOX1 expression via treatment with a pharmacological

ferroptosis inhibitor (UAMC-3203) slowed progression in

atherosclerotic plaques with intralesional hemorrhage (136).

Ferroptotic cell death was also implicated in worse outcomes in a

model of acute myocardial infarction, and both treatment with an

iron chelator or genetic deletion of BACH1 extended survival and

decreased infarct size, in part through upregulation of the heme

oxygenase system and glutathione synthesis enzymes (16).

Taken together, this literature suggests a complicated role for

heme oxygenase in the myeloid niche in varied disease settings. This

can likely be attributed to the redox state of the tissue in each

pathology and the importance of maintaining a cellular redox

balance that prevents lipid oxidation and ultimately, ferroptotic

cell death.
Conclusions

The pathological role for heme in hemolysis, inflammatory

disorders, and cardiovascular disease has become an increasingly

important area of investigation in the pre-clinical and translational

realm (Summarized in Figure 2). Macrophages are the key

regulators of heme homeostasis, as they utilize the heme

oxygenase system to minimize the oxidative and inflammatory

effects of free heme. Mechanistic studies of HMOX1 function in

macrophages have not only revealed the impact of heme clearance

on acute and chronic inflammation and oxidative stress, but also

uncovered a nuanced, context-dependent role for HMOX1 in either

attenuating or promoting inflammation and ferroptosis. We

particularly want to acknowledge the many excellent studies that

have contributed to this field but are not included in the present

review due to space and content limits. As a result of this

continually-evolving body of work, pharmacological activation or

inhibition of HMOX1 activity, as well as administration of heme

breakdown products, including CO and bilirubin, have emerged as
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exciting therapeutic targets for treatment of a diverse array of

disorders. Future work in the field will undoubtedly refine our

understanding of the balance between heme detoxification,

oxidative stress, and inflammation and provide translationally-

relevant insights into the treatment of heme-driven diseases.
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