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Hangzhou, Zhejiang, China, 2Department of Thoracic Surgery, The Second Affiliated Hospital,
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Introductions: Identifying patients with non-small cell lung cancer (NSCLC) who

are optimal candidates for immunotherapy is a cornerstone in clinical decision-

making. The tumor immune microenvironment (TIME) is intricately linked with

both the prognosis of the malignancy and the efficacy of immunotherapeutic

interventions. CD8+ T cells, andmore specifically, tissue-resident memory CD8+

T cells [CD8+ tissue-resident memory T (TRM) cells] are postulated to be pivotal

in orchestrating the immune system's assault on tumor cells. Nevertheless, the

accurate quantification of immune cell infiltration—and by extension, the

predict ion of immunotherapeutic efficacy—remains a s ignificant

scientific frontier.

Methods: In this study, we introduce a cutting-edge non-invasive radiomic

model, grounded in TIME markers (CD3+ T, CD8+ T, and CD8+ TRM cells), to

infer the levels of immune cell infiltration in NSCLC patients receiving immune

checkpoint inhibitors and ultimately predict their response to immunotherapy.

Data from patients who had surgical resections (cohort 1) were employed to

construct a radiomic model capable of predicting the TIME. This model was then

applied to forecast the TIME for patients under immunotherapy (cohort 2).

Conclusively, the study delved into the association between the predicted

TIME from the radiomic model and the immunotherapeutic outcomes of

the patients.

Result: For the immune cell infiltration radiomic predictionmodels in cohort 1, the

AUC values achieved 0.765, 0.763, and 0.675 in the test set of CD3+ T, CD8+ T,

and CD8+ TRM, respectively. While the AUC values for the TIME-immunotherapy

predictive value were 0.651, 0.763, and 0.829 in the CD3-immunotherapy

response model, CD8-immunotherapy response model, and CD8+ TRM-

immunotherapy response model in cohort 2, respectively. The CD8+ TRM-

immunotherapy model exhibited the highest predictive value and was

significantly better than the CD3-immunotherapy model in predicting the

immunotherapy response. The progression-free survival (PFS) analysis based on

the predicted levels of CD3+ T, CD8+ T, and CD8+ TRM immune cell infiltration

showed that the CD8+ T cell infiltration level was an independent factor (P=0.014,

HR=0.218) with an AUC value of 0.938.
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Discussion:Our empirical evidence reveals that patients with substantial CD8+ T

cell infiltration experience a markedly improved PFS compared with those with

minimal infiltration, asserting the status of the CD8+ T cell as an independent

prognosticator of PFS in the context of immunotherapy. Although CD8+ TRM

cells demonstrated the greatest predictive accuracy for immunotherapy

response, their predictive strength for PFS was marginally surpassed by that of

CD8+ T cells. These insights advocate for the application of the proposed non-

invasive radiomic model, which utilizes TIME analysis, as a reliable predictor for

immunotherapy outcomes and PFS in NSCLC patients.
KEYWORDS

non-small cell lung cancer, tumor immune microenvironment, immune checkpoint
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Introduction

Lung cancer steadfastly remains the predominant cause of

oncological mortality worldwide (1), with non-small cell lung

cancer (NSCLC) accounting for an estimated 80–85% of these

instances (2). With the emergence of immune checkpoint

inhibitors (ICIs) as a treatment modality, immunotherapy has

ascended to the forefront of therapeutic strategies for advanced

lung cancer in recent years. Although clinical benefits are evident in

approximately 20%–50% of patients (3, 4), there remains a

substantial cohort that does not derive benefit from such

therapies or may develop severe immune-related complications,

including hyper-progressive disease manifestations, immune-

related pneumonia, encephalitis, or even fatal outcomes post-

treatment (5, 6). In light of these challenges, the expeditious and

precise selection of patients who are anticipated to respond

favorably to immunotherapy before its initiation has become an

exigent priority.

The penetration and activation of immune cells within tumor

sites underscore the fundamental mechanism behind the antitumor

efficacy of ICIs (7). Precise evaluation of the tumor immune

microenvironment (TIME) is instrumental in forecasting patient

outcomes in response to ICI therapy (8–11). The extent of immune

cell infiltration within a tumor is a critical factor in predicting the

success of ICIs. Diverse immune cells contribute variably to the

immune reaction and the immunotherapeutic pathway, highlighting

the necessity of understanding the implications of various levels of

immune cell infiltration on therapy outcomes. Research indicates a

significant correlation between the density of CD3+ T cells

(universal T-cell markers) and CD8+T cells (markers of cytotoxic

T cells) within both the periphery and core of the tumor and patient

prognosis (12–14). Furthermore, a specific subset of CD8+ T cells,

known as tissue-resident memory CD8+ T cells (CD8+ TRM),

characterized primarily by the elevated expression of the epithelial

adhesion molecules CD103 and/or CD69, are permanently situated

within mucosal epithelial tissues (15, 16). Evidently, CD8+ TRM
02
cells are pivotal in tumor immune surveillance and the

immunotherapy process (17, 18). Clinical research has

demonstrated a positive correlation between the presence of

tumor-infiltrating CD8+ tissue-resident memory T (TRM) cells

and the prognosis for lung cancer patients (19, 20). TRM cells,

vital elements of the early immune microenvironment, play a

significant role in the recruitment of immune cells, with a high

density of TRM cells being linked to both an improved prognosis

and a favorable response to immunotherapy in NSCLC patients (18,

21). Thus, evaluating TIME across different dimensions, including

CD3+ T, CD8+ T, and CD8+ TRM cells, affords a more nuanced

insight into the immune landscape of tumors. Currently, the

assessment of TIME is contingent upon the procurement of

surgical or biopsy samples for the analysis of immune cells within

tissues, a challenging endeavor for patients with advanced-stage

NSCLC due to the impracticality of resection or the inherent

heterogeneity of tumors. Consequently, the development of non-

invasive techniques for the evaluation of TIME and the prediction of

immunotherapeutic responses is of paramount importance.

Radiomics emerges as a cutting-edge methodology capable of

converting computational medical imagery into analyzable data

(22, 23). These medical images encapsulate macroscopic, cellular,

and molecular insights into tumors, facilitating a deeper

comprehension of tumor dynamics (22, 24). Owing to its superior

performance in clinical diagnosis, prognostication, and therapeutic

decision-making across a spectrum of cancers, when compared with

conventional methods, radiomics has attracted burgeoning interest

(25–28). It is posited as a pioneering approach for the non-invasive

assessment of both the tumor and its immune microenvironment

(29, 30). Furthermore, the correlation between imaging

characteristics and the TIME has been extensively investigated,

underscoring the significant potential of radiomic imaging

biomarkers in evaluating tumor-infiltrating cells and forecasting

the efficacy of immunotherapies (31–33). Recent research disclosed

that radiomic features are predictive of NSCLC immunotherapy

biomarkers, such as PD-L1 expression levels and tumor mutational
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burden (TMB) status (34). A comprehensive multicohort

investigation revealed the utility of radiomic biomarkers in

estimating CD8 cell counts and prognosticating clinical outcomes

for patients undergoing immunotherapy (33).

In our endeavor, we have crafted an innovative immune cell

infiltration radiomic prediction model designed to appraise the TIME

of NSCLC and, additionally, to anticipate the outcomes of

immunotherapy for patients afflicted with NSCLC. This non-

invasive radiomic schema, grounded in the intricacies of TIME,

exhibits enhanced predictive capabilities for determining patient

responses to immunotherapy as well as progression-free survival

(PFS) metrics among NSCLC sufferers. This model could potentially

serve as an invaluable tool in the stratification of patients, aiding in

the discernment of optimal candidates for immunotherapy.
Frontiers in Immunology 03
Materials and methods

Study design and study population

This study was approved by the Institutional Research Review

Board for human studies (Ethical Committee) of the Second

Affiliated Hospital of Zhejiang University School of Medicine.

Informed consent was waived as this was a retrospective study.

In clinical practice, patients requiring immunotherapy are often

at an advanced stage at which surgical resection is no longer viable.

Additionally, biopsy specimens may fail to provide a precise

evaluation of the immune landscape due to their limited size and

the tumor’s heterogeneity. To surmount this issue, data from

patients who had surgical resections (cohort 1) were employed to
FIGURE 1

Study design for the immunotherapy response and PFS radiomic prediction model base on the TIME. In the first section, the TIME cohort was used
for developing the immune cell infiltration prediction radiomic model of CD3+ T, CD8+ T, and TRM. In the second section, the ICI treatment cohort
was used for developing the immunotherapy response clinical predicting model and PFS predicting model. In the third section, the TIME prediction
model was used to predict the CD3+ T, CD8+ T, and TRM infiltration level and further predict the PFS in the ICI treatment cohort.
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construct a radiomic model capable of predicting the TIME. This

model was then applied to forecast the TIME for patients under

immunotherapy (cohort 2). Conclusively, the study delved into the

association between the predicted TIME from the radiomic model

and the immunotherapeutic outcomes of the patients.

The overall study design is shown in Figure 1. This study

retrospectively enrolled a TIME cohort (n = 135) and ICI

treatment cohort (n = 112) from the Second Affiliated Hospital of

Zhejiang University School of Medicine.

Within the ambit of the TIME cohort, we meticulously selected

lung cancer cases diagnosed as primary NSCLC at stages IIB to IIIA

over the period from 2016 to 2019. These patients had undergone

lung tumor resections at the Department of Thoracic Surgery at the

Second Affiliated Hospital of Zhejiang University School of

Medicine. Inclusion in the analysis was contingent upon patients

meeting the following prerequisites: 1) a confirmed diagnosis of

NSCLC by a pathologist; 2) procurement of CT images from the

picture archiving and communication system (PACS) within a

month before surgery, with the stipulation that the lesions

depicted must possess adequate image quality for subsequent

radiomic analysis; 3) the availability of tissue samples deemed

sufficient for the exploration of immune cell dynamics, coupled

with comprehensive data on the infiltration ratios of CD3+ T cells,

CD8+ T cells, and CD8+ TRM cells; and 4) the possession of a

complete set of clinical records.

The analysis of immune cells encompassed three pivotal steps.

1) Immediately post-surgery, resected lung cancer tissue specimens

were rapidly submerged in liquid nitrogen and thereafter preserved

in a −80°C cryogenic freezer within the tissue repository. 2) For the

preparation of a single-cell suspension of immune cells infiltrating

lung cancer tissues, the specimens were first weighed and placed

into a sterile container with Roswell Park Memorial Park (RPMI)

1640 medium supplemented with 5% fetal bovine serum, then
Frontiers in Immunology 04
swiftly transferred to be washed with PBS to eliminate necrotic

tissue and lingering blood clots. Subsequently, tissues were

meticulously diced into 1-mm^3 fragments using sterile

ophthalmic scissors and subjected to a digestion protocol at 37°C

for 2 h. The digestion mixture—enriched with RPMI 1640 medium,

10% fetal bovine serum, type I collagenase (1 mg/ml), type IV

collagenase (1 mg/ml), and hyaluronidase (10 ng/ml)—was filtered

through a 40 mm sieve. Post-centrifugation, cells were resuspended

in the medium. 3) To ascertain the proportion of CD8+ TRMs

within the infiltrating lymphocytes of lung cancer tissues, the

single-cell suspension underwent a multicolor flow cytometry

analysis (incorporating CD45, CD3, CD4, CD8, CD103, and

CD69 markers) to precisely quantify the percentages of CD3+ T,

CD8+ T, and CD8+ TRM cells present in the lung cancer tissues

(Figures 2A–G). In the flow cytometry protocol, CD4 staining was

employed to more accurately identify the subsets of CD8 cells and

examine the distribution of TRM cells within the CD4 subsets.

However, it is important to note that the current study did not

further investigate the CD4 cells.
Antibodies and flow cytometry

The antibodies used in this study were meticulously selected for

their specificity and efficiency. These included CD45-APCCY7

(Clone #HI30, Cat#:304014, at a dilution of 1:100), CD3-BV421

(Clone #UCHT1, Cat#:300433, diluted at 1:100), CD8a-AF700

(Clone #RPA-T8, Cat#:301028, with a dilution ratio of 1:100),

CD4-APC (Clone #RPA-T4, Cat#:300512, diluted at 1:100),

CD103-FITC (Clone #Ber-ACT8, Cat#:350204, at a dilution of

1:100), CD69-PECY7 (Clone #FN50, Cat#:310911, diluted at

1:100), and 7-AAD (Cat#:420404, diluted at 1:200). These

reagents were acquired from BioLegend.
FIGURE 2

Immune cell analysis of the NSCLC. Representative gating strategy for the flow cytometric analysis of CD3+ T cells (A–E), CD8+T cells (A–F), and
CD8+TRM cells (A–G).
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To mitigate non-specific antibody binding, fresh tissue cells (at

a concentration of 1×10^6/ml) were initially preincubated in a

concoction comprising PBS, 2% fetal calf serum, and 0.1% (w/v)

sodium azide, augmented with an FcgIII/IIR-specific antibody.

Subsequently, these cells were labeled with various combinations

of fluorochrome-conjugated antibodies for a duration of 15 min at

ambient temperature. Following staining, cells were cleansed with

PBS and sifted through a 70-mm mesh. A 7-AAD Viability Staining

Solution was introduced 15 min before data acquisition to exclude

dead cells, with data collection was carried out using a FACSCanto

II system.

In the cohort receiving ICI treatment, we incorporated 112

patients diagnosed with stage IIIA to IVB NSCLC, all pathologically

verified and administered ICIs, including toripalimab, nivolumab,

and pembrolizumab, from 2018 to 2021. In clinical practice, to

identify patients suitable for immunotherapy, we generally followed

these screening procedures: prior to initiating immunotherapy,

patients underwent a biopsy to confirm the pathological type and

immunohistochemical testing to assess PD-L1 expression levels.

Patients with high PD-L1 expression (>50%) were treated with

immunotherapy alone, whereas those with low or unknown PD-L1

expression were considered for combined chemotherapy and

immunotherapy. Some patients also had external genetic testing

for TMB and other biomarkers. Patients were clinically staged to

determine their suitability for surgery or neoadjuvant therapy.

Immunotherapy or combined chemoradiotherapy was

administered to patients who were not eligible for surgical

resection or required preoperative adjuvant therapy. Patients with

acute infections, interstitial lung disease, autoimmune diseases, or

those on steroid therapy were excluded from the study. Patients

included in our study were selected based on the fulfillment of the

following specific criteria for the analysis: 1) pathological

confirmation of NSCLC prior to the commencement of

immunotherapy; 2) the acquisition of chest CT scans within a

month preceding immunotherapy initiation, ensuring clarity and

the absence of obfuscations such as pronounced respiratory motion

or metallic artifacts (the images were processed using both lung and

mediastinal windows, with slice thicknesses set at 1–2.5 mm for the

lung window and 5 mm for the mediastinal window); 3) the

presence of at least one measurable lesion within the patient; and

4) the completion of a chest CT follow-up post 1–2 cycles

of immunotherapy.

To assess the efficacy of ICI treatment, patient evaluations were

conducted in alignment with the immune response evaluation

criteria in solid tumors (iRecist). Pre-treatment chest CT scans

were meticulously reviewed to identify a measurable lesion,

subsequently designated as the target lesion for measurement.

Details such as the lesion’s location, initial dimensions, and

pathological classification, as well as the specific immunotherapy

regimen and dosage, were meticulously documented. Follow-up CT

scans conducted after 1–2 cycles of immunotherapy were

subsequently reviewed, with the target lesion’s response evaluated

in accordance with iRecist guidelines. The PFS time was recorded

for each patient, with the exception of those who underwent

surgical resection.
Frontiers in Immunology 05
Medical image segmentation

For the purpose of this study, the Digital Imaging and

Communications in Medicine (DICOM) data-sets of patients

enrolled in the TIME cohort and ICI treatment cohort were

retrieved from PACS. The CT scans were acquired using 16-slice

or higher slice spiral GE healthcare, Siemens, and Philips CT

systems. We used a 5 mm slice thickness standard reconstruction

algorithm image and set the window level at 50 Hu and the window

width at 2,000 Hu to ensure consistency throughout the

segmentation procedure. The tumor outline in every slice was

drawn as the region of interest (ROI) by a radiologist who had no

knowledge of the tumors other than their locations by using a free

open-source software package (ITK-SNAP, version 3.6.0; http://

itksnap.org) to provide the ROI for computer-based image analysis.
Feature extraction and matrix building

Radiomic feature extraction were carried out using a free open-

source software package, FeAture Explorer software (FAE; V.0.5.5

https://github.com/salan668/FAE). The FAE is engineered to

execute an automated exploration of assorted algorithmic

combinations, subsequently appraising the efficacy of model

constructions against the validation dataset (35). For each case,

the Feature Extraction module of FAE facilitated the extraction of

an extensive suite of 851 radiomic features from the CT imagery.

These encompassed 162 first-order features, 14 morphological

features, 216 gray-level co-occurrence matrix (GLCM) features,

144 gray-level run-length matrix (GLRLM) features, 144 gray-

level size zone matrix (GLSZM) features, 45 neighborhood gray

tone difference matrix (NGTDM) features, and 126 gray-level

dependence matrix (GLDM) features. An enumerative catalog of

these 851 features is presented in the Supplementary Material. To

ascertain the intra-observer consistency, 20 cases were arbitrarily

selected for the reiteration of ROI demarcation and feature

extraction, and undertakings were performed by a second

radiologist with 5 years of expertise in thoracic imaging

diagnostics. The robustness of the radiomic features was assessed

using intraclass correlation coefficients (ICC) to gauge the stability

and reproducibility of the feature extraction process. An ICC value

exceeding 0.80 was indicative of commendable reliability.

Consequently, 730 features were deemed robust and compiled

into a matrix for further feature selection.

Within the TIME cohort, the densities of infiltrated CD3+ T cells,

CD8+ T cells, and CD8+ TRM cells weremethodically ranked for 135

NSCLC patients. These populations were dichotomized into low-

infiltrated and high-infiltrated groups based on the median value. The

low-infiltrated group was encoded as 0, whereas the high-infiltrated

group was encoded as 1. These encodings were integrated into the

radiomic feature matrix, yielding separate matrices for CD3+ T,

CD8+ T, and CD8+ TRM TIME radiomic features.

Regarding the ICI treatment cohort, all 112 NSCLC patients

were classified based on their immunotherapy response: those with

stable disease (SD) and progressive disease (PD) were categorized
frontiersin.org
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ashaving a poor immunotherapy response and encoded as 0;

conversely, those with a complete response (CR) and partial

response (PR) were categorized as having a favorable

immunotherapy response and encoded as 1. These designations

were also inserted into the radiomic feature matrix to formulate an

immunotherapy response radiomic feature matrix. Follow-up data

post-immunotherapy, notably the PFS, were meticulously recorded.

Patients who experienced disease progression at the 12-month

mark were marked as 1, whereas those without progression were

marked as 0, allowing the formation of a PFS radiomic

feature matrix.
Radiomic model building

To construct the TIME prognostic model, the comprehensive

matrices of CD3+ T, CD8+ T, and CD8+ TRM TIME radiomic

features were inputted into the FAE software’s model exploration

module. A computer-generated random algorithm partitioned the

datasets, allocating 70% to the training set and 30% to the

independent validation set. The dataset underwent standardization

via Z-score normalization to mitigate variances and facilitate a more

homogeneous comparison across the feature space, which was

expansive. To streamline this feature space, we employed the

Pearson correlation coefficient (PCC) to evaluate the pairwise

similarity of features, excluding one feature from any pair that

exhibited a PCC exceeding 0.99. Feature selection employed a

multifaceted analytical approach: analysis of variance (ANOVA)

and Kruskal–Wallis (KW) tests discerned features of statistical

significance relative to the labels. In addition, recursive feature

elimination (RFE) and relief methods were harnessed to identify

and refine pertinent features in relation to the labels through

recursive stratification and subset selection. Feature consideration

was constrained to a range of 1 to 10. The evaluative strength of the

features was tested through a battery of 10 machine learning

algorithms. This diverse array included support vector machine

(SVM), linear discriminant analysis (LDA), auto-encoder (AE),

random forests (RF), linear regression (LR), logistic regression with

least absolute shrinkage and selection operator (LASSO) (LRLasso),

Ada-Boost (AB), decision tree (DT), Gaussian process (GP), and

naive Bayes (NB). Model efficacy was ranked according to the area

under the receiver operating characteristic curve (AUC) from the

independent test set, with the optimal model for each CD3+ T, CD8+

T, and CD8+ TRM TIME radiomic prediction being selected on the

basis of comparative AUC values. Parallel methodologies and

parameters were applied in the ICI treatment cohort to develop

immunotherapy response and PFS predictive models. These models

were similarly validated, with the selection of the premier model

informed by AUC statistics.

To predict immune cell infiltration in patients within the ICI

treatment cohort, the retained features from the TIME and

immunotherapy response models were used to craft the

integrated TIME-immunotherapy response models. The

predictive values, indicative of the infiltration levels of CD3+ T,
Frontiers in Immunology 06
CD8+ T, and CD8+ TRM, were extracted from these models.

Subsequently, patients were categorized into low-infiltration and

high-infiltration groups based on the derived prediction

threshold values.

The prognostic implications of the infiltration levels of CD3+T,

CD8+T, and CD8+TRM cells were gauged through Kaplan–Meier

survival analysis. Additionally, multivariable Cox regression analysis

was employed to determine the hazard ratios for specific T-cell

infiltration levels, with adjustments made for concurrent infiltration

levels of the other T-cell categories. This rigorous statistical approach

provided a comprehensive assessment of the potential prognostic

value of T-cell infiltration in patients receiving ICI therapy.
Statistical analysis

Quantitative variables were delineated with precision as the

mean accompanied by the standard deviation (M ± SD), whereas

categorical data were succinctly expressed in terms of frequency and

corresponding percentages where suitable. The chi-squared or

Fisher’s exact test were judiciously applied to the categorical

variables, whereas Student’s t-test or a Mann-Whitney U test

were used for the continuous variables within the univariate

analysis framework. The efficacy of the models was meticulously

assessed by receiver operating characteristic (ROC) curves, with the

model’s accuracy determined at the optimal cutoff point. This point

was defined as the juncture where the sum of the model’s sensitivity

and specificity reached its zenith, thereby maximizing the

diagnostic potential. Additionally, the model’s discriminative

capacity was quantitatively analyzed through the area under the

ROC curve (AUC). The AUCs of different models were compared

using Delong’s non-parametric method. Statistical analysis was

performed using SPSS software (IBM SPSS Statistics Version 19.0,

IBM Corp.), and the comparison of AUCs and the Kaplan–Meier

analysis was carried out using MedCalc statistical software (version

22.023, MedCalc Software Ltd).
Results

Clinical characteristics

This study involved two cohorts of NSCLC patients from the

Second Affiliated Hospital of Zhejiang University School of Medicine.

The overarching design of the study is depicted in Figure 1. Within the

TIME cohort, levels of infiltration by CD3+ T, CD8+ T, and CD8+

TRM immune cells were meticulously recorded, alongside chest CT

scan data, to facilitate the establishment of the TIME radiomic model.

The cohort consisted of 135 patients staged IB to IIIA, all confirmed by

pathology following surgery. The demographic breakdown included 63

males and 72 females, with a median age of 61.5 years (range: 34–83

years) and a standard deviation of ±9.1. Histopathological evaluations

revealed 113 cases of adenocarcinoma, 18 of squamous carcinoma, and

4 of other cancer types.
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In the ICI treatment cohort, 112 patients at stages IIIA to IVB were

surveyed, consisting of 90 males and 22 females, with a median age of

64.4 years (range: 45–83 years) and a standard deviation of ±8.1.

Treatment modalities included monotherapy with ICIs in 8 cases,

chemotherapy in combination with immunotherapy in 102 cases, and

immunotherapy following unsuccessful tyrosine kinase inhibitor (TKI)

therapy in 2 cases. Post-immunotherapy, 9 out of the 112 patients

underwent surgical resection. Regarding histopathology, there were 47

adenocarcinoma cases, 58 squamous carcinoma cases, and 7 cases of

other types. The efficacy of immunotherapy was classified as CR in 8

patients, PR in 76 patients, SD in 18 patients, and PD in 10 patients,

with detailed breakdowns provided in Table 1.
Frontiers in Immunology 07
Predictive value of the radiomic model for
the TIME

Radiomic prediction models were established for CD3+ T, CD8+

T, and CD8+ TRM immune cell infiltration levels, named CD3-TIME,

CD8-TIME, and TRM-TIME models, respectively. The CD3-TIME

model retained six radiomic features and achieved AUC values of 0.765

[0.67–0.86; 95% confidence interval (CI)] and 0.765 (0.61–0.92; 95%

CI) for the training and test sets, respectively (Figure 3A). Analysis

using FAE software indicated that a six-feature model demonstrated

the best performance, as shown in Figure 3B. The feature selection

ANOVA and the LR classifier exhibited the most favorable

performance (Supplementary Figures S1A, B). Within the CD8-

TIME model, nine radiomic features were retained, resulting in AUC

values of 0.767 (0.67–0.86; 95% CI) and 0.763 (0.61–0.92; 95% CI) for

the training and test sets, respectively (Figure 3C). The contribution of

these features to the model is illustrated in Figure 3D. Supplementary

Figures S2A, B presents the performance of the feature selection and

classifier. Regarding the TRM-TIME model, three radiomic features

were retained, with AUC values of 0.723 (0.63–0.83; 95% CI) and 0.675

(0.50–0.85; 95% CI) for the training and test sets, respectively

(Figure 3E). The contribution of these features is displayed in

Figure 3F, and Supplementary Figures S3A, B provides the feature

selection and classifier performance. The retained radiomic features for

each model are presented in Table 2. To compare the performance of

the models, Delong’s test was employed for pairwise comparison of

ROC curves. The results showed no significant differences among the

CD3+ T, CD8+ T, and TRM TIME prediction models (CD3 vs. CD8,

P=0.9646; CD3 vs. TRM, P=0.4370; CD8 vs. TRM, P=0.4652).
Immunotherapy outcome radiomic
predictive model based on clinical data

In the ICI treatment cohort, we developed an immunotherapy

response prediction model based on the immune response evaluation

criteria in solid tumors (iRECIST) using clinical follow-up data after

immunotherapy. The cohort consisted of 112 patients, who were

randomly divided into a training set (78 cases) and a test set (34

cases). The resulting model was referred to as the immunotherapy

response model. The AUC values for the training and test sets were

0.739 (0.62–0.85; 95% CI) and 0.725 (0.54–0.91; 95% CI), respectively

(Figure 4A). The model retained eight features, and their

contributions are presented in Figure 4B. Relief in feature selection

algorithms and LR in classifiers demonstrated a superior

performance to other methods (Supplementary Figures S4A, B).

Additionally, when using the patients’ 12-month PFS as a label to

establish a prediction model, the final model retained nine features.

The AUC values for the training and test sets were 0.854 (0.74–0.97;

95% CI) and 0.801 (0.62–0.98; 95% CI), respectively (Figure 4C). The

contribution of these features is shown in Figure 4D. Relief in feature

selection algorithms and GP in classifiers exhibited better

performance than other methods (Supplementary Figures S5A, B).

Table 3 displays the retained radiomic features for each model.
TABLE 1 Characteristics of the NSCLC patients in each cohort.

TIME cohort ICIs cohort

Age (years)

Median 61.5 ± 9.1 64.4 ± 8.1

Gender

Male 63 (46.7%) 90 (80.4%)

Female 72 (53.3%) 22 (19.6%)

Smoking status

Smoker 37 (27.4%) 42 (37.5%)

Non-smoker 98 (72.6%) 70 (62.5%)

Pathological type

Adenocarcinoma 113 (83.7%) 47 (42.0%)

Squamous carcinoma 18 (13.3%) 58 (51.8%)

Others 4 (3%) 7(6.3%)

Clinical stage

Ib 91 (67.4%)

IIa 8 (5.9%)

IIb 21 (21%)

IIIa 15 (11.1) 12 (10.7%)

IIIb 39 (34.8%)

IIIc 32 (28.6%)

IVa 29 (25.9%)

ICI treatment response

CR 8 (7.1%)

PR 76 (67.9%)

SD 18 (16.1%)

PD 10 (8.9%)

Progression-free survival

Excluded cases 9 (8.0%)

Censored cases 2 (1.8%)

Median (months) 10.3 ± 9.5
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The predictive value of TIME radiomic
features for the immunotherapy response

Using the radiomic features retained in the TIME model and

immunotherapy response model, we constructed the TIME-

immunotherapy response model. This model provided predictive

values for the infiltration levels of CD3+ T, CD8+ T, and CD8+ TRM
Frontiers in Immunology 08
immune cells in each patient. The AUC values for the TIME-

immunotherapy predictive value were 0.651 (0.56–0.74; 95% CI),

0.763 (0.67–0.84; 95% CI), and 0.829 (0.75–0.89; 95% CI) in the CD3-

immunotherapy response model (Figure 5A), CD8-immunotherapy

response model (Figure 5B), and TRM-immunotherapy response

model (Figure 5C), respectively. To compare the performance of

these models, Delong’s test was conducted for pairwise comparison of

the ROC curves (Figure 5D). The TRM-immunotherapy model

exhibited the highest predictive value and was significantly better

than the CD3-immunotherapy model (0.829 vs. 0.651, P=0.0039) in

predicting the immunotherapy response. However, there was no

significant difference between the CD3-CD8 immunotherapy model

(0.651 vs. 0.763, P=0.0560) or the CD8-TRM immunotherapy model

(0.763 vs. 0.829, P=0.2040).
The relationship between the immune cell
infiltration level and PFS

In the ICI treatment cohort, patients who received monotherapy

and surgical resection were excluded from the analysis because the

survival time of neoadjuvant therapy patients differs from those

receiving combined chemotherapy and immunotherapy.

Consequently, 101 cases were included for further analysis. The

level of immune cell infiltration predicted by the TIME-

immunotherapy model was used to divide the patients into

different groups: a low-CD3+ T cell infiltration group and high-

CD3+T cell infiltration group, a low-CD8+T cell infiltration group

and high-CD8+T cell infiltration group, and a low-TRM cell

infiltration group and high-TRM cell infiltration group. Kaplan–
FIGURE 3

The performance of the CD3, CD8, and TRM TIME prediction models. (A) AUCs of the receiver operating characteristic (ROC) curves of the training
and test sets in the CD3-TIME prediction model. (B) The contribution of retained features in the model (B). (C) AUCs and the contribution of retained
features (D) in the CD8-TIME prediction model. (E, F) AUCs (E) and the contribution of retained features (F) in the TRM-TIME prediction model.
TABLE 2 The retained radiomics features in the TIME prediction model.

Reserved features

CD3_TIME model Image_wavelet-HLL_firstorder_10Percentile
Image_wavelet-LLH_glcm_DifferenceVariance
Image_wavelet-
HLH_gldm_DependenceNonUniformityNormalized
Image_wavelet-HLL_firstorder_Mean
Image_wavelet-LLL_glcm_Correlation
Image_wavelet-
HLL_glszm_SizeZoneNonUniformityNormalized

CD8_TIME model Image_wavelet-HLH_glcm_InverseVariance
Image_wavelet-
HLH_glszm_GrayLevelNonUniformityNormalized
Image_wavelet-HLH_firstorder_10Percentile
Image_wavelet-HLL_glszm_ZonePercentage
Image_wavelet-
LLH_glszm_SizeZoneNonUniformityNormalized
Image_wavelet-HLH_firstorder_Maximum
Image_wavelet-HLH_glszm_ZonePercentage
Image_wavelet-HLL_glszm_SizeZoneNonUniformity
Image_wavelet-HLL_firstorder_Mean

TRM_TIME model Image_wavelet-HLH_glcm_InverseVariance
Image_wavelet-HLL_firstorder_Mean
Image_original_shape_Sphericity
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Meier analyses were then performed to assess the PFS based on the

predicted levels of CD3+ T, CD8+ T, and TRM immune cell

infiltration. For the CD3+ T cell infiltration level grouping, the

disease control rate (DCR) for the low-CD3+ T cell infiltration and

high-CD3+ T cell infiltration groups was 24.6% (14 in 57 cases) vs.

31.8% (14 in 44 cases) (P=0.491), and the mean progress time for the

low-CD3+ T cell infiltration and high-CD3+ T cell infiltration groups

was 12.75 ± 1.89 vs. 15.17 ± 2.18 months (log-rank P=0.306; Breslow

P=0.258), with no significant difference between the two groups

(Figures 6A, B). Regarding the CD8+ T cell infiltration level

grouping, the DCR for the low-CD8+ T cell infiltration and high-
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CD8+ T cell infiltration groups was 22.5% (9 in 40 cases) vs. 31.1%

(19 in 61 cases) (P=0.342), and the mean progress time for the low-

CD8+ T cell infiltration group and high-CD8+ T cell infiltration

group was 10.36 ± 1.96 vs. 15.70 ± 1.87 months (log-rank P=0.038;

Breslow P=0.006), showing a significant difference between the two

groups (Figures 6C, D). In the case of the CD8+ TRM cell infiltration

level grouping, the DCR for the low-TRM cell infiltration group and

high-TRM cell infiltration groups was 22.2% (12 in 54 cases) vs.

34.0% (16 in 47 cases) (P=0.186), and the mean progress time in the

low-TRM cell infiltration group and high-TRM cell infiltration group

was 11.51 ± 1.82 vs. 16.48 ± 2.19 months (log-rank P=0.060; Breslow

P=0.030). There was a significant difference between the two groups

in the early stage of treatment, but no significance in the later stage

(Figures 6E, F). To determine the independent factors predicting

immunotherapy patients progressing at 12 months, a multivariable

Cox regression analysis was performed by adjusting for CD3, CD8,

and TRM infiltration levels. The results showed that the CD8+ T cell

infiltration level was an independent factor (P=0.014, HR=0.218)

with an AUC value of 0.938 (0.893–0.983; 95% CI) (Figure 5E).
Discussion

Immunotherapy has substantially changed the therapeutic

strategies for lung cancer patients (36). Unfortunately, only 20–

50% of patients with advanced solid tumors respond positively to

immunotherapy treatment (4), and some patients even have adverse

effects or fatal complications after treatment (5, 6). Predicting

patients who are most likely to respond to immunotherapy will
FIGURE 4

The performance of the immunotherapy response and PFS models. AUCs of the receiver operating characteristic (ROC) curves of the training and
test sets in the immunotherapy prediction model (A) and the contribution of retained features (B) based on clinical data. AUCs (C) and the
contribution of retained features (D) in the PFS prediction model based on clinical data.
TABLE 3 The retained radiomics features in the response and PFS
prediction models.

Reserved features

Response model Image_wavelet-LLL_firstorder_Kurtosis
Image_original_firstorder_Kurtosis
Image_wavelet-LHH_firstorder_Skewness
Image_wavelet-LHH_glcm_Correlation
Image_wavelet-LLH_glcm_ClusterShade
Image_wavelet-HHH_glcm_ClusterProminence
Image_wavelet-HHH_glcm_DifferenceVariance
Image_wavelet-HHH_glcm_SumSquares

PFS model Image_wavelet-
HHH_glrlm_LongRunHighGrayLevelEmphasis
Image_wavelet-LHH_glszm_GrayLevelNonUniformity
Image_wavelet-HHH_glcm_MCC
Image_wavelet-LHH_glszm_SizeZoneNonUniformity
Image_wavelet-HLH_firstorder_Skewness
Image_wavelet-LHL_glszm_GrayLevelNonUniformity
Image_wavelet-LHH_ngtdm_Complexity
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FIGURE 5

The performance of immunotherapy response models based on TIME. AUCs of the receiver operating characteristic curves of the CD3 (A), CD8 (B),
and TRM (C) immunotherapy response models based on CD3, CD8, and TRM TIME radiomic features. Comparison among the three models. The
TRM immunotherapy model had the highest predictive value and was better than the CD3 immunotherapy model (0.829 vs. 0.651, P=0.0039) in
predicting the immunotherapy response. There were no significance in the CD3-CD8 immunotherapy model (0.651 VS. 0.763 P=0.0560) and CD8-
TRM immunotherapy model (0.763 vs. 0.829, P=0.2040) (D). The AUC value was 0.938 after adjusting the CD3, CD8, and TRM infiltration level
according to multivariable Cox regression analysis (E).
FIGURE 6

PFS survival curves for the CD3, CD8, and TRM infiltration level grouping. There was no significant difference in PFS between the two groups [low-
CD3 vs. high-CD3, 12.75 ± 1.89 vs. 15.17 ± 2.18; log-rank test, P=0.306; Breslow test, P=0.258] (A, B), indicating that the level of CD3+T cell
infiltration was not predictive of PFS. There was a significant difference in PFS between the two groups (low-CD8 vs. high-CD8, 10.36 ± 1.96 vs.
15.70 ± 1.87; log-rank test, P=0.038; Breslow test, P=0.006) (C, D), indicating that the level of CD8+T cell infiltration was effective in predicting PFS.
There was a significant difference in PFS between the two groups (low-TRM vs. high-TRM, 11.51 ± 1.82 VS. 16.48 ± 2.19; log-rank test, P=0.060;
Breslow test, P=0.030) (E, F), indicating that the CD8+ TRM cell infiltration level was effective in predicting PFS in the early period
of immunotherapy.
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provide helpful information for treatment strategy (10, 11). Several

studies have shown that pre-existing tumoral and peritumoral

immune infiltration correlates with patient responses to anti-

programmed cell death protein (PD)-1 and anti-programmed cell

death ligand 1 (PD-L1) immunotherapy (11, 37, 38). With the

increasing use of immunotherapy in cancer, knowledge of an

individual’s immune status could help identify those who will

respond positively to treatment (10, 11). In our study, we

developed a TIME-based radiomic model to predict the ICI

treatment response and PFS. This study established radiomic

prediction models for CD3+ T, CD8+ T, and CD8+ TRM

immune cell infiltration levels, and then predicted the level of

immune cell infiltration in tumor tissues of NSCLC patients in

the immunotherapy cohort based on the radiomic model of the

TIME. Finally, we investigated the effects of CD3+ T, CD8+ T, and

CD8+ TRM immune cell infiltration levels on patients ’

immunotherapy response and PFS (15–17, 39, 40).

Retrospective analyses of patient populations treated with ICIs

have revealed that there are classes of TIMEs that are associated

with those tumors that are more prone to ICI responsiveness (11,

37, 38). Deeper analysis of the complexity within the TIME is likely

to reveal and identify patient populations that will respond to ICI

therapy. T cells are known to be a key group of anti-tumor immune

cells. Previous studies have shown that CD3+ T cells and CD8+ T

cells at the tumor margin and within the tumor are closely

associated with prognosis. Patients with T cells present within the

tumor benefit preferentially from PD-1 therapy (10). Therefore, the

infiltration density of T cells in the tumor microenvironment and

the key antitumor immune cells such as CD8+ T cells will be

powerful in predicting the response to immunotherapy (39). A

study that evaluated different variables associated with

immunotherapy response across different tumor types found that,

among 36 variables, CD8+ T cell abundance was the most predictive

of the response to immunotherapy across cancer types, followed by

the TMB and the fraction of samples with high PD-1 gene

expression (39). In addition, tissue-resident memory CD8+ T

(CD8+ TRM) cells, which are characterized by the high

expression of the epithelial adhesion molecules CD103 and/or

CD69, are a key subpopulation of CD8+ T cells (15, 16). Studies

have shown that CD8+ TRM cells play a key role in tumor

immunosurveillance and immunotherapy (17, 40).

However, a practical limitation for the histological characterization

of T lymphocyte infiltration in clinical practice is the scarce availability

of tumor tissue. In the majority of cases, NSCLC was diagnosed at

advanced stages of disease, when radical resection is not feasible and

the tumor tissue is limited or heterogeneous from small biopsy samples

(41). It is necessary to explore non-invasive and efficient methods to

assess the immune microenvironment.

Radiomics involves the analysis and translation of medical

images into quantitative data (30, 42). High-dimensional imaging

data allow an in-depth characterization of tumor phenotypes, with

the underlying hypothesis that imaging reflects not only

macroscopic but also cellular and molecular properties of tissues.

The objective of radiomics is to generate image-driven biomarkers

that serve as instruments that provide a deeper understanding of

cancer biology to better aid clinical decisions (43). Radiomic
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prediction models have been widely applied in the diagnoses,

prognosis, and treatment response prediction of tumors.

In our study, we developed a radiomic prediction model based on

an analysis of immune cells using flow cytometry in NSCLC resection

samples to predict the TIME. The AUC values for the testing set in

the CD3+ T, CD8+ T, and CD8+ TRMTIME predictionmodels were

0.765, 0.763, and 0.675, respectively (Figure 3). These results

demonstrate the predictive power of our radiomic model in

determining the infiltration levels of immune cells in the tumor

microenvironment. Other studies have also investigated the use of

radiomic models to predict the immune phenotype of tumors. For

example, a study developed a radiomic signature for CD8 cells and

validated it in multiple cohorts, showing a promising predictive

ability for immune phenotypes. Additionally, this study

demonstrated that the radiomic signature could infer clinical

outcomes in an ICI treatment cohort (33). However, it is important

to note that the dataset used in this study included various cancer

types, which may limit the accuracy and specificity of the radiomic

model when applied specifically to lung cancer patients.

Another study used radiomics to study the TIME in NSCLC

patients and classified the TIME into “hot” and “cold” types based

on the expression of PD-L1 and the number of tumor-infiltrating

lymphocytes. Radiomic features could accurately discriminate

between hot and cold tumors, and these groups exhibited

different overall survival and disease-free survival rates.

Validation in an additional cohort further confirmed the

prognostic impact of the radiomic signature (44).

In our study, we constructed a radiomic model to predict the

infiltrations levels of CD3+ T, CD8+ T, and CD8+ TRM immune

cells in the TIME. The AUC values for predicting ICI treatment

response were 0.651 for CD3+ T, 0.763 for CD8+ T, and 0.829 for

CD8+ TRM, indicating that CD8+ TRM infiltration level had the

highest predictive performance. Survival analysis revealed that there

was no significant difference in PFS between patients with low and

high CD3+ T cell infiltration levels. However, patients with high

levels of CD8+ T cell infiltration had a significantly better PFS than

those with low levels. Multivariable Cox regression analysis showed

that the CD8+ T cell infiltration level was an independent predictor

of immunotherapy patients progressing at 12 months, with an AUC

of 0.938. On the other hand, high levels of CD8+ TRM cell

infiltration only predicted better PFS in the early stage of

immunotherapy, suggesting that CD8+ T cell infiltration had a

stronger predictive ability for PFS in the later stages of

immunotherapy. Overall, our study demonstrates the utility of the

radiomic model in predicting immune cell infiltration levels and the

response to immunotherapy in NSCLC patients, with CD8+ T cell

infiltration showing the strongest association with PFS.

T cells, co-expressing CD3, and their subset, cytotoxic T cells,

which express CD8, are pivotal in the TIME. The presence of CD3+

T cells serves as a surrogate for T-cell abundance, and CD8+ T cells

indicate cytotoxic activity. Our study demonstrates that, in NSCLC

patients, CD3+ T cell levels do not consistently predict ICI

treatment outcomes or PFS. Conversely, CD8+ T cell infiltration

is a reliable predictor for both ICI response and PFS. Surprisingly,

CD8+ TRM cells, a CD103+ subset of CD8+ T cells within epithelial

tissues, exhibit a slightly diminished role in antitumor immunity
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compared with CD8+ T cells. This finding contrasts with the

prevailing literature and our initial hypotheses. Despite their

potent recruitment by CD103 and their established correlation

with a favorable prognosis (19, 20, 45), CD8+ TRM cells’

predictive capacity for PFS post-ICI treatment is not as robust as

that of CD8+ T cells, particularly in the later treatment stages. The

multivariate analyses reveal that TRM cells are an independent

predictive factor for clinical outcomes in lung cancer—emphasizing

their significance at the apex of the local immune response, in which

TRM concentrations surpass those of effector CD8+ T cells by

tenfold and persist beyond 30 days when effector cells are no longer

detectable (46). Theoretically, TRM cells should be superior in

antitumor efficacy; however, the discrepancies observed might be

attributable to our study’s small sample size and the heterogeneity

in clinical stages and treatment regimens.

The study’s retrospective single-center design is a limitation,

compounded by the varying stages of NSCLC patients and the

absence of direct immune cell analysis in the immunotherapy

cohort. The data used in the TIME cohort were obtained from a

previous study that aimed to explore the immune regulatory

mechanisms in cancer. We utilized the radiomics model in the

TIME cohort to predict the immune cell infiltration level, which

does not involve a direct comparison between the two cohorts. We

consider that the different stages of cancer in the cohorts do not

interfere with the performance of the radiomics model in predicting

immune cell infiltration. When we analyzed the DCR between the

high and low T-cell infiltrations, there was no significant difference

between the CD3+, CD8+, and TRM groups; we suppose that the

radiomic model can only approximately predict the levels of immune

cell infiltration. Additionally, our sample size was quite limited, which

may have been the reason for the lack of statistical significance in the

DCR. The distribution of squamous cell carcinoma patients in the

TIME and ICI cohorts can be attributed to a few factors. In the TIME

cohort, all patients underwent tumor resection procedures for earlier

clinical stages. In clinical practice, patients in these early stages are

more likely to have adenocarcinoma. On the other hand, the ICI

cohort consisted of patients in advanced stages who received

immunotherapy. In advanced stages, the number of squamous cell

carcinoma patients tends to be higher. This may be due to different

patterns of disease progression and treatment response in squamous

cell carcinoma compared with adenocarcinoma. Furthermore, we

observed that patients with squamous cell carcinoma respond more

positively to immunotherapy than those with adenocarcinoma.

Consequently, a higher proportion of squamous cell carcinoma

cases were included in immunotherapy trials in clinical practice.

These factors necessitate prospective multicenter studies to increase

the predictive accuracy of radiomic models.

In conclusion, our research supports the use of radiomic

imaging biomarkers in non-invasively forecasting the TIME and,

by extension, the response to immunotherapy and PFS in NSCLC

patients. Importantly, it underscores the superior predictive role of

CD8+ T cells over CD3+ T cell infiltration levels, which could

inform preclinical immunotherapeutic strategies for NSCLC.
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SUPPLEMENTARY FIGURE 1

The performance of feature selection and classifier in the CD3-TIME prediction
model. The ANOVA algorithm in the feature selection (A) and LR in the classifier

(B) had the best performance.
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SUPPLEMENTARY FIGURE 2

The performance of feature selection and classifier in the CD8-TIME
prediction model. The ANOVA algorithm in the feature selection (A) and

LDA in the classifier (B) had the best performance.

SUPPLEMENTARY FIGURE 3

The performance of feature selection and classifier in the TRM-TIME
prediction model. The RFE algorithm in the feature selection (A) and AE in

the classifier (B) had the best performance.

SUPPLEMENTARY FIGURE 4

The performance of feature selection and the classifier in the immunotherapy
response prediction model. The relief algorithm in the feature selection (A)
and LR in the classifier (B) had the best performance.

SUPPLEMENTARY FIGURE 5

The performance of feature selection and the classifier in the PFS prediction

model. The relief algorithm in the feature selection (A) and GP in the classifier

(B) had the best performance.

SUPPLEMENTARY FIGURE 6

The FAE panel. The main panel (A), feature preprocessing window (B), model

exploration window (C), and result visualization window (D) of FeAture
Explorer V.0.5.5.
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