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Since the discovery of specific immune memory in invertebrates, researchers

have investigated its immune response to diverse microbial and environmental

stimuli. Nevertheless, the extent of the immune system’s interaction with

metabolism, remains relatively enigmatic. In this mini review, we propose a

comprehensive investigation into the intricate interplay between metabolism

and specific immune memory. Our hypothesis is that cellular endocycles and

epigenetic modifications play pivotal roles in shaping this relationship.

Furthermore, we underscore the importance of the crosstalk between

metabolism and specific immune memory for understanding the evolutionary

costs. By evaluating these costs, we can gain deeper insights into the adaptive

strategies employed by invertebrates in response to pathogenic challenges.

Lastly, we outline future research directions aimed at unraveling the crosstalk

between metabolism and specific immune memory. These avenues of inquiry

promise to illuminate fundamental principles governing host-pathogen

interactions and evolutionary trade-offs, thus advancing our understanding of

invertebrate immunology.
KEYWORDS

immunometabolism, specific memory, ecoimmunology, host-parasite relationship,
innate immune response, immune priming, trade-offs
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GRAPHICAL ABSTRACT

Immune and metabolic parameters reported in studies of immune memory in invertebrates. After (A) the priming challenge is observed, metabolic
activation, epigenetic markers, endoreplication, and differential immune effector mechanisms (e.g. antimicrobial peptides (AMPs) or phagocytosis)
are observed. After (B) the second challenge, metabolic, epigenetic, endocycling, and immune effector mechanisms are also activated. Whether si-
milar or different immune mechanisms are activated in the first versus the second challenge or which mechanisms of the first challenge activate the
second challenge remains untested. The references are shown in the supplementary material of our reference 5.
Introduction

Parasites, virus and pathogens (here referred parasites as the

evolutionary strategy) significantly reduce the host fitness. Parasites

use hosts as a resource for reproduction, while hosts either eliminate

their parasites or undergo infection in one or more occasions

throughout their life (1). On the one hand, parasites possess

virulence factors that enable them to evade, diminish, or

eliminate the host’s immune response, thereby facilitating the

establishment of infection (1). On the other hand, the hosts kill

or tolerate their parasites through diverse and specialized immune

mechanisms to achieve an optimal immune response (1, 2).

A paradigm shift in immunity lies in the invertebrate’s ability to

develop specific immune memory (3). The invertebrates immune

memory has also been referred to as innate immune memory,

alternative immune memory, or immune priming (3–5). This

phenomenon is so named to distinguish it from vertebrate adaptive
Frontiers in Immunology 02
memory, although both can specifically protect the hosts against

reinfection in terms of immune response, parasite elimination, and

improved survival (4). However, the mechanisms underlying

immune memory including storage, maintenance, efectors, recall

and the role of factors such as epigenetic modifications in

reprogramming remain elusive (5). Additionally, understanding its

potential interaction with other physiological pathways such as

metabolism is important to understand deeply the immune memory.
Immunometabolism

Immunometabolism denotes the intricate interaction between

the immune system and the energy acquisition and utilization (6).

Some key facets of immunometabolism include: 1) the energy

utilization by the immune response; 2) the availability of

metabolic energy and 3) the allocation of energy between
frontiersin.org
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immunocompetent cells or tissues as well as the trade-off between

immune response and life-history traits such as reproduction (4, 6).

This allocation is influenced by environmental factors, for example

temperature, development, reproduction and maintenance of

cellular functions (2, 6–8), and all are tied to immune memory (4,

7–9). In invertebrates, the energy demand during infection is

influenced by the parasite (10). Specific metabolic signals are

essential for activating and regulating the immune response

(Figure 1) (6, 11). For example, the insulin pathway is activated

in response to infection (12), and metabolic plasticity arises in

hemocytes during their differentiation (13). Thus, insulin emerges

as a critical molecule in this bidirectional interaction (14). In

invertebrates, insulin-like peptides (ILPs) and its receptor (InR)

are implicated in metabolism and immunity (Figure 1) (15).

Activation of InR leads to the phosphorylation of the Akt kinase
Frontiers in Immunology 03
and the subsequent inactivation of transcription factors such as the

subfamily of forkhead box-containing proteins (FOXO) (13) and

the TOR (the target of rapamycin) pathway, which represents a

nutrient-sensitive signaling cascade crucial for cellular metabolism

(Figure 1) (16). The InR activation stimulates glucose uptake,

lipogenesis, the size and number of mitochondria, and cellular

division and differentiation (17, 18). In Drosophila melanogaster,

the insulin-like peptide and infection are connected: A mutation of

the chico gene (insulin receptor homolog), which regulates the

signaling pathway dependent on the presence of ILP, increases the

survival of flies infected with the Gram-negative Entomobacter

faecalis and with the Gram-positive Staphylococcus aureus (17).

This conections are bi-directional in insects because the constitutive

activation of the Toll pathway inhibits Akt and triacylglyceride

utilization (6). Additionally, the Pathogen-Associated Molecular
FIGURE 1

lmmunometabolic relationship established within an immunocompetent invertebrate cell in response to the recognition of metabolic and immune
stimuli. Initially, the recognition of insulin-like peptides (ILPs) by the insulin receptor (InR, Chico) activates the insulin signaling pathway (ISP). This
activation triggers the PI3K signaling pathway (Phosphoinositide 3-kinase), which, in the case of mTOR activation (mammalian target of rapamycin),
culminates in the activation of HIF1a/b (Hypoxia-Inducible Factor 1a/b) for the synthesis of the Dif dimer (Dorsal related immunity factor) and Dorsal
(a member of the Rel transcription factor family) to form NF-kB involved in antimicrobial peptide (AMP) synthesis. In the case of AKT pathway
activation (Serine-threonine kinase), which inhibits the activity of the FOXO transcription factor (forkhead box; O class transcription factor family),
cellular growth, proliferation, differentiation, cellular longevity, and AMP synthesis are inhibited. Subsequently, following Toll receptor activation by
the binding of the endogenous cytokine ligand Spätzle (an extracellular ligand of the Toll receptor) recognizing pathogen-associated molecular
patterns (PAMPs) from Gram-negative bacteria (LPS-GNBP 1-3; b-1,3-glucan) and Gram-positive bacteria (Lipopolysaccharides bound to PGRP), the
MyD88 adapter (myeloid differentiation factor 88) is activated, inducing the degradation of Inhibitor of kB (Cactus in Drosophila), favoring the
translocation of the NF-kB nuclear factor and the synthesis of pattern recognition receptors (PRRs) and anti microbial peptide (AMP) genes, while
also inhibiting PI3K activity. Finally, the activation of the immunocompetent cell through the Imd pathway (immune deficiency pathway), which
activates Ird5 (IkB kinase homologue) and Relish (an NF-kB transcription factor, a key regulator of the Imd pathway) upon binding to PAMPs, LPS,
and peptidoglycan through the PGRP-LC receptor (peptidoglycan recognition protein), culminates in NF-kB activation and the synthesis of
target genes.
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Patterns (PAMPs), and ILPs, drive the expression of genes involved

in the immune response (antimicrobial peptides, cell growth, Dif,

Dorsal and pathogen recognition receptors), and factors such as

FOXO, NF-kB, and hypoxia-inducible transcription factor (HIF)

have a bidirectional communication (Figure 1). For example, the

transcription factor FOXO downmodulates the cell number and

tissue growth in insects by promoting anabolic metabolism (19) and

regarding NF-kB, the modulation of the expression of the

transcription factors Dorsal, Dif and Relish in Drosophila lead to

interference between metabolic and immune response pathways.

Thus, infection with E. coli in D. melanogaster that lacks Ird5 (the

homologous of IKK, that activates the Relish protein by

phosphorilation), produces a decrease in the synthesis of

drosomycin and a reduction in the expression of HIF-1a and

HIF-1b, genes homologs called sima and tango, respectively (20,

21). Similar alterations occur in mutant flies lacking the sima gene,

leading to altered NF-kB function (20). Therefore, oxygen

concentrations, energy availability, ILPs, and infection may be

interconnected (19).
The invertebrate’s immune memory

Since the discovery of immunememory in invertebrates, its efficacy

has been scrutinized in different host species (4, 5). The effector

immune mechanisms (e.g. antimicrobial peptides, pro-oxidants,

phagocytosis, or lytic activity) underlying this immune memory

show plasticity that may be contingent upon host condition,

development, sex, age and/or populations (5). In addition, an

important characteristic of immune memory in invertebrates is its

ability to be transmitted to subsequent generations, termed

transgenerational immune memory (22, 23). Here we are focused

only on the specific immune memory within generations. In this topic,

two molecular mechanisms are correlated with the invertebrates

immune memory: The endocycle and epigenetics and metabolism to

a much lesser extent (Graphical Abstract).

Hemocytes and epithelial cells are suggested to play a crucial

role in establishing immune memory in invertebrates and are

closely associated with the endocycle (24, 25). In immune

response, the endocycle is triggered in hemocytes after energetic

demands, such as viral infections (26, 27). In An. albimanus primed

with P. berghei, a significant upregulation of genes involved in cell

cycle elements such as cyclins A, B, E, and factors activating the

endoreplication pathway like Notch and Hnt was observed upon

subsequent challenge (27, 28) and in the same model system,

An. albimanus against P. berghei, the immune memory group

showed more cellular activity of the endocycle than the control

group (24, 27). Hence the endocycle seems to be implicated in the

invertebrates immune memory.

Epigenetic modifications are crucial in regulating gene

expression, thereby influencing host-pathogen interactions. Recent

studies have revealed an interaction between immune response and

epigenetic modifications, including histone modifications

(acetylation, methylation, phosphorylation, and ubiquitination),

and chromatin remodeling or structure (29, 30). Few examples

have been published regarding specific immune memory and
Frontiers in Immunology 04
epigenetics whithin generations. DNA methylation is implicated in

different biological processes in insects, including host-pathogen

interactions (31, 32). In adults and larvae of T. molitor infected

with Micrococcus lysodeikticus or M. anisopliae, respectivelly, a

differential methylation on RNA during immune memory was

identified and no evidence of methylation on DNA was supported

(33). Another posttranslational modification of histones is

acetylationcatalyzed by histone acetyltransferases (HATs) and

histone deacetylases (HDACs) (34). HATs open chromatin

structure, promoting access to DNA and gene expression, while the

condensed chromatin generated by HDACs leads to gene silencing.

This dynamic activity of histone acetylation/deacetylation influences

chromatin structure, reflecting the opposing activities of HATs/

HDACs. For instance, in An. gambiae mosquitoes infected with P.

berghei, the enzyme histone acetyltransferase AgTip60 was identified

as essential in synthesizing hemocyte differentiation factor (HDF),

affecting the increase in oenocyte number and maintaining a broad,

systemic, and long-lasting state of enhanced immune surveillance in

primed mosquitoes (35). During specific immune memory in

invertebrates, there seems to be a tight interconnection between the

endocycle and epigenetic mechanisms with immune memory.

Still, metabolism also appears critical in this interaction

(Graphical Abstract).
Immunometabolism in specific
immune memory

Certain molecules have been pinpointed in invertebrates, such

as the mTOR signaling pathway, which regulates the activation of

HIF-1a/b, a conserved mechanism in vertebrates responsible for

controlling glucose metabolism (36, 37). Immune stimulation with

b-glucans induces alterations in glucose metabolism, including the

transition from oxidative phosphorylation to aerobic glycolysis,

heightened glutamine metabolism, cholesterol synthesis, and the

upregulation of long non-coding RNAs (lncRNAs), mirroring

observations in vertebrates (8). Epigenetic modifications,

facilitated through posttranslational regulation of enzymes, play a

pivotal role in metabolic activation (36). Specific immune memory

can prompt the reconfiguration of the immunometabolic network

through differential expression of molecules in insect hemocytes.

Furthermore, mitochondria are pivotal, housing enzymes

responsible for adding or removing epigenetic marks on DNA or

histones using metabolites as substrates or co-factors (38). This

renders the epigenome susceptible to metabolic changes, such as

histone acetylation facilitated by acetyl-CoA (38, 39), which can

modulate the activity of histone acetyltransferases (HATs), thus

regulating gene expression (40, 41). Another critical metabolic

process involves the conversion of pyruvate to mitochondrial

oxaloacetate via activation of glutaminolysis, and subsequently to

a-ketoglutarate (a-KG) (42), which may be associated with specific

immune memory.

Research in Drosophila melanogaster has uncovered

upregulation of Toll, PGRP, and PRRs during the activation of

specific immune memory (43). Concerning the humoral response,

some but not all AMPs measured displayed biphasic kinetics in An.
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albimanus against P. bergei (24). Finally, activation of immune

memory in Biomphalaria glabrata triggers a shift from cellular to

humoral effector immune responses, accompanied by differential

expression of various gene families, including PRRs such as FREP,

macrophage lectins, and C-type lectins (44). However, studies like

these have not integrated the perspective of immunometabolism,

which could elucidate, for instance, whether a shift in immune

response is less energetically demanding than a biphasic response.

Recent studies have demonstrated that specific immune memory

activates the metabolic system (45), and some have explored the

components of immunometabolism in invertebrates, comparing the

initial immune challenge with the subsequent one (Graphical

Abstract). Nevertheless, the intricacies of the interaction of

metabolism during specific immune memory processes,

encompassing recognition, storage, and retrieval, remain

incompletely understood (5). While a biphasic response is

predicted in immune memory, research in this domain remains

limited and biphasic kinetics are not consistently observed (5, 44,

46). Studies following the first challenge have revealed an increase in

insulin-like peptides and metabolic rewiring, while after the second

challenge, up-regulation of metabolic genes, heightened energetic

demand, insulin-like peptide activation, and increased CO2

production have been observed (Graphical Abstract). How these

mechanisms elucidate the utilization of energetic fuel during

specific memory and how they explain the evolutionary costs of

immune memory remain to be investigated. Additionally, there is

plasticity in the kinetics of the immune response from the first to

the second challenge, partially explained by the host’s interaction

with its environment (5). For instance, temperature, sex, and

infections impact metabolism (7, 47, 48), yet there is currently no

information on how these variables affect immunometabolism

during specific immune memory or how metabolism constrain

immune memory based on the organism’s environment.
The costs of immune memory

The immune response is costly, and hence, the specific immune

memory should also be costly (49). This energetic cost can be

quantified by assessing changes in the basal metabolic rate (BMR),

which denotes the energy expended by an individual at rest, reflected in

the amount of CO2 exhaled upon activation (50–52). The quantity of

CO2 emitted could provide insights into the potential costs associated

with specific immune memory (7, 52). Notably, parasitism induces a

heightened energy demand in the host, increasing BMR (52). In both

invertebrates and vertebrates, immune system activation escalates total

metabolic rate (53), as energy reserves are mobilized to support

immune responses (54, 55) and homeostatic recovery processes (56).

Integrating studies on specific immune memory by considering

immune and metabolic responses in invertebrates becomes

imperative. This holistic approach has shed light on the evolutionary

costs associated with specific immune memory in invertebrates and

adaptive memory in vertebrates (4).

The activation of specific memory in hosts demands energy,

leading to the use of glycogen, lipids, and proteins (57). The
Frontiers in Immunology 05
magnitude of energy demands dictates the costs associated with

specific immune memory activation, evolutionary costs, and their

correlation with the biphasic and sustained immune response (4, 5,

7): the higher the energy demand, the greater the cost. Metabolomic

analysis will provide information about how the metabolism works

to pay the immune memory costs, from the first to the second or

subsequent challenges. Future studies could explore whether

homologous or heterologous challenges with parasites or

pathogens differentially induce evolutionary costs. If immune

memory is costly, higher metabolic costs would be predicted in

homologous challenges such as dual challenge with a pathogen A

than in heterologous challenges conducted against pathogen A after

inducing the immune response with pathogen B.
Future directions to study
immunometabolism in invertebrate
specific immune memory

One of the most critical aspects that remain understood is the

role of epigenetic modifications, such as histone 3, in elucidating the

immunometabolism of hemocytes, as well as the epigenetic

regulation of metabolic pathways such as the transcription factors

HIF-1 and FOXO, and their relevance in the immunometabolic

connection of specific immune memory. In invertebrates,

posttranslational epigenetic modifications may reconfigure

immune and metabolic signaling pathways, the resulting

epigenetic landscapes may favor specific responses during

immune memory. Additionally, exploring immunometabolism,

epigenetics, and the endocycle during intergenerational immune

memory could provide insights into its effect on inheritance and its

implications for host-parasite dynamics.

We emphazise the need for studying the connections between

immune activation, energy expenditure, and metabolic pathways.

This could involve examining changes in nutrient utilization,

energy allocation, and metabolic rates during homologous versus

heterologous immune challenges. Of particular interest is the study

of how metabolism influences the establishment, storage, and

expression of specific immune memory in invertebrates by

manipulating metabolic pathways through dietary manipulations

or genetic modifications and then, analyzing the resulting impact on

immune memory formation and maintenance. Moreover, exploring

how metabolic cues influence epigenetic-involved changes in

immune gene regulation and immune memory formation may be

interesting. This could involve studying changes in DNA

methylation, histone modifications, and non-coding RNA

expression patterns in response to metabolic perturbations.

Exploring the fitness consequences arising from metabolic

strategies within the framework of immune defense and pathogen

exposure represents a promising avenue of research from an

evolutionary standpoint. This research should encompass

potential sources of variation that might elucidate the plasticity of

specific immune memory, including intrinsic attributes such as

developmental stage and sex, as well as extrinsic factors like

environmental conditions (temperature) and resource availability.
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Understanding how variation in metabolism influence the fitness

outcomes associated with mechanisms may provide valuable

information about the adaptive significance of specific immune

memory. Applying a comparative approach to assess evolutionary

patterns across diverse invertebrate taxa will provide insights into

the macroevolution of the relationship between metabolism and

immune memory. By bridging the gap between immunology and

metabolism, research has the potential to uncover fundamental

principles governing host-pathogen interactions and shape our

understanding of evolutionary trade-offs in immune defense.
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